Metamath Proof Explorer


Theorem wwlksnextproplem3

Description: Lemma 3 for wwlksnextprop . (Contributed by Alexander van der Vekens, 1-Aug-2018) (Revised by AV, 20-Apr-2021) (Revised by AV, 29-Oct-2022)

Ref Expression
Hypotheses wwlksnextprop.x X=N+1WWalksNG
wwlksnextprop.e E=EdgG
wwlksnextprop.y Y=wNWWalksNG|w0=P
Assertion wwlksnextproplem3 WXW0=PN0WprefixN+1Y

Proof

Step Hyp Ref Expression
1 wwlksnextprop.x X=N+1WWalksNG
2 wwlksnextprop.e E=EdgG
3 wwlksnextprop.y Y=wNWWalksNG|w0=P
4 peano2nn0 N0N+10
5 iswwlksn N+10WN+1WWalksNGWWWalksGW=N+1+1
6 4 5 syl N0WN+1WWalksNGWWWalksGW=N+1+1
7 eqid VtxG=VtxG
8 7 wwlkbp WWWalksGGVWWordVtxG
9 lencl WWordVtxGW0
10 eqcom W=N+1+1N+1+1=W
11 nn0cn W0W
12 11 adantr W0N0W
13 1cnd W0N01
14 nn0cn N+10N+1
15 4 14 syl N0N+1
16 15 adantl W0N0N+1
17 subadd2 W1N+1W1=N+1N+1+1=W
18 17 bicomd W1N+1N+1+1=WW1=N+1
19 12 13 16 18 syl3anc W0N0N+1+1=WW1=N+1
20 10 19 bitrid W0N0W=N+1+1W1=N+1
21 eqcom W1=N+1N+1=W1
22 21 biimpi W1=N+1N+1=W1
23 20 22 syl6bi W0N0W=N+1+1N+1=W1
24 23 ex W0N0W=N+1+1N+1=W1
25 24 com23 W0W=N+1+1N0N+1=W1
26 9 25 syl WWordVtxGW=N+1+1N0N+1=W1
27 8 26 simpl2im WWWalksGW=N+1+1N0N+1=W1
28 27 imp31 WWWalksGW=N+1+1N0N+1=W1
29 28 oveq2d WWWalksGW=N+1+1N0WprefixN+1=WprefixW1
30 simpll WWWalksGW=N+1+1N0WWWalksG
31 nn0ge0 N00N
32 2re 2
33 32 a1i N02
34 nn0re N0N
35 33 34 addge02d N00N2N+2
36 31 35 mpbid N02N+2
37 nn0cn N0N
38 1cnd N01
39 37 38 38 addassd N0N+1+1=N+1+1
40 1p1e2 1+1=2
41 40 a1i N01+1=2
42 41 oveq2d N0N+1+1=N+2
43 39 42 eqtrd N0N+1+1=N+2
44 36 43 breqtrrd N02N+1+1
45 44 adantl WWWalksGW=N+1+1N02N+1+1
46 breq2 W=N+1+12W2N+1+1
47 46 ad2antlr WWWalksGW=N+1+1N02W2N+1+1
48 45 47 mpbird WWWalksGW=N+1+1N02W
49 wwlksm1edg WWWalksG2WWprefixW1WWalksG
50 30 48 49 syl2anc WWWalksGW=N+1+1N0WprefixW1WWalksG
51 29 50 eqeltrd WWWalksGW=N+1+1N0WprefixN+1WWalksG
52 51 expcom N0WWWalksGW=N+1+1WprefixN+1WWalksG
53 6 52 sylbid N0WN+1WWalksNGWprefixN+1WWalksG
54 53 com12 WN+1WWalksNGN0WprefixN+1WWalksG
55 54 adantr WN+1WWalksNGW0=PN0WprefixN+1WWalksG
56 55 imp WN+1WWalksNGW0=PN0WprefixN+1WWalksG
57 7 2 wwlknp WN+1WWalksNGWWordVtxGW=N+1+1i0..^N+1WiWi+1E
58 simpll WWordVtxGW=N+1+1N0WWordVtxG
59 peano2nn0 N+10N+1+10
60 4 59 syl N0N+1+10
61 peano2re NN+1
62 34 61 syl N0N+1
63 62 lep1d N0N+1N+1+1
64 elfz2nn0 N+10N+1+1N+10N+1+10N+1N+1+1
65 4 60 63 64 syl3anbrc N0N+10N+1+1
66 65 adantl W=N+1+1N0N+10N+1+1
67 oveq2 W=N+1+10W=0N+1+1
68 67 adantr W=N+1+1N00W=0N+1+1
69 66 68 eleqtrrd W=N+1+1N0N+10W
70 69 adantll WWordVtxGW=N+1+1N0N+10W
71 58 70 jca WWordVtxGW=N+1+1N0WWordVtxGN+10W
72 71 ex WWordVtxGW=N+1+1N0WWordVtxGN+10W
73 72 3adant3 WWordVtxGW=N+1+1i0..^N+1WiWi+1EN0WWordVtxGN+10W
74 57 73 syl WN+1WWalksNGN0WWordVtxGN+10W
75 74 adantr WN+1WWalksNGW0=PN0WWordVtxGN+10W
76 75 imp WN+1WWalksNGW0=PN0WWordVtxGN+10W
77 pfxlen WWordVtxGN+10WWprefixN+1=N+1
78 76 77 syl WN+1WWalksNGW0=PN0WprefixN+1=N+1
79 56 78 jca WN+1WWalksNGW0=PN0WprefixN+1WWalksGWprefixN+1=N+1
80 iswwlksn N0WprefixN+1NWWalksNGWprefixN+1WWalksGWprefixN+1=N+1
81 80 adantl WN+1WWalksNGW0=PN0WprefixN+1NWWalksNGWprefixN+1WWalksGWprefixN+1=N+1
82 79 81 mpbird WN+1WWalksNGW0=PN0WprefixN+1NWWalksNG
83 82 exp31 WN+1WWalksNGW0=PN0WprefixN+1NWWalksNG
84 83 1 eleq2s WXW0=PN0WprefixN+1NWWalksNG
85 84 3imp WXW0=PN0WprefixN+1NWWalksNG
86 1 wwlksnextproplem1 WXN0WprefixN+10=W0
87 86 3adant2 WXW0=PN0WprefixN+10=W0
88 simp2 WXW0=PN0W0=P
89 87 88 eqtrd WXW0=PN0WprefixN+10=P
90 fveq1 w=WprefixN+1w0=WprefixN+10
91 90 eqeq1d w=WprefixN+1w0=PWprefixN+10=P
92 91 3 elrab2 WprefixN+1YWprefixN+1NWWalksNGWprefixN+10=P
93 85 89 92 sylanbrc WXW0=PN0WprefixN+1Y