Metamath Proof Explorer


Theorem wwlksnredwwlkn

Description: For each walk (as word) of length at least 1 there is a shorter walk (as word). (Contributed by Alexander van der Vekens, 22-Aug-2018) (Revised by AV, 18-Apr-2021) (Revised by AV, 26-Oct-2022)

Ref Expression
Hypothesis wwlksnredwwlkn.e E=EdgG
Assertion wwlksnredwwlkn N0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWE

Proof

Step Hyp Ref Expression
1 wwlksnredwwlkn.e E=EdgG
2 eqidd N0WN+1WWalksNGWprefixN+1=WprefixN+1
3 eqid VtxG=VtxG
4 3 1 wwlknp WN+1WWalksNGWWordVtxGW=N+1+1i0..^N+1WiWi+1E
5 simprl N0WWordVtxGW=N+1+1WWordVtxG
6 peano2nn0 N0N+10
7 peano2nn0 N+10N+1+10
8 6 7 syl N0N+1+10
9 id N0N0
10 nn0p1nn N+10N+1+1
11 6 10 syl N0N+1+1
12 nn0re N0N
13 id NN
14 peano2re NN+1
15 peano2re N+1N+1+1
16 14 15 syl NN+1+1
17 13 14 16 3jca NNN+1N+1+1
18 12 17 syl N0NN+1N+1+1
19 12 ltp1d N0N<N+1
20 nn0re N+10N+1
21 6 20 syl N0N+1
22 21 ltp1d N0N+1<N+1+1
23 lttr NN+1N+1+1N<N+1N+1<N+1+1N<N+1+1
24 23 imp NN+1N+1+1N<N+1N+1<N+1+1N<N+1+1
25 18 19 22 24 syl12anc N0N<N+1+1
26 elfzo0 N0..^N+1+1N0N+1+1N<N+1+1
27 9 11 25 26 syl3anbrc N0N0..^N+1+1
28 fz0add1fz1 N+1+10N0..^N+1+1N+11N+1+1
29 8 27 28 syl2anc N0N+11N+1+1
30 29 adantr N0WWordVtxGW=N+1+1N+11N+1+1
31 oveq2 W=N+1+11W=1N+1+1
32 31 eleq2d W=N+1+1N+11WN+11N+1+1
33 32 adantl WWordVtxGW=N+1+1N+11WN+11N+1+1
34 33 adantl N0WWordVtxGW=N+1+1N+11WN+11N+1+1
35 30 34 mpbird N0WWordVtxGW=N+1+1N+11W
36 5 35 jca N0WWordVtxGW=N+1+1WWordVtxGN+11W
37 36 3adantr3 N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EWWordVtxGN+11W
38 pfxfvlsw WWordVtxGN+11WlastSWprefixN+1=WN+1-1
39 37 38 syl N0WWordVtxGW=N+1+1i0..^N+1WiWi+1ElastSWprefixN+1=WN+1-1
40 lsw WWordVtxGlastSW=WW1
41 40 3ad2ant1 WWordVtxGW=N+1+1i0..^N+1WiWi+1ElastSW=WW1
42 41 adantl N0WWordVtxGW=N+1+1i0..^N+1WiWi+1ElastSW=WW1
43 39 42 preq12d N0WWordVtxGW=N+1+1i0..^N+1WiWi+1ElastSWprefixN+1lastSW=WN+1-1WW1
44 oveq1 W=N+1+1W1=N+1+1-1
45 44 3ad2ant2 WWordVtxGW=N+1+1i0..^N+1WiWi+1EW1=N+1+1-1
46 45 adantl N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EW1=N+1+1-1
47 46 fveq2d N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EWW1=WN+1+1-1
48 47 preq2d N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EWN+1-1WW1=WN+1-1WN+1+1-1
49 nn0cn N0N
50 1cnd N01
51 49 50 pncand N0N+1-1=N
52 51 fveq2d N0WN+1-1=WN
53 6 nn0cnd N0N+1
54 53 50 pncand N0N+1+1-1=N+1
55 54 fveq2d N0WN+1+1-1=WN+1
56 52 55 preq12d N0WN+1-1WN+1+1-1=WNWN+1
57 56 adantr N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EWN+1-1WN+1+1-1=WNWN+1
58 48 57 eqtrd N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EWN+1-1WW1=WNWN+1
59 fveq2 i=NWi=WN
60 fvoveq1 i=NWi+1=WN+1
61 59 60 preq12d i=NWiWi+1=WNWN+1
62 61 eleq1d i=NWiWi+1EWNWN+1E
63 62 rspcv N0..^N+1i0..^N+1WiWi+1EWNWN+1E
64 fzonn0p1 N0N0..^N+1
65 63 64 syl11 i0..^N+1WiWi+1EN0WNWN+1E
66 65 3ad2ant3 WWordVtxGW=N+1+1i0..^N+1WiWi+1EN0WNWN+1E
67 66 impcom N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EWNWN+1E
68 58 67 eqeltrd N0WWordVtxGW=N+1+1i0..^N+1WiWi+1EWN+1-1WW1E
69 43 68 eqeltrd N0WWordVtxGW=N+1+1i0..^N+1WiWi+1ElastSWprefixN+1lastSWE
70 4 69 sylan2 N0WN+1WWalksNGlastSWprefixN+1lastSWE
71 wwlksnred N0WN+1WWalksNGWprefixN+1NWWalksNG
72 71 imp N0WN+1WWalksNGWprefixN+1NWWalksNG
73 eqeq2 y=WprefixN+1WprefixN+1=yWprefixN+1=WprefixN+1
74 fveq2 y=WprefixN+1lastSy=lastSWprefixN+1
75 74 preq1d y=WprefixN+1lastSylastSW=lastSWprefixN+1lastSW
76 75 eleq1d y=WprefixN+1lastSylastSWElastSWprefixN+1lastSWE
77 73 76 anbi12d y=WprefixN+1WprefixN+1=ylastSylastSWEWprefixN+1=WprefixN+1lastSWprefixN+1lastSWE
78 77 adantl N0WN+1WWalksNGy=WprefixN+1WprefixN+1=ylastSylastSWEWprefixN+1=WprefixN+1lastSWprefixN+1lastSWE
79 72 78 rspcedv N0WN+1WWalksNGWprefixN+1=WprefixN+1lastSWprefixN+1lastSWEyNWWalksNGWprefixN+1=ylastSylastSWE
80 2 70 79 mp2and N0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWE
81 80 ex N0WN+1WWalksNGyNWWalksNGWprefixN+1=ylastSylastSWE