Metamath Proof Explorer


Theorem umgrhashecclwwlk

Description: The size of every equivalence class of the equivalence relation over the set of closed walks (defined as words) with a fixed length which is a prime number equals this length (in an undirected simple graph). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 1-May-2021)

Ref Expression
Hypotheses erclwwlkn.w W=NClWWalksNG
erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
Assertion umgrhashecclwwlk GUMGraphNUW/˙U=N

Proof

Step Hyp Ref Expression
1 erclwwlkn.w W=NClWWalksNG
2 erclwwlkn.r ˙=tu|tWuWn0Nt=ucyclShiftn
3 1 2 eclclwwlkn1 UW/˙UW/˙xWU=yW|n0Ny=xcyclShiftn
4 rabeq W=NClWWalksNGyW|n0Ny=xcyclShiftn=yNClWWalksNG|n0Ny=xcyclShiftn
5 1 4 mp1i GUMGraphNxWyW|n0Ny=xcyclShiftn=yNClWWalksNG|n0Ny=xcyclShiftn
6 prmnn NN
7 6 nnnn0d NN0
8 7 adantl GUMGraphNN0
9 1 eleq2i xWxNClWWalksNG
10 9 biimpi xWxNClWWalksNG
11 clwwlknscsh N0xNClWWalksNGyNClWWalksNG|n0Ny=xcyclShiftn=yWordVtxG|n0Ny=xcyclShiftn
12 8 10 11 syl2an GUMGraphNxWyNClWWalksNG|n0Ny=xcyclShiftn=yWordVtxG|n0Ny=xcyclShiftn
13 5 12 eqtrd GUMGraphNxWyW|n0Ny=xcyclShiftn=yWordVtxG|n0Ny=xcyclShiftn
14 13 eqeq2d GUMGraphNxWU=yW|n0Ny=xcyclShiftnU=yWordVtxG|n0Ny=xcyclShiftn
15 6 adantl GUMGraphNN
16 simpll xWordVtxGx=NNxWordVtxG
17 elnnne0 NN0N0
18 eqeq1 N=xN=0x=0
19 18 eqcoms x=NN=0x=0
20 hasheq0 xWordVtxGx=0x=
21 19 20 sylan9bbr xWordVtxGx=NN=0x=
22 21 necon3bid xWordVtxGx=NN0x
23 22 biimpcd N0xWordVtxGx=Nx
24 17 23 simplbiim NxWordVtxGx=Nx
25 24 impcom xWordVtxGx=NNx
26 simplr xWordVtxGx=NNx=N
27 26 eqcomd xWordVtxGx=NNN=x
28 16 25 27 3jca xWordVtxGx=NNxWordVtxGxN=x
29 28 ex xWordVtxGx=NNxWordVtxGxN=x
30 eqid VtxG=VtxG
31 30 clwwlknbp xNClWWalksNGxWordVtxGx=N
32 29 31 syl11 NxNClWWalksNGxWordVtxGxN=x
33 9 32 biimtrid NxWxWordVtxGxN=x
34 15 33 syl GUMGraphNxWxWordVtxGxN=x
35 34 imp GUMGraphNxWxWordVtxGxN=x
36 scshwfzeqfzo xWordVtxGxN=xyWordVtxG|n0Ny=xcyclShiftn=yWordVtxG|n0..^Ny=xcyclShiftn
37 35 36 syl GUMGraphNxWyWordVtxG|n0Ny=xcyclShiftn=yWordVtxG|n0..^Ny=xcyclShiftn
38 37 eqeq2d GUMGraphNxWU=yWordVtxG|n0Ny=xcyclShiftnU=yWordVtxG|n0..^Ny=xcyclShiftn
39 fveq2 U=yWordVtxG|n0..^xy=xcyclShiftnU=yWordVtxG|n0..^xy=xcyclShiftn
40 simprl xWordVtxGxxClWWalksNGGUMGraphxGUMGraph
41 prmuz2 xx2
42 41 adantl GUMGraphxx2
43 42 adantl xWordVtxGxxClWWalksNGGUMGraphxx2
44 simplr xWordVtxGxxClWWalksNGGUMGraphxxxClWWalksNG
45 umgr2cwwkdifex GUMGraphx2xxClWWalksNGi0..^xxix0
46 40 43 44 45 syl3anc xWordVtxGxxClWWalksNGGUMGraphxi0..^xxix0
47 oveq2 n=mxcyclShiftn=xcyclShiftm
48 47 eqeq2d n=my=xcyclShiftny=xcyclShiftm
49 48 cbvrexvw n0..^xy=xcyclShiftnm0..^xy=xcyclShiftm
50 eqeq1 y=uy=xcyclShiftmu=xcyclShiftm
51 eqcom u=xcyclShiftmxcyclShiftm=u
52 50 51 bitrdi y=uy=xcyclShiftmxcyclShiftm=u
53 52 rexbidv y=um0..^xy=xcyclShiftmm0..^xxcyclShiftm=u
54 49 53 bitrid y=un0..^xy=xcyclShiftnm0..^xxcyclShiftm=u
55 54 cbvrabv yWordVtxG|n0..^xy=xcyclShiftn=uWordVtxG|m0..^xxcyclShiftm=u
56 55 cshwshashnsame xWordVtxGxi0..^xxix0yWordVtxG|n0..^xy=xcyclShiftn=x
57 56 ad2ant2rl xWordVtxGxxClWWalksNGGUMGraphxi0..^xxix0yWordVtxG|n0..^xy=xcyclShiftn=x
58 46 57 mpd xWordVtxGxxClWWalksNGGUMGraphxyWordVtxG|n0..^xy=xcyclShiftn=x
59 39 58 sylan9eqr xWordVtxGxxClWWalksNGGUMGraphxU=yWordVtxG|n0..^xy=xcyclShiftnU=x
60 59 exp41 xWordVtxGxxClWWalksNGGUMGraphxU=yWordVtxG|n0..^xy=xcyclShiftnU=x
61 60 adantr xWordVtxGx=NxxClWWalksNGGUMGraphxU=yWordVtxG|n0..^xy=xcyclShiftnU=x
62 oveq1 N=xNClWWalksNG=xClWWalksNG
63 62 eleq2d N=xxNClWWalksNGxxClWWalksNG
64 eleq1 N=xNx
65 64 anbi2d N=xGUMGraphNGUMGraphx
66 oveq2 N=x0..^N=0..^x
67 66 rexeqdv N=xn0..^Ny=xcyclShiftnn0..^xy=xcyclShiftn
68 67 rabbidv N=xyWordVtxG|n0..^Ny=xcyclShiftn=yWordVtxG|n0..^xy=xcyclShiftn
69 68 eqeq2d N=xU=yWordVtxG|n0..^Ny=xcyclShiftnU=yWordVtxG|n0..^xy=xcyclShiftn
70 eqeq2 N=xU=NU=x
71 69 70 imbi12d N=xU=yWordVtxG|n0..^Ny=xcyclShiftnU=NU=yWordVtxG|n0..^xy=xcyclShiftnU=x
72 65 71 imbi12d N=xGUMGraphNU=yWordVtxG|n0..^Ny=xcyclShiftnU=NGUMGraphxU=yWordVtxG|n0..^xy=xcyclShiftnU=x
73 63 72 imbi12d N=xxNClWWalksNGGUMGraphNU=yWordVtxG|n0..^Ny=xcyclShiftnU=NxxClWWalksNGGUMGraphxU=yWordVtxG|n0..^xy=xcyclShiftnU=x
74 73 eqcoms x=NxNClWWalksNGGUMGraphNU=yWordVtxG|n0..^Ny=xcyclShiftnU=NxxClWWalksNGGUMGraphxU=yWordVtxG|n0..^xy=xcyclShiftnU=x
75 74 adantl xWordVtxGx=NxNClWWalksNGGUMGraphNU=yWordVtxG|n0..^Ny=xcyclShiftnU=NxxClWWalksNGGUMGraphxU=yWordVtxG|n0..^xy=xcyclShiftnU=x
76 61 75 mpbird xWordVtxGx=NxNClWWalksNGGUMGraphNU=yWordVtxG|n0..^Ny=xcyclShiftnU=N
77 31 76 mpcom xNClWWalksNGGUMGraphNU=yWordVtxG|n0..^Ny=xcyclShiftnU=N
78 77 1 eleq2s xWGUMGraphNU=yWordVtxG|n0..^Ny=xcyclShiftnU=N
79 78 impcom GUMGraphNxWU=yWordVtxG|n0..^Ny=xcyclShiftnU=N
80 38 79 sylbid GUMGraphNxWU=yWordVtxG|n0Ny=xcyclShiftnU=N
81 14 80 sylbid GUMGraphNxWU=yW|n0Ny=xcyclShiftnU=N
82 81 rexlimdva GUMGraphNxWU=yW|n0Ny=xcyclShiftnU=N
83 82 com12 xWU=yW|n0Ny=xcyclShiftnGUMGraphNU=N
84 3 83 syl6bi UW/˙UW/˙GUMGraphNU=N
85 84 pm2.43i UW/˙GUMGraphNU=N
86 85 com12 GUMGraphNUW/˙U=N