Metamath Proof Explorer


Theorem usgr2pthlem

Description: Lemma for usgr2pth . (Contributed by Alexander van der Vekens, 27-Jan-2018) (Revised by AV, 5-Jun-2021)

Ref Expression
Hypotheses usgr2pthlem.v V=VtxG
usgr2pthlem.i I=iEdgG
Assertion usgr2pthlem F:0..^F1-1domIP:0FVi0..^FIFi=PiPi+1GUSGraphF=2xVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz

Proof

Step Hyp Ref Expression
1 usgr2pthlem.v V=VtxG
2 usgr2pthlem.i I=iEdgG
3 0nn0 00
4 2nn0 20
5 0le2 02
6 elfz2nn0 002002002
7 3 4 5 6 mpbir3an 002
8 ffvelcdm P:02V002P0V
9 7 8 mpan2 P:02VP0V
10 9 adantl F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP0V
11 1nn0 10
12 1le2 12
13 elfz2nn0 102102012
14 11 4 12 13 mpbir3an 102
15 ffvelcdm P:02V102P1V
16 14 15 mpan2 P:02VP1V
17 16 adantl F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP1V
18 simpr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphGUSGraph
19 fvex P1V
20 18 19 jctir F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphGUSGraphP1V
21 prcom P0P1=P1P0
22 21 eqeq2i IF0=P0P1IF0=P1P0
23 22 biimpi IF0=P0P1IF0=P1P0
24 23 adantr IF0=P0P1IF1=P1P2IF0=P1P0
25 24 ad2antlr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphIF0=P1P0
26 2 usgrnloopv GUSGraphP1VIF0=P1P0P1P0
27 20 25 26 sylc F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP1P0
28 27 adantr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP1P0
29 19 elsn P1P0P1=P0
30 29 necon3bbii ¬P1P0P1P0
31 28 30 sylibr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02V¬P1P0
32 17 31 eldifd F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP1VP0
33 32 adantr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0P1VP0
34 sneq x=P0x=P0
35 34 difeq2d x=P0Vx=VP0
36 35 eleq2d x=P0P1VxP1VP0
37 36 adantl F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0P1VxP1VP0
38 33 37 mpbird F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0P1Vx
39 2re 2
40 39 leidi 22
41 elfz2nn0 202202022
42 4 4 40 41 mpbir3an 202
43 ffvelcdm P:02V202P2V
44 42 43 mpan2 P:02VP2V
45 44 adantl F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP2V
46 2 usgrf1 GUSGraphI:domI1-1ranI
47 46 ad2antlr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VI:domI1-1ranI
48 simpl F:0..^21-1domIIF0=P0P1IF1=P1P2F:0..^21-1domI
49 48 ad2antrr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VF:0..^21-1domI
50 47 49 jca F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VI:domI1-1ranIF:0..^21-1domI
51 2nn 2
52 lbfzo0 00..^22
53 51 52 mpbir 00..^2
54 1lt2 1<2
55 elfzo0 10..^21021<2
56 11 51 54 55 mpbir3an 10..^2
57 53 56 pm3.2i 00..^210..^2
58 57 a1i F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02V00..^210..^2
59 0ne1 01
60 59 a1i F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02V01
61 50 58 60 3jca F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VI:domI1-1ranIF:0..^21-1domI00..^210..^201
62 simpr F:0..^21-1domIIF0=P0P1IF1=P1P2IF0=P0P1IF1=P1P2
63 62 ad2antrr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VIF0=P0P1IF1=P1P2
64 2f1fvneq I:domI1-1ranIF:0..^21-1domI00..^210..^201IF0=P0P1IF1=P1P2P0P1P1P2
65 61 63 64 sylc F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP0P1P1P2
66 necom P2P0P0P2
67 fvex P0V
68 fvex P2V
69 67 19 68 3pm3.2i P0VP1VP2V
70 fvexd F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP0V
71 simpl IF0=P0P1IF1=P1P2IF0=P0P1
72 71 ad2antlr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphIF0=P0P1
73 18 70 72 jca31 F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphGUSGraphP0VIF0=P0P1
74 73 adantr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VGUSGraphP0VIF0=P0P1
75 2 usgrnloopv GUSGraphP0VIF0=P0P1P0P1
76 75 imp GUSGraphP0VIF0=P0P1P0P1
77 74 76 syl F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP0P1
78 pr1nebg P0VP1VP2VP0P1P0P2P0P1P1P2
79 69 77 78 sylancr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP0P2P0P1P1P2
80 66 79 bitrid F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP2P0P0P1P1P2
81 65 80 mpbird F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP2P0
82 fvexd F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP2V
83 prcom P1P2=P2P1
84 83 eqeq2i IF1=P1P2IF1=P2P1
85 84 biimpi IF1=P1P2IF1=P2P1
86 85 adantl IF0=P0P1IF1=P1P2IF1=P2P1
87 86 ad2antlr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphIF1=P2P1
