Metamath Proof Explorer


Theorem wwlksm1edg

Description: Removing the trailing edge from a walk (as word) with at least one edge results in a walk. (Contributed by Alexander van der Vekens, 1-Aug-2018) (Revised by AV, 19-Apr-2021) (Revised by AV, 26-Oct-2022)

Ref Expression
Assertion wwlksm1edg WWWalksG2WWprefixW1WWalksG

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid EdgG=EdgG
3 1 2 iswwlks WWWalksGWWWordVtxGx0..^W1WxWx+1EdgG
4 lencl WWordVtxGW0
5 simpl W02WW0
6 1red W02W1
7 2re 2
8 7 a1i W02W2
9 nn0re W0W
10 9 adantr W02WW
11 1le2 12
12 11 a1i W02W12
13 simpr W02W2W
14 6 8 10 12 13 letrd W02W1W
15 5 14 jca W02WW01W
16 elnnnn0c WW01W
17 15 16 sylibr W02WW
18 lbfzo0 00..^WW
19 17 18 sylibr W02W00..^W
20 nn0ge2m1nn W02WW1
21 lbfzo0 00..^W1W1
22 20 21 sylibr W02W00..^W1
23 19 22 jca W02W00..^W00..^W1
24 4 23 sylan WWordVtxG2W00..^W00..^W1
25 inelcm 00..^W00..^W10..^W0..^W1
26 24 25 syl WWordVtxG2W0..^W0..^W1
27 wrdfn WWordVtxGWFn0..^W
28 27 adantr WWordVtxG2WWFn0..^W
29 fnresdisj WFn0..^W0..^W0..^W1=W0..^W1=
30 28 29 syl WWordVtxG2W0..^W0..^W1=W0..^W1=
31 nn0ge2m1nn0 W02WW10
32 10 lem1d W02WW1W
33 31 5 32 3jca W02WW10W0W1W
34 4 33 sylan WWordVtxG2WW10W0W1W
35 elfz2nn0 W10WW10W0W1W
36 34 35 sylibr WWordVtxG2WW10W
37 pfxres WWordVtxGW10WWprefixW1=W0..^W1
38 37 eqeq1d WWordVtxGW10WWprefixW1=W0..^W1=
39 38 bicomd WWordVtxGW10WW0..^W1=WprefixW1=
40 36 39 syldan WWordVtxG2WW0..^W1=WprefixW1=
41 30 40 bitr2d WWordVtxG2WWprefixW1=0..^W0..^W1=
42 41 necon3bid WWordVtxG2WWprefixW10..^W0..^W1
43 26 42 mpbird WWordVtxG2WWprefixW1
44 43 3ad2antl2 WWWordVtxGx0..^W1WxWx+1EdgG2WWprefixW1
45 pfxcl WWordVtxGWprefixW1WordVtxG
46 45 a1d WWordVtxG2WWprefixW1WordVtxG
47 46 3ad2ant2 WWWordVtxGx0..^W1WxWx+1EdgG2WWprefixW1WordVtxG
48 47 imp WWWordVtxGx0..^W1WxWx+1EdgG2WWprefixW1WordVtxG
49 nn0z W0W
50 peano2zm WW1
51 49 50 syl W0W1
52 peano2zm W1W-1-1
53 51 52 syl W0W-1-1
54 53 adantr W02WW-1-1
55 51 adantr W02WW1
56 peano2rem WW1
57 9 56 syl W0W1
58 57 lem1d W0W-1-1W1
59 58 adantr W02WW-1-1W1
60 54 55 59 3jca W02WW-1-1W1W-1-1W1
61 4 60 sylan WWordVtxG2WW-1-1W1W-1-1W1
62 eluz2 W1W-1-1W-1-1W1W-1-1W1
63 61 62 sylibr WWordVtxG2WW1W-1-1
64 9 lem1d W0W1W
65 64 adantr W02WW1W
66 31 5 65 3jca W02WW10W0W1W
67 4 66 sylan WWordVtxG2WW10W0W1W
68 67 35 sylibr WWordVtxG2WW10W
69 pfxlen WWordVtxGW10WWprefixW1=W1
70 69 oveq1d WWordVtxGW10WWprefixW11=W-1-1
71 68 70 syldan WWordVtxG2WWprefixW11=W-1-1
72 71 fveq2d WWordVtxG2WWprefixW11=W-1-1
