Metamath Proof Explorer


Theorem xpord3inddlem

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses xpord3.1 U=xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy
xpord3inddlem.x κXA
xpord3inddlem.y κYB
xpord3inddlem.z κZC
xpord3inddlem.1 κRFrA
xpord3inddlem.2 κRPoA
xpord3inddlem.3 κRSeA
xpord3inddlem.4 κSFrB
xpord3inddlem.5 κSPoB
xpord3inddlem.6 κSSeB
xpord3inddlem.7 κTFrC
xpord3inddlem.8 κTPoC
xpord3inddlem.9 κTSeC
xpord3inddlem.10 a=dφψ
xpord3inddlem.11 b=eψχ
xpord3inddlem.12 c=fχθ
xpord3inddlem.13 a=dτθ
xpord3inddlem.14 b=eητ
xpord3inddlem.15 b=eζθ
xpord3inddlem.16 c=fστ
xpord3inddlem.17 a=Xφρ
xpord3inddlem.18 b=Yρμ
xpord3inddlem.19 c=Zμλ
xpord3inddlem.i κaAbBcCdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcηφ
Assertion xpord3inddlem κλ

Proof

Step Hyp Ref Expression
1 xpord3.1 U=xy|xA×B×CyA×B×C1st1stxR1st1sty1st1stx=1st1sty2nd1stxS2nd1sty2nd1stx=2nd1sty2ndxT2ndy2ndx=2ndyxy
2 xpord3inddlem.x κXA
3 xpord3inddlem.y κYB
4 xpord3inddlem.z κZC
5 xpord3inddlem.1 κRFrA
6 xpord3inddlem.2 κRPoA
7 xpord3inddlem.3 κRSeA
8 xpord3inddlem.4 κSFrB
9 xpord3inddlem.5 κSPoB
10 xpord3inddlem.6 κSSeB
11 xpord3inddlem.7 κTFrC
12 xpord3inddlem.8 κTPoC
13 xpord3inddlem.9 κTSeC
14 xpord3inddlem.10 a=dφψ
15 xpord3inddlem.11 b=eψχ
16 xpord3inddlem.12 c=fχθ
17 xpord3inddlem.13 a=dτθ
18 xpord3inddlem.14 b=eητ
19 xpord3inddlem.15 b=eζθ
20 xpord3inddlem.16 c=fστ
21 xpord3inddlem.17 a=Xφρ
22 xpord3inddlem.18 b=Yρμ
23 xpord3inddlem.19 c=Zμλ
24 xpord3inddlem.i κaAbBcCdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcηφ
25 1 5 8 11 frxp3 κUFrA×B×C
26 1 6 9 12 poxp3 κUPoA×B×C
27 1 7 10 13 sexp3 κUSeA×B×C
28 bi2.04 defPredUA×B×CabcκθκdefPredUA×B×Cabcθ
29 28 3albii defdefPredUA×B×CabcκθdefκdefPredUA×B×Cabcθ
30 19.21v fκdefPredUA×B×CabcθκfdefPredUA×B×Cabcθ
31 30 2albii defκdefPredUA×B×CabcθdeκfdefPredUA×B×Cabcθ
32 19.21v eκfdefPredUA×B×CabcθκefdefPredUA×B×Cabcθ
33 32 albii deκfdefPredUA×B×CabcθdκefdefPredUA×B×Cabcθ
34 19.21v dκefdefPredUA×B×CabcθκdefdefPredUA×B×Cabcθ
35 33 34 bitri deκfdefPredUA×B×CabcθκdefdefPredUA×B×Cabcθ
36 31 35 bitri defκdefPredUA×B×CabcθκdefdefPredUA×B×Cabcθ
37 29 36 bitri defdefPredUA×B×CabcκθκdefdefPredUA×B×Cabcθ
38 1 xpord3pred aAbBcCPredUA×B×Cabc=PredRAaa×PredSBbb×PredTCccabc
39 38 adantl κaAbBcCPredUA×B×Cabc=PredRAaa×PredSBbb×PredTCccabc
40 39 eleq2d κaAbBcCdefPredUA×B×CabcdefPredRAaa×PredSBbb×PredTCccabc
41 40 imbi1d κaAbBcCdefPredUA×B×CabcθdefPredRAaa×PredSBbb×PredTCccabcθ
42 eldifsn defPredRAaa×PredSBbb×PredTCccabcdefPredRAaa×PredSBbb×PredTCccdefabc
