Metamath Proof Explorer


Theorem tocycf

Description: The permutation cycle builder as a function. (Contributed by Thierry Arnoux, 25-Sep-2023)

Ref Expression
Hypotheses tocycf.c C=toCycD
tocycf.s S=SymGrpD
tocycf.b B=BaseS
Assertion tocycf DVC:wWordD|w:domw1-1DB

Proof

Step Hyp Ref Expression
1 tocycf.c C=toCycD
2 tocycf.s S=SymGrpD
3 tocycf.b B=BaseS
4 1 tocycval DVC=uwWordD|w:domw1-1DIDranuucyclShift1u-1
5 simpr DVuwWordD|w:domw1-1Du=u=
6 5 rneqd DVuwWordD|w:domw1-1Du=ranu=ran
7 rn0 ran=
8 6 7 eqtrdi DVuwWordD|w:domw1-1Du=ranu=
9 8 difeq2d DVuwWordD|w:domw1-1Du=Dranu=D
10 dif0 D=D
11 9 10 eqtrdi DVuwWordD|w:domw1-1Du=Dranu=D
12 11 reseq2d DVuwWordD|w:domw1-1Du=IDranu=ID
13 5 cnveqd DVuwWordD|w:domw1-1Du=u-1=-1
14 cnv0 -1=
15 13 14 eqtrdi DVuwWordD|w:domw1-1Du=u-1=
16 15 coeq2d DVuwWordD|w:domw1-1Du=ucyclShift1u-1=ucyclShift1
17 co02 ucyclShift1=
18 16 17 eqtrdi DVuwWordD|w:domw1-1Du=ucyclShift1u-1=
19 12 18 uneq12d DVuwWordD|w:domw1-1Du=IDranuucyclShift1u-1=ID
20 un0 ID=ID
21 19 20 eqtrdi DVuwWordD|w:domw1-1Du=IDranuucyclShift1u-1=ID
22 2 idresperm DVIDBaseS
23 22 3 eleqtrrdi DVIDB
24 23 ad2antrr DVuwWordD|w:domw1-1Du=IDB
25 21 24 eqeltrd DVuwWordD|w:domw1-1Du=IDranuucyclShift1u-1B
26 difexg DVDranuV
27 26 resiexd DVIDranuV
28 ovex ucyclShift1V
29 vex uV
30 29 cnvex u-1V
31 28 30 coex ucyclShift1u-1V
32 unexg IDranuVucyclShift1u-1VIDranuucyclShift1u-1V
33 27 31 32 sylancl DVIDranuucyclShift1u-1V
34 33 adantr DVuwWordD|w:domw1-1DIDranuucyclShift1u-1V
35 4 34 fvmpt2d DVuwWordD|w:domw1-1DCu=IDranuucyclShift1u-1
36 35 adantr DVuwWordD|w:domw1-1DuCu=IDranuucyclShift1u-1
37 simpll DVuwWordD|w:domw1-1DuDV
38 simplr DVuwWordD|w:domw1-1DuuwWordD|w:domw1-1D
39 id w=uw=u
40 dmeq w=udomw=domu
41 eqidd w=uD=D
42 39 40 41 f1eq123d w=uw:domw1-1Du:domu1-1D
43 42 elrab uwWordD|w:domw1-1DuWordDu:domu1-1D
44 38 43 sylib DVuwWordD|w:domw1-1DuuWordDu:domu1-1D
45 44 simpld DVuwWordD|w:domw1-1DuuWordD
46 44 simprd DVuwWordD|w:domw1-1Duu:domu1-1D
47 1 37 45 46 2 cycpmcl DVuwWordD|w:domw1-1DuCuBaseS
48 47 3 eleqtrrdi DVuwWordD|w:domw1-1DuCuB
49 36 48 eqeltrrd DVuwWordD|w:domw1-1DuIDranuucyclShift1u-1B
50 25 49 pm2.61dane DVuwWordD|w:domw1-1DIDranuucyclShift1u-1B
51 4 50 fmpt3d DVC:wWordD|w:domw1-1DB