| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tocycf.c |  | 
						
							| 2 |  | tocycf.s |  | 
						
							| 3 |  | tocycf.b |  | 
						
							| 4 | 1 | tocycval |  | 
						
							| 5 |  | simpr |  | 
						
							| 6 | 5 | rneqd |  | 
						
							| 7 |  | rn0 |  | 
						
							| 8 | 6 7 | eqtrdi |  | 
						
							| 9 | 8 | difeq2d |  | 
						
							| 10 |  | dif0 |  | 
						
							| 11 | 9 10 | eqtrdi |  | 
						
							| 12 | 11 | reseq2d |  | 
						
							| 13 | 5 | cnveqd |  | 
						
							| 14 |  | cnv0 |  | 
						
							| 15 | 13 14 | eqtrdi |  | 
						
							| 16 | 15 | coeq2d |  | 
						
							| 17 |  | co02 |  | 
						
							| 18 | 16 17 | eqtrdi |  | 
						
							| 19 | 12 18 | uneq12d |  | 
						
							| 20 |  | un0 |  | 
						
							| 21 | 19 20 | eqtrdi |  | 
						
							| 22 | 2 | idresperm |  | 
						
							| 23 | 22 3 | eleqtrrdi |  | 
						
							| 24 | 23 | ad2antrr |  | 
						
							| 25 | 21 24 | eqeltrd |  | 
						
							| 26 |  | difexg |  | 
						
							| 27 | 26 | resiexd |  | 
						
							| 28 |  | ovex |  | 
						
							| 29 |  | vex |  | 
						
							| 30 | 29 | cnvex |  | 
						
							| 31 | 28 30 | coex |  | 
						
							| 32 |  | unexg |  | 
						
							| 33 | 27 31 32 | sylancl |  | 
						
							| 34 | 33 | adantr |  | 
						
							| 35 | 4 34 | fvmpt2d |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 |  | simpll |  | 
						
							| 38 |  | simplr |  | 
						
							| 39 |  | id |  | 
						
							| 40 |  | dmeq |  | 
						
							| 41 |  | eqidd |  | 
						
							| 42 | 39 40 41 | f1eq123d |  | 
						
							| 43 | 42 | elrab |  | 
						
							| 44 | 38 43 | sylib |  | 
						
							| 45 | 44 | simpld |  | 
						
							| 46 | 44 | simprd |  | 
						
							| 47 | 1 37 45 46 2 | cycpmcl |  | 
						
							| 48 | 47 3 | eleqtrrdi |  | 
						
							| 49 | 36 48 | eqeltrrd |  | 
						
							| 50 | 25 49 | pm2.61dane |  | 
						
							| 51 | 4 50 | fmpt3d |  |