Metamath Proof Explorer


Theorem utop3cls

Description: Relation between a topological closure and a symmetric entourage in an uniform space. Second part of proposition 2 of BourbakiTop1 p. II.4. (Contributed by Thierry Arnoux, 17-Jan-2018)

Ref Expression
Hypothesis utoptop.1 J=unifTopU
Assertion utop3cls UUnifOnXMX×XVUV-1=VclsJ×tJMVMV

Proof

Step Hyp Ref Expression
1 utoptop.1 J=unifTopU
2 relxp RelX×X
3 utoptop UUnifOnXunifTopUTop
4 1 3 eqeltrid UUnifOnXJTop
5 txtop JTopJTopJ×tJTop
6 4 4 5 syl2anc UUnifOnXJ×tJTop
7 6 ad3antrrr UUnifOnXMX×XVUV-1=VzclsJ×tJMJ×tJTop
8 simpllr UUnifOnXMX×XVUV-1=VzclsJ×tJMMX×X
9 utoptopon UUnifOnXunifTopUTopOnX
10 1 9 eqeltrid UUnifOnXJTopOnX
11 toponuni JTopOnXX=J
12 10 11 syl UUnifOnXX=J
13 12 sqxpeqd UUnifOnXX×X=J×J
14 eqid J=J
15 14 14 txuni JTopJTopJ×J=J×tJ
16 4 4 15 syl2anc UUnifOnXJ×J=J×tJ
17 13 16 eqtrd UUnifOnXX×X=J×tJ
18 17 ad3antrrr UUnifOnXMX×XVUV-1=VzclsJ×tJMX×X=J×tJ
19 8 18 sseqtrd UUnifOnXMX×XVUV-1=VzclsJ×tJMMJ×tJ
20 eqid J×tJ=J×tJ
21 20 clsss3 J×tJTopMJ×tJclsJ×tJMJ×tJ
22 7 19 21 syl2anc UUnifOnXMX×XVUV-1=VzclsJ×tJMclsJ×tJMJ×tJ
23 22 18 sseqtrrd UUnifOnXMX×XVUV-1=VzclsJ×tJMclsJ×tJMX×X
24 simpr UUnifOnXMX×XVUV-1=VzclsJ×tJMzclsJ×tJM
25 23 24 sseldd UUnifOnXMX×XVUV-1=VzclsJ×tJMzX×X
26 1st2nd RelX×XzX×Xz=1stz2ndz
27 2 25 26 sylancr UUnifOnXMX×XVUV-1=VzclsJ×tJMz=1stz2ndz
28 simp-4l UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMUUnifOnX
29 simpr1l UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMVU
30 29 3anassrs UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMVU
31 ustrel UUnifOnXVURelV
32 28 30 31 syl2anc UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMRelV
33 simpr UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMrV1stz×V2ndzM
34 elin rV1stz×V2ndzMrV1stz×V2ndzrM
35 33 34 sylib UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMrV1stz×V2ndzrM
36 35 simpld UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMrV1stz×V2ndz
37 xp1st rV1stz×V2ndz1strV1stz
38 36 37 syl UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM1strV1stz
39 elrelimasn RelV1strV1stz1stzV1str
40 39 biimpa RelV1strV1stz1stzV1str
41 32 38 40 syl2anc UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM1stzV1str
42 simp-4r UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMMX×X
43 xpss X×XV×V
44 42 43 sstrdi UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMMV×V
45 df-rel RelMMV×V
46 44 45 sylibr UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMRelM
47 35 simprd UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMrM
48 1st2ndbr RelMrM1strM2ndr
49 46 47 48 syl2anc UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM1strM2ndr