88 18 82 87 jca31 F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphGUSGraphP2VIF1=P2P1
89 88 adantr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VGUSGraphP2VIF1=P2P1
90 2 usgrnloopv GUSGraphP2VIF1=P2P1P2P1
91 90 imp GUSGraphP2VIF1=P2P1P2P1
92 89 91 syl F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP2P1
93 81 92 nelprd F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02V¬P2P0P1
94 45 93 eldifd F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VP2VP0P1
95 94 ad2antrr F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0y=P1P2VP0P1
96 preq12 x=P0y=P1xy=P0P1
97 96 difeq2d x=P0y=P1Vxy=VP0P1
98 97 eleq2d x=P0y=P1P2VxyP2VP0P1
99 98 adantll F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0y=P1P2VxyP2VP0P1
100 95 99 mpbird F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0y=P1P2Vxy
101 eqcom x=P0P0=x
102 eqcom y=P1P1=y
103 eqcom z=P2P2=z
104 101 102 103 3anbi123i x=P0y=P1z=P2P0=xP1=yP2=z
105 104 biimpi x=P0y=P1z=P2P0=xP1=yP2=z
106 105 ad4ant123 x=P0y=P1z=P2IF0=P0P1IF1=P1P2P0=xP1=yP2=z
107 101 biimpi x=P0P0=x
108 107 ad2antrr x=P0y=P1z=P2P0=x
109 102 biimpi y=P1P1=y
110 109 ad2antlr x=P0y=P1z=P2P1=y
111 108 110 preq12d x=P0y=P1z=P2P0P1=xy
112 111 eqeq2d x=P0y=P1z=P2IF0=P0P1IF0=xy
113 103 biimpi z=P2P2=z
114 113 adantl x=P0y=P1z=P2P2=z
115 110 114 preq12d x=P0y=P1z=P2P1P2=yz
116 115 eqeq2d x=P0y=P1z=P2IF1=P1P2IF1=yz
117 112 116 anbi12d x=P0y=P1z=P2IF0=P0P1IF1=P1P2IF0=xyIF1=yz
118 117 biimpa x=P0y=P1z=P2IF0=P0P1IF1=P1P2IF0=xyIF1=yz
119 106 118 jca x=P0y=P1z=P2IF0=P0P1IF1=P1P2P0=xP1=yP2=zIF0=xyIF1=yz
120 119 exp41 x=P0y=P1z=P2IF0=P0P1IF1=P1P2P0=xP1=yP2=zIF0=xyIF1=yz
121 120 adantl F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0y=P1z=P2IF0=P0P1IF1=P1P2P0=xP1=yP2=zIF0=xyIF1=yz
122 121 imp31 F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0y=P1z=P2IF0=P0P1IF1=P1P2P0=xP1=yP2=zIF0=xyIF1=yz
123 100 122 rspcimedv F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0y=P1IF0=P0P1IF1=P1P2zVxyP0=xP1=yP2=zIF0=xyIF1=yz
124 38 123 rspcimedv F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02Vx=P0IF0=P0P1IF1=P1P2yVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
125 10 124 rspcimedv F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VIF0=P0P1IF1=P1P2xVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
126 125 exp41 F:0..^21-1domIIF0=P0P1IF1=P1P2GUSGraphP:02VIF0=P0P1IF1=P1P2xVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
127 126 com15 IF0=P0P1IF1=P1P2IF0=P0P1IF1=P1P2GUSGraphP:02VF:0..^21-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
128 127 pm2.43i IF0=P0P1IF1=P1P2GUSGraphP:02VF:0..^21-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
129 128 com12 GUSGraphIF0=P0P1IF1=P1P2P:02VF:0..^21-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
130 129 adantr GUSGraphF=2IF0=P0P1IF1=P1P2P:02VF:0..^21-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
131 oveq2 F=20..^F=0..^2
132 131 raleqdv F=2i0..^FIFi=PiPi+1i0..^2IFi=PiPi+1
133 fzo0to2pr 0..^2=01
134 133 raleqi i0..^2IFi=PiPi+1i01IFi=PiPi+1
135 2wlklem i01IFi=PiPi+1IF0=P0P1IF1=P1P2
136 134 135 bitri i0..^2IFi=PiPi+1IF0=P0P1IF1=P1P2
137 132 136 bitrdi F=2i0..^FIFi=PiPi+1IF0=P0P1IF1=P1P2
138 137 adantl GUSGraphF=2i0..^FIFi=PiPi+1IF0=P0P1IF1=P1P2
139 oveq2 F=20F=02
140 139 feq2d F=2P:0FVP:02V
141 140 adantl GUSGraphF=2P:0FVP:02V
142 f1eq2 0..^F=0..^2F:0..^F1-1domIF:0..^21-1domI
143 131 142 syl F=2F:0..^F1-1domIF:0..^21-1domI
144 143 imbi1d F=2F:0..^F1-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yzF:0..^21-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
145 144 adantl GUSGraphF=2F:0..^F1-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yzF:0..^21-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
146 141 145 imbi12d GUSGraphF=2P:0FVF:0..^F1-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yzP:02VF:0..^21-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
147 130 138 146 3imtr4d GUSGraphF=2i0..^FIFi=PiPi+1P:0FVF:0..^F1-1domIxVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
148 147 com14 F:0..^F1-1domIi0..^FIFi=PiPi+1P:0FVGUSGraphF=2xVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
149 148 com23 F:0..^F1-1domIP:0FVi0..^FIFi=PiPi+1GUSGraphF=2xVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz
150 149 3imp F:0..^F1-1domIP:0FVi0..^FIFi=PiPi+1GUSGraphF=2xVyVxzVxyP0=xP1=yP2=zIF0=xyIF1=yz