73 63 72 eleqtrrd WWordVtxG2WW1WprefixW11
74 fzoss2 W1WprefixW110..^WprefixW110..^W1
75 73 74 syl WWordVtxG2W0..^WprefixW110..^W1
76 ssralv 0..^WprefixW110..^W1x0..^W1WxWx+1EdgGx0..^WprefixW11WxWx+1EdgG
77 75 76 syl WWordVtxG2Wx0..^W1WxWx+1EdgGx0..^WprefixW11WxWx+1EdgG
78 68 69 syldan WWordVtxG2WWprefixW1=W1
79 78 oveq1d WWordVtxG2WWprefixW11=W-1-1
80 79 oveq2d WWordVtxG2W0..^WprefixW11=0..^W-1-1
81 80 eleq2d WWordVtxG2Wx0..^WprefixW11x0..^W-1-1
82 simpl WWordVtxG2WWWordVtxG
83 82 adantr WWordVtxG2Wx0..^W-1-1WWordVtxG
84 36 adantr WWordVtxG2Wx0..^W-1-1W10W
85 4 31 sylan WWordVtxG2WW10
86 nn0z W10W1
87 fzossrbm1 W10..^W-1-10..^W1
88 86 87 syl W100..^W-1-10..^W1
89 85 88 syl WWordVtxG2W0..^W-1-10..^W1
90 89 sselda WWordVtxG2Wx0..^W-1-1x0..^W1
91 pfxfv WWordVtxGW10Wx0..^W1WprefixW1x=Wx
92 83 84 90 91 syl3anc WWordVtxG2Wx0..^W-1-1WprefixW1x=Wx
93 92 eqcomd WWordVtxG2Wx0..^W-1-1Wx=WprefixW1x
94 4 20 sylan WWordVtxG2WW1
95 elfzom1p1elfzo W1x0..^W-1-1x+10..^W1
96 94 95 sylan WWordVtxG2Wx0..^W-1-1x+10..^W1
97 pfxfv WWordVtxGW10Wx+10..^W1WprefixW1x+1=Wx+1
98 83 84 96 97 syl3anc WWordVtxG2Wx0..^W-1-1WprefixW1x+1=Wx+1
99 98 eqcomd WWordVtxG2Wx0..^W-1-1Wx+1=WprefixW1x+1
100 93 99 preq12d WWordVtxG2Wx0..^W-1-1WxWx+1=WprefixW1xWprefixW1x+1
101 100 ex WWordVtxG2Wx0..^W-1-1WxWx+1=WprefixW1xWprefixW1x+1
102 81 101 sylbid WWordVtxG2Wx0..^WprefixW11WxWx+1=WprefixW1xWprefixW1x+1
103 102 imp WWordVtxG2Wx0..^WprefixW11WxWx+1=WprefixW1xWprefixW1x+1
104 103 eleq1d WWordVtxG2Wx0..^WprefixW11WxWx+1EdgGWprefixW1xWprefixW1x+1EdgG
105 104 biimpd WWordVtxG2Wx0..^WprefixW11WxWx+1EdgGWprefixW1xWprefixW1x+1EdgG
106 105 ralimdva WWordVtxG2Wx0..^WprefixW11WxWx+1EdgGx0..^WprefixW11WprefixW1xWprefixW1x+1EdgG
107 77 106 syld WWordVtxG2Wx0..^W1WxWx+1EdgGx0..^WprefixW11WprefixW1xWprefixW1x+1EdgG
108 107 expcom 2WWWordVtxGx0..^W1WxWx+1EdgGx0..^WprefixW11WprefixW1xWprefixW1x+1EdgG
109 108 com3l WWordVtxGx0..^W1WxWx+1EdgG2Wx0..^WprefixW11WprefixW1xWprefixW1x+1EdgG
110 109 a1i WWWordVtxGx0..^W1WxWx+1EdgG2Wx0..^WprefixW11WprefixW1xWprefixW1x+1EdgG
111 110 3imp1 WWWordVtxGx0..^W1WxWx+1EdgG2Wx0..^WprefixW11WprefixW1xWprefixW1x+1EdgG
112 1 2 iswwlks WprefixW1WWalksGWprefixW1WprefixW1WordVtxGx0..^WprefixW11WprefixW1xWprefixW1x+1EdgG
113 44 48 111 112 syl3anbrc WWWordVtxGx0..^W1WxWx+1EdgG2WWprefixW1WWalksG
114 113 ex WWWordVtxGx0..^W1WxWx+1EdgG2WWprefixW1WWalksG
115 3 114 sylbi WWWalksG2WWprefixW1WWalksG
116 115 imp WWWalksG2WWprefixW1WWalksG