50 xp2nd rV1stz×V2ndz2ndrV2ndz
51 36 50 syl UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM2ndrV2ndz
52 elrelimasn RelV2ndrV2ndz2ndzV2ndr
53 52 biimpa RelV2ndrV2ndz2ndzV2ndr
54 32 51 53 syl2anc UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM2ndzV2ndr
55 simpr1r UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMV-1=V
56 55 3anassrs UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzMV-1=V
57 breq V-1=V2ndrV-12ndz2ndrV2ndz
58 fvex 2ndrV
59 fvex 2ndzV
60 58 59 brcnv 2ndrV-12ndz2ndzV2ndr
61 57 60 bitr3di V-1=V2ndrV2ndz2ndzV2ndr
62 56 61 syl UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM2ndrV2ndz2ndzV2ndr
63 54 62 mpbird UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM2ndrV2ndz
64 fvex 1stzV
65 fvex 1strV
66 brcogw 1stzV2ndrV1strV1stzV1str1strM2ndr1stzMV2ndr
67 66 ex 1stzV2ndrV1strV1stzV1str1strM2ndr1stzMV2ndr
68 64 58 65 67 mp3an 1stzV1str1strM2ndr1stzMV2ndr
69 brcogw 1stzV2ndzV2ndrV1stzMV2ndr2ndrV2ndz1stzVMV2ndz
70 69 ex 1stzV2ndzV2ndrV1stzMV2ndr2ndrV2ndz1stzVMV2ndz
71 64 59 58 70 mp3an 1stzMV2ndr2ndrV2ndz1stzVMV2ndz
72 68 71 sylan 1stzV1str1strM2ndr2ndrV2ndz1stzVMV2ndz
73 41 49 63 72 syl21anc UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM1stzVMV2ndz
74 73 ralrimiva UUnifOnXMX×XVUV-1=VzclsJ×tJMrV1stz×V2ndzM1stzVMV2ndz
75 simplll UUnifOnXMX×XVUV-1=VzclsJ×tJMUUnifOnX
76 simplrl UUnifOnXMX×XVUV-1=VzclsJ×tJMVU
77 4 3ad2ant1 UUnifOnXVUzX×XJTop
78 xp1st zX×X1stzX
79 1 utopsnnei UUnifOnXVU1stzXV1stzneiJ1stz
80 78 79 syl3an3 UUnifOnXVUzX×XV1stzneiJ1stz
81 xp2nd zX×X2ndzX
82 1 utopsnnei UUnifOnXVU2ndzXV2ndzneiJ2ndz
83 81 82 syl3an3 UUnifOnXVUzX×XV2ndzneiJ2ndz
84 14 14 neitx JTopJTopV1stzneiJ1stzV2ndzneiJ2ndzV1stz×V2ndzneiJ×tJ1stz×2ndz
85 77 77 80 83 84 syl22anc UUnifOnXVUzX×XV1stz×V2ndzneiJ×tJ1stz×2ndz
86 1st2nd2 zX×Xz=1stz2ndz
87 86 sneqd zX×Xz=1stz2ndz
88 64 59 xpsn 1stz×2ndz=1stz2ndz
89 87 88 eqtr4di zX×Xz=1stz×2ndz
90 89 fveq2d zX×XneiJ×tJz=neiJ×tJ1stz×2ndz
91 90 3ad2ant3 UUnifOnXVUzX×XneiJ×tJz=neiJ×tJ1stz×2ndz
92 85 91 eleqtrrd UUnifOnXVUzX×XV1stz×V2ndzneiJ×tJz
93 75 76 25 92 syl3anc UUnifOnXMX×XVUV-1=VzclsJ×tJMV1stz×V2ndzneiJ×tJz
94 20 neindisj J×tJTopMJ×tJzclsJ×tJMV1stz×V2ndzneiJ×tJzV1stz×V2ndzM
95 7 19 24 93 94 syl22anc UUnifOnXMX×XVUV-1=VzclsJ×tJMV1stz×V2ndzM
96 r19.3rzv V1stz×V2ndzM1stzVMV2ndzrV1stz×V2ndzM1stzVMV2ndz
97 95 96 syl UUnifOnXMX×XVUV-1=VzclsJ×tJM1stzVMV2ndzrV1stz×V2ndzM1stzVMV2ndz
98 74 97 mpbird UUnifOnXMX×XVUV-1=VzclsJ×tJM1stzVMV2ndz
99 df-br 1stzVMV2ndz1stz2ndzVMV
100 98 99 sylib UUnifOnXMX×XVUV-1=VzclsJ×tJM1stz2ndzVMV
101 27 100 eqeltrd UUnifOnXMX×XVUV-1=VzclsJ×tJMzVMV
102 101 ex UUnifOnXMX×XVUV-1=VzclsJ×tJMzVMV
103 102 ssrdv UUnifOnXMX×XVUV-1=VclsJ×tJMVMV