Description: The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | tocycf.c | |
|
tocycf.s | |
||
tocycf.b | |
||
Assertion | tocycf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycf.c | |
|
2 | tocycf.s | |
|
3 | tocycf.b | |
|
4 | 1 | tocycval | |
5 | simpr | |
|
6 | 5 | rneqd | |
7 | rn0 | |
|
8 | 6 7 | eqtrdi | |
9 | 8 | difeq2d | |
10 | dif0 | |
|
11 | 9 10 | eqtrdi | |
12 | 11 | reseq2d | |
13 | 5 | cnveqd | |
14 | cnv0 | |
|
15 | 13 14 | eqtrdi | |
16 | 15 | coeq2d | |
17 | co02 | |
|
18 | 16 17 | eqtrdi | |
19 | 12 18 | uneq12d | |
20 | un0 | |
|
21 | 19 20 | eqtrdi | |
22 | 2 | idresperm | |
23 | 22 3 | eleqtrrdi | |
24 | 23 | ad2antrr | |
25 | 21 24 | eqeltrd | |
26 | difexg | |
|
27 | 26 | resiexd | |
28 | ovex | |
|
29 | vex | |
|
30 | 29 | cnvex | |
31 | 28 30 | coex | |
32 | unexg | |
|
33 | 27 31 32 | sylancl | |
34 | 33 | adantr | |
35 | 4 34 | fvmpt2d | |
36 | 35 | adantr | |
37 | simpll | |
|
38 | simplr | |
|
39 | id | |
|
40 | dmeq | |
|
41 | eqidd | |
|
42 | 39 40 41 | f1eq123d | |
43 | 42 | elrab | |
44 | 38 43 | sylib | |
45 | 44 | simpld | |
46 | 44 | simprd | |
47 | 1 37 45 46 2 | cycpmcl | |
48 | 47 3 | eleqtrrdi | |
49 | 36 48 | eqeltrrd | |
50 | 25 49 | pm2.61dane | |
51 | 4 50 | fmpt3d | |