Metamath Proof Explorer


Theorem txcmplem2

Description: Lemma for txcmp . (Contributed by Mario Carneiro, 14-Sep-2014)

Ref Expression
Hypotheses txcmp.x X=R
txcmp.y Y=S
txcmp.r φRComp
txcmp.s φSComp
txcmp.w φWR×tS
txcmp.u φX×Y=W
Assertion txcmplem2 φv𝒫WFinX×Y=v

Proof

Step Hyp Ref Expression
1 txcmp.x X=R
2 txcmp.y Y=S
3 txcmp.r φRComp
4 txcmp.s φSComp
5 txcmp.w φWR×tS
6 txcmp.u φX×Y=W
7 3 adantr φxYRComp
8 4 adantr φxYSComp
9 5 adantr φxYWR×tS
10 6 adantr φxYX×Y=W
11 simpr φxYxY
12 1 2 7 8 9 10 11 txcmplem1 φxYuSxuv𝒫WFinX×uv
13 12 ralrimiva φxYuSxuv𝒫WFinX×uv
14 unieq v=fuv=fu
15 14 sseq2d v=fuX×uvX×ufu
16 2 15 cmpcovf SCompxYuSxuv𝒫WFinX×uvw𝒫SFinY=wff:w𝒫WFinuwX×ufu
17 4 13 16 syl2anc φw𝒫SFinY=wff:w𝒫WFinuwX×ufu
18 simprrl φw𝒫SFinY=wf:w𝒫WFinuwX×ufuf:w𝒫WFin
19 ffn f:w𝒫WFinfFnw
20 fniunfv fFnwzwfz=ranf
21 18 19 20 3syl φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfz=ranf
22 18 frnd φw𝒫SFinY=wf:w𝒫WFinuwX×ufuranf𝒫WFin
23 inss1 𝒫WFin𝒫W
24 22 23 sstrdi φw𝒫SFinY=wf:w𝒫WFinuwX×ufuranf𝒫W
25 sspwuni ranf𝒫WranfW
26 24 25 sylib φw𝒫SFinY=wf:w𝒫WFinuwX×ufuranfW
27 21 26 eqsstrd φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfzW
28 vex wV
29 fvex fzV
30 28 29 iunex zwfzV
31 30 elpw zwfz𝒫WzwfzW
32 27 31 sylibr φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfz𝒫W
33 inss2 𝒫SFinFin
34 simplr φw𝒫SFinY=wf:w𝒫WFinuwX×ufuw𝒫SFin
35 33 34 sselid φw𝒫SFinY=wf:w𝒫WFinuwX×ufuwFin
36 inss2 𝒫WFinFin
37 fss f:w𝒫WFin𝒫WFinFinf:wFin
38 18 36 37 sylancl φw𝒫SFinY=wf:w𝒫WFinuwX×ufuf:wFin
39 ffvelcdm f:wFinzwfzFin
40 39 ralrimiva f:wFinzwfzFin
41 38 40 syl φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfzFin
42 iunfi wFinzwfzFinzwfzFin
43 35 41 42 syl2anc φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfzFin
44 32 43 elind φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfz𝒫WFin
45 simprl φw𝒫SFinY=wf:w𝒫WFinuwX×ufuY=w
46 uniiun w=zwz
47 45 46 eqtrdi φw𝒫SFinY=wf:w𝒫WFinuwX×ufuY=zwz
48 47 xpeq2d φw𝒫SFinY=wf:w𝒫WFinuwX×ufuX×Y=X×zwz
49 xpiundi X×zwz=zwX×z
50 48 49 eqtrdi φw𝒫SFinY=wf:w𝒫WFinuwX×ufuX×Y=zwX×z
51 simprrr φw𝒫SFinY=wf:w𝒫WFinuwX×ufuuwX×ufu
52 xpeq2 u=zX×u=X×z
53 fveq2 u=zfu=fz
54 53 unieqd u=zfu=fz
55 52 54 sseq12d u=zX×ufuX×zfz
56 55 cbvralvw uwX×ufuzwX×zfz
57 51 56 sylib φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwX×zfz
58 ss2iun zwX×zfzzwX×zzwfz
59 57 58 syl φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwX×zzwfz
60 50 59 eqsstrd φw𝒫SFinY=wf:w𝒫WFinuwX×ufuX×Yzwfz
61 18 ffvelcdmda φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfz𝒫WFin
62 23 61 sselid φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfz𝒫W
63 elpwi fz𝒫WfzW
64 uniss fzWfzW
65 62 63 64 3syl φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfzW
66 6 ad3antrrr φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwX×Y=W
67 65 66 sseqtrrd φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfzX×Y
68 67 ralrimiva φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfzX×Y
69 iunss zwfzX×YzwfzX×Y
70 68 69 sylibr φw𝒫SFinY=wf:w𝒫WFinuwX×ufuzwfzX×Y
71 60 70 eqssd φw𝒫SFinY=wf:w𝒫WFinuwX×ufuX×Y=zwfz
72 iuncom4 zwfz=zwfz
73 71 72 eqtrdi φw𝒫SFinY=wf:w𝒫WFinuwX×ufuX×Y=zwfz
74 unieq v=zwfzv=zwfz
75 74 rspceeqv zwfz𝒫WFinX×Y=zwfzv𝒫WFinX×Y=v
76 44 73 75 syl2anc φw𝒫SFinY=wf:w𝒫WFinuwX×ufuv𝒫WFinX×Y=v
77 76 expr φw𝒫SFinY=wf:w𝒫WFinuwX×ufuv𝒫WFinX×Y=v
78 77 exlimdv φw𝒫SFinY=wff:w𝒫WFinuwX×ufuv𝒫WFinX×Y=v
79 78 expimpd φw𝒫SFinY=wff:w𝒫WFinuwX×ufuv𝒫WFinX×Y=v
80 79 rexlimdva φw𝒫SFinY=wff:w𝒫WFinuwX×ufuv𝒫WFinX×Y=v
81 17 80 mpd φv𝒫WFinX×Y=v