Metamath Proof Explorer


Theorem tsmssplit

Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015) (Proof shortened by AV, 24-Jul-2019)

Ref Expression
Hypotheses tsmssplit.b B=BaseG
tsmssplit.p +˙=+G
tsmssplit.1 φGCMnd
tsmssplit.2 φGTopMnd
tsmssplit.a φAV
tsmssplit.f φF:AB
tsmssplit.x φXGtsumsFC
tsmssplit.y φYGtsumsFD
tsmssplit.i φCD=
tsmssplit.u φA=CD
Assertion tsmssplit φX+˙YGtsumsF

Proof

Step Hyp Ref Expression
1 tsmssplit.b B=BaseG
2 tsmssplit.p +˙=+G
3 tsmssplit.1 φGCMnd
4 tsmssplit.2 φGTopMnd
5 tsmssplit.a φAV
6 tsmssplit.f φF:AB
7 tsmssplit.x φXGtsumsFC
8 tsmssplit.y φYGtsumsFD
9 tsmssplit.i φCD=
10 tsmssplit.u φA=CD
11 6 ffvelcdmda φkAFkB
12 cmnmnd GCMndGMnd
13 3 12 syl φGMnd
14 eqid 0G=0G
15 1 14 mndidcl GMnd0GB
16 13 15 syl φ0GB
17 16 adantr φkA0GB
18 11 17 ifcld φkAifkCFk0GB
19 18 fmpttd φkAifkCFk0G:AB
20 11 17 ifcld φkAifkDFk0GB
21 20 fmpttd φkAifkDFk0G:AB
22 6 feqmptd φF=kAFk
23 22 reseq1d φFC=kAFkC
24 ssun1 CCD
25 24 10 sseqtrrid φCA
26 iftrue kCifkCFk0G=Fk
27 26 mpteq2ia kCifkCFk0G=kCFk
28 resmpt CAkAifkCFk0GC=kCifkCFk0G
29 resmpt CAkAFkC=kCFk
30 27 28 29 3eqtr4a CAkAifkCFk0GC=kAFkC
31 25 30 syl φkAifkCFk0GC=kAFkC
32 23 31 eqtr4d φFC=kAifkCFk0GC
33 32 oveq2d φGtsumsFC=GtsumskAifkCFk0GC
34 tmdtps GTopMndGTopSp
35 4 34 syl φGTopSp
36 eldifn kAC¬kC
37 36 adantl φkAC¬kC
38 37 iffalsed φkACifkCFk0G=0G
39 38 5 suppss2 φkAifkCFk0Gsupp0GC
40 1 14 3 35 5 19 39 tsmsres φGtsumskAifkCFk0GC=GtsumskAifkCFk0G
41 33 40 eqtrd φGtsumsFC=GtsumskAifkCFk0G
42 7 41 eleqtrd φXGtsumskAifkCFk0G
43 22 reseq1d φFD=kAFkD
44 ssun2 DCD
45 44 10 sseqtrrid φDA
46 iftrue kDifkDFk0G=Fk
47 46 mpteq2ia kDifkDFk0G=kDFk
48 resmpt DAkAifkDFk0GD=kDifkDFk0G
49 resmpt DAkAFkD=kDFk
50 47 48 49 3eqtr4a DAkAifkDFk0GD=kAFkD
51 45 50 syl φkAifkDFk0GD=kAFkD
52 43 51 eqtr4d φFD=kAifkDFk0GD
53 52 oveq2d φGtsumsFD=GtsumskAifkDFk0GD
54 eldifn kAD¬kD
55 54 adantl φkAD¬kD
56 55 iffalsed φkADifkDFk0G=0G
57 56 5 suppss2 φkAifkDFk0Gsupp0GD
58 1 14 3 35 5 21 57 tsmsres φGtsumskAifkDFk0GD=GtsumskAifkDFk0G
59 53 58 eqtrd φGtsumsFD=GtsumskAifkDFk0G
60 8 59 eleqtrd φYGtsumskAifkDFk0G
61 1 2 3 4 5 19 21 42 60 tsmsadd φX+˙YGtsumskAifkCFk0G+˙fkAifkDFk0G
62 26 adantl φkAkCifkCFk0G=Fk
63 noel ¬k
64 eleq2 CD=kCDk
65 63 64 mtbiri CD=¬kCD
66 9 65 syl φ¬kCD
67 66 adantr φkA¬kCD
68 elin kCDkCkD
69 67 68 sylnib φkA¬kCkD
70 imnan kC¬kD¬kCkD
71 69 70 sylibr φkAkC¬kD
72 71 imp φkAkC¬kD
73 72 iffalsed φkAkCifkDFk0G=0G
74 62 73 oveq12d φkAkCifkCFk0G+˙ifkDFk0G=Fk+˙0G
75 1 2 14 mndrid GMndFkBFk+˙0G=Fk
76 13 11 75 syl2an2r φkAFk+˙0G=Fk
77 76 adantr φkAkCFk+˙0G=Fk
78 74 77 eqtrd φkAkCifkCFk0G+˙ifkDFk0G=Fk
79 71 con2d φkAkD¬kC
80 79 imp φkAkD¬kC
81 80 iffalsed φkAkDifkCFk0G=0G
82 46 adantl φkAkDifkDFk0G=Fk
83 81 82 oveq12d φkAkDifkCFk0G+˙ifkDFk0G=0G+˙Fk
84 1 2 14 mndlid GMndFkB0G+˙Fk=Fk
85 13 11 84 syl2an2r φkA0G+˙Fk=Fk
86 85 adantr φkAkD0G+˙Fk=Fk
87 83 86 eqtrd φkAkDifkCFk0G+˙ifkDFk0G=Fk
88 10 eleq2d φkAkCD
89 elun kCDkCkD
90 88 89 bitrdi φkAkCkD
91 90 biimpa φkAkCkD
92 78 87 91 mpjaodan φkAifkCFk0G+˙ifkDFk0G=Fk
93 92 mpteq2dva φkAifkCFk0G+˙ifkDFk0G=kAFk
94 22 93 eqtr4d φF=kAifkCFk0G+˙ifkDFk0G
95 eqidd φkAifkCFk0G=kAifkCFk0G
96 eqidd φkAifkDFk0G=kAifkDFk0G
97 5 18 20 95 96 offval2 φkAifkCFk0G+˙fkAifkDFk0G=kAifkCFk0G+˙ifkDFk0G
98 94 97 eqtr4d φF=kAifkCFk0G+˙fkAifkDFk0G
99 98 oveq2d φGtsumsF=GtsumskAifkCFk0G+˙fkAifkDFk0G
100 61 99 eleqtrrd φX+˙YGtsumsF