Metamath Proof Explorer


Theorem upgrres1

Description: A pseudograph obtained by removing one vertex and all edges incident with this vertex is a pseudograph. Remark: This graph is not a subgraph of the original graph in the sense of df-subgr since the domains of the edge functions may not be compatible. (Contributed by AV, 8-Nov-2020)

Ref Expression
Hypotheses upgrres1.v V=VtxG
upgrres1.e E=EdgG
upgrres1.f F=eE|Ne
upgrres1.s S=VNIF
Assertion upgrres1 GUPGraphNVSUPGraph

Proof

Step Hyp Ref Expression
1 upgrres1.v V=VtxG
2 upgrres1.e E=EdgG
3 upgrres1.f F=eE|Ne
4 upgrres1.s S=VNIF
5 f1oi IF:F1-1 ontoF
6 f1of IF:F1-1 ontoFIF:FF
7 5 6 mp1i GUPGraphNVIF:FF
8 7 ffdmd GUPGraphNVIF:domIFF
9 simpr GUPGraphNVeEeE
10 9 adantr GUPGraphNVeENeeE
11 2 eleq2i eEeEdgG
12 edgupgr GUPGrapheEdgGe𝒫VtxGee2
13 elpwi e𝒫VtxGeVtxG
14 13 1 sseqtrrdi e𝒫VtxGeV
15 14 3ad2ant1 e𝒫VtxGee2eV
16 12 15 syl GUPGrapheEdgGeV
17 11 16 sylan2b GUPGrapheEeV
18 17 ad4ant13 GUPGraphNVeENeeV
19 simpr GUPGraphNVeENeNe
20 elpwdifsn eEeVNee𝒫VN
21 10 18 19 20 syl3anc GUPGraphNVeENee𝒫VN
22 simpl GUPGraphNVGUPGraph
23 11 biimpi eEeEdgG
24 12 simp2d GUPGrapheEdgGe
25 22 23 24 syl2an GUPGraphNVeEe
26 25 adantr GUPGraphNVeENee
27 nelsn e¬e
28 26 27 syl GUPGraphNVeENe¬e
29 21 28 eldifd GUPGraphNVeENee𝒫VN
30 29 ex GUPGraphNVeENee𝒫VN
31 30 ralrimiva GUPGraphNVeENee𝒫VN
32 rabss eE|Ne𝒫VNeENee𝒫VN
33 31 32 sylibr GUPGraphNVeE|Ne𝒫VN
34 3 33 eqsstrid GUPGraphNVF𝒫VN
35 elrabi peE|NepE
36 edgval EdgG=raniEdgG
37 2 36 eqtri E=raniEdgG
38 37 eleq2i pEpraniEdgG
39 eqid iEdgG=iEdgG
40 1 39 upgrf GUPGraphiEdgG:domiEdgGx𝒫V|x2
41 40 frnd GUPGraphraniEdgGx𝒫V|x2
42 41 sseld GUPGraphpraniEdgGpx𝒫V|x2
43 38 42 biimtrid GUPGraphpEpx𝒫V|x2
44 fveq2 x=px=p
45 44 breq1d x=px2p2
46 45 elrab px𝒫V|x2p𝒫Vp2
47 46 simprbi px𝒫V|x2p2
48 43 47 syl6 GUPGraphpEp2
49 48 adantr GUPGraphNVpEp2
50 35 49 syl5com peE|NeGUPGraphNVp2
51 50 3 eleq2s pFGUPGraphNVp2
52 51 impcom GUPGraphNVpFp2
53 34 52 ssrabdv GUPGraphNVFp𝒫VN|p2
54 8 53 fssd GUPGraphNVIF:domIFp𝒫VN|p2
55 opex VNIFV
56 4 55 eqeltri SV
57 1 2 3 4 upgrres1lem2 VtxS=VN
58 57 eqcomi VN=VtxS
59 1 2 3 4 upgrres1lem3 iEdgS=IF
60 59 eqcomi IF=iEdgS
61 58 60 isupgr SVSUPGraphIF:domIFp𝒫VN|p2
62 56 61 mp1i GUPGraphNVSUPGraphIF:domIFp𝒫VN|p2
63 54 62 mpbird GUPGraphNVSUPGraph