Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | upgrres1.v | |
|
upgrres1.e | |
||
upgrres1.f | |
||
upgrres1.s | |
||
Assertion | upgrres1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgrres1.v | |
|
2 | upgrres1.e | |
|
3 | upgrres1.f | |
|
4 | upgrres1.s | |
|
5 | f1oi | |
|
6 | f1of | |
|
7 | 5 6 | mp1i | |
8 | 7 | ffdmd | |
9 | simpr | |
|
10 | 9 | adantr | |
11 | 2 | eleq2i | |
12 | edgupgr | |
|
13 | elpwi | |
|
14 | 13 1 | sseqtrrdi | |
15 | 14 | 3ad2ant1 | |
16 | 12 15 | syl | |
17 | 11 16 | sylan2b | |
18 | 17 | ad4ant13 | |
19 | simpr | |
|
20 | elpwdifsn | |
|
21 | 10 18 19 20 | syl3anc | |
22 | simpl | |
|
23 | 11 | biimpi | |
24 | 12 | simp2d | |
25 | 22 23 24 | syl2an | |
26 | 25 | adantr | |
27 | nelsn | |
|
28 | 26 27 | syl | |
29 | 21 28 | eldifd | |
30 | 29 | ex | |
31 | 30 | ralrimiva | |
32 | rabss | |
|
33 | 31 32 | sylibr | |
34 | 3 33 | eqsstrid | |
35 | elrabi | |
|
36 | edgval | |
|
37 | 2 36 | eqtri | |
38 | 37 | eleq2i | |
39 | eqid | |
|
40 | 1 39 | upgrf | |
41 | 40 | frnd | |
42 | 41 | sseld | |
43 | 38 42 | biimtrid | |
44 | fveq2 | |
|
45 | 44 | breq1d | |
46 | 45 | elrab | |
47 | 46 | simprbi | |
48 | 43 47 | syl6 | |
49 | 48 | adantr | |
50 | 35 49 | syl5com | |
51 | 50 3 | eleq2s | |
52 | 51 | impcom | |
53 | 34 52 | ssrabdv | |
54 | 8 53 | fssd | |
55 | opex | |
|
56 | 4 55 | eqeltri | |
57 | 1 2 3 4 | upgrres1lem2 | |
58 | 57 | eqcomi | |
59 | 1 2 3 4 | upgrres1lem3 | |
60 | 59 | eqcomi | |
61 | 58 60 | isupgr | |
62 | 56 61 | mp1i | |
63 | 54 62 | mpbird | |