43 otelxp defPredRAaa×PredSBbb×PredTCccdPredRAaaePredSBbbfPredTCcc
44 vex dV
45 vex eV
46 vex fV
47 44 45 46 otthne defabcdaebfc
48 43 47 anbi12i defPredRAaa×PredSBbb×PredTCccdefabcdPredRAaaePredSBbbfPredTCccdaebfc
49 42 48 bitri defPredRAaa×PredSBbb×PredTCccabcdPredRAaaePredSBbbfPredTCccdaebfc
50 49 imbi1i defPredRAaa×PredSBbb×PredTCccabcθdPredRAaaePredSBbbfPredTCccdaebfcθ
51 41 50 bitrdi κaAbBcCdefPredUA×B×CabcθdPredRAaaePredSBbbfPredTCccdaebfcθ
52 impexp dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaaePredSBbbfPredTCccdaebfcθ
53 51 52 bitrdi κaAbBcCdefPredUA×B×CabcθdPredRAaaePredSBbbfPredTCccdaebfcθ
54 53 albidv κaAbBcCfdefPredUA×B×CabcθfdPredRAaaePredSBbbfPredTCccdaebfcθ
55 54 2albidv κaAbBcCdefdefPredUA×B×CabcθdefdPredRAaaePredSBbbfPredTCccdaebfcθ
56 r3al dPredRAaaePredSBbbfPredTCccdaebfcθdefdPredRAaaePredSBbbfPredTCccdaebfcθ
57 56 bicomi defdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaaePredSBbbfPredTCccdaebfcθ
58 55 57 bitrdi κaAbBcCdefdefPredUA×B×CabcθdPredRAaaePredSBbbfPredTCccdaebfcθ
59 ssun1 PredTCcPredTCcc
60 ssralv PredTCcPredTCccfPredTCccdaebfcθfPredTCcdaebfcθ
61 59 60 ax-mp fPredTCccdaebfcθfPredTCcdaebfcθ
62 61 ralimi ePredSBbbfPredTCccdaebfcθePredSBbbfPredTCcdaebfcθ
63 ssun1 PredSBbPredSBbb
64 ssralv PredSBbPredSBbbePredSBbbfPredTCcdaebfcθePredSBbfPredTCcdaebfcθ
65 63 64 ax-mp ePredSBbbfPredTCcdaebfcθePredSBbfPredTCcdaebfcθ
66 62 65 syl ePredSBbbfPredTCccdaebfcθePredSBbfPredTCcdaebfcθ
67 66 ralimi dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaaePredSBbfPredTCcdaebfcθ
68 ssun1 PredRAaPredRAaa
69 ssralv PredRAaPredRAaadPredRAaaePredSBbfPredTCcdaebfcθdPredRAaePredSBbfPredTCcdaebfcθ
70 68 69 ax-mp dPredRAaaePredSBbfPredTCcdaebfcθdPredRAaePredSBbfPredTCcdaebfcθ
71 67 70 syl dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcdaebfcθ
72 71 adantl κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcdaebfcθ
73 predpoirr TPoC¬cPredTCc
74 12 73 syl κ¬cPredTCc
75 eleq1 f=cfPredTCccPredTCc
76 75 notbid f=c¬fPredTCc¬cPredTCc
77 74 76 syl5ibrcom κf=c¬fPredTCc
78 77 necon2ad κfPredTCcfc
79 78 imp κfPredTCcfc
80 79 3mix3d κfPredTCcdaebfc
81 pm2.27 daebfcdaebfcθθ
82 80 81 syl κfPredTCcdaebfcθθ
83 82 ralimdva κfPredTCcdaebfcθfPredTCcθ
84 83 ralimdv κePredSBbfPredTCcdaebfcθePredSBbfPredTCcθ
85 84 ralimdv κdPredRAaePredSBbfPredTCcdaebfcθdPredRAaePredSBbfPredTCcθ
86 85 adantr κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcdaebfcθdPredRAaePredSBbfPredTCcθ
87 72 86 mpd κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcθ
88 ssun2 cPredTCcc
89 ssralv cPredTCccfPredTCccdaebfcθfcdaebfcθ
90 88 89 ax-mp fPredTCccdaebfcθfcdaebfcθ
91 90 ralimi ePredSBbbfPredTCccdaebfcθePredSBbbfcdaebfcθ
92 ssralv PredSBbPredSBbbePredSBbbfcdaebfcθePredSBbfcdaebfcθ
93 63 92 ax-mp ePredSBbbfcdaebfcθePredSBbfcdaebfcθ
94 91 93 syl ePredSBbbfPredTCccdaebfcθePredSBbfcdaebfcθ
95 94 ralimi dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaaePredSBbfcdaebfcθ
96 ssralv PredRAaPredRAaadPredRAaaePredSBbfcdaebfcθdPredRAaePredSBbfcdaebfcθ
97 68 96 ax-mp dPredRAaaePredSBbfcdaebfcθdPredRAaePredSBbfcdaebfcθ
98 95 97 syl dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfcdaebfcθ
99 vex cV
100 biidd f=cdada
101 biidd f=cebeb
102 neeq1 f=cfccc
103 100 101 102 3orbi123d f=cdaebfcdaebcc
104 16 equcoms f=cχθ
105 104 bicomd f=cθχ
106 103 105 imbi12d f=cdaebfcθdaebccχ
107 99 106 ralsn fcdaebfcθdaebccχ
108 107 2ralbii dPredRAaePredSBbfcdaebfcθdPredRAaePredSBbdaebccχ
109 98 108 sylib dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbdaebccχ
110 109 adantl κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbdaebccχ
111 predpoirr SPoB¬bPredSBb
112 9 111 syl κ¬bPredSBb
113 eleq1 e=bePredSBbbPredSBb
114 113 notbid e=b¬ePredSBb¬bPredSBb
115 112 114 syl5ibrcom κe=b¬ePredSBb
116 115 necon2ad κePredSBbeb
117 116 imp κePredSBbeb
118 117 3mix2d κePredSBbdaebcc
119 pm2.27 daebccdaebccχχ
120 118 119 syl κePredSBbdaebccχχ
121 120 ralimdva κePredSBbdaebccχePredSBbχ
122 121 ralimdv κdPredRAaePredSBbdaebccχdPredRAaePredSBbχ
123 122 adantr κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbdaebccχdPredRAaePredSBbχ
124 110 123 mpd κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbχ
125 ssun2 bPredSBbb
126 ssralv bPredSBbbePredSBbbfPredTCcdaebfcθebfPredTCcdaebfcθ
127 125 126 ax-mp ePredSBbbfPredTCcdaebfcθebfPredTCcdaebfcθ
128 62 127 syl ePredSBbbfPredTCccdaebfcθebfPredTCcdaebfcθ
129 128 ralimi dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaaebfPredTCcdaebfcθ
130 ssralv PredRAaPredRAaadPredRAaaebfPredTCcdaebfcθdPredRAaebfPredTCcdaebfcθ
131 68 130 ax-mp dPredRAaaebfPredTCcdaebfcθdPredRAaebfPredTCcdaebfcθ
132 129 131 syl dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaebfPredTCcdaebfcθ
133 vex bV
134 biidd e=bdada
135 neeq1 e=bebbb
136 biidd e=bfcfc
137 134 135 136 3orbi123d e=bdaebfcdabbfc
138 19 equcoms e=bζθ
139 138 bicomd e=bθζ
140 137 139 imbi12d e=bdaebfcθdabbfcζ
141 140 ralbidv e=bfPredTCcdaebfcθfPredTCcdabbfcζ
142