| Step |
Hyp |
Ref |
Expression |
| 1 |
|
txcmp.x |
|
| 2 |
|
txcmp.y |
|
| 3 |
|
txcmp.r |
|
| 4 |
|
txcmp.s |
|
| 5 |
|
txcmp.w |
|
| 6 |
|
txcmp.u |
|
| 7 |
3
|
adantr |
|
| 8 |
4
|
adantr |
|
| 9 |
5
|
adantr |
|
| 10 |
6
|
adantr |
|
| 11 |
|
simpr |
|
| 12 |
1 2 7 8 9 10 11
|
txcmplem1 |
|
| 13 |
12
|
ralrimiva |
|
| 14 |
|
unieq |
|
| 15 |
14
|
sseq2d |
|
| 16 |
2 15
|
cmpcovf |
|
| 17 |
4 13 16
|
syl2anc |
|
| 18 |
|
simprrl |
|
| 19 |
|
ffn |
|
| 20 |
|
fniunfv |
|
| 21 |
18 19 20
|
3syl |
|
| 22 |
18
|
frnd |
|
| 23 |
|
inss1 |
|
| 24 |
22 23
|
sstrdi |
|
| 25 |
|
sspwuni |
|
| 26 |
24 25
|
sylib |
|
| 27 |
21 26
|
eqsstrd |
|
| 28 |
|
vex |
|
| 29 |
|
fvex |
|
| 30 |
28 29
|
iunex |
|
| 31 |
30
|
elpw |
|
| 32 |
27 31
|
sylibr |
|
| 33 |
|
inss2 |
|
| 34 |
|
simplr |
|
| 35 |
33 34
|
sselid |
|
| 36 |
|
inss2 |
|
| 37 |
|
fss |
|
| 38 |
18 36 37
|
sylancl |
|
| 39 |
|
ffvelcdm |
|
| 40 |
39
|
ralrimiva |
|
| 41 |
38 40
|
syl |
|
| 42 |
|
iunfi |
|
| 43 |
35 41 42
|
syl2anc |
|
| 44 |
32 43
|
elind |
|
| 45 |
|
simprl |
|
| 46 |
|
uniiun |
|
| 47 |
45 46
|
eqtrdi |
|
| 48 |
47
|
xpeq2d |
|
| 49 |
|
xpiundi |
|
| 50 |
48 49
|
eqtrdi |
|
| 51 |
|
simprrr |
|
| 52 |
|
xpeq2 |
|
| 53 |
|
fveq2 |
|
| 54 |
53
|
unieqd |
|
| 55 |
52 54
|
sseq12d |
|
| 56 |
55
|
cbvralvw |
|
| 57 |
51 56
|
sylib |
|
| 58 |
|
ss2iun |
|
| 59 |
57 58
|
syl |
|
| 60 |
50 59
|
eqsstrd |
|
| 61 |
18
|
ffvelcdmda |
|
| 62 |
23 61
|
sselid |
|
| 63 |
|
elpwi |
|
| 64 |
|
uniss |
|
| 65 |
62 63 64
|
3syl |
|
| 66 |
6
|
ad3antrrr |
|
| 67 |
65 66
|
sseqtrrd |
|
| 68 |
67
|
ralrimiva |
|
| 69 |
|
iunss |
|
| 70 |
68 69
|
sylibr |
|
| 71 |
60 70
|
eqssd |
|
| 72 |
|
iuncom4 |
|
| 73 |
71 72
|
eqtrdi |
|
| 74 |
|
unieq |
|
| 75 |
74
|
rspceeqv |
|
| 76 |
44 73 75
|
syl2anc |
|
| 77 |
76
|
expr |
|
| 78 |
77
|
exlimdv |
|
| 79 |
78
|
expimpd |
|
| 80 |
79
|
rexlimdva |
|
| 81 |
17 80
|
mpd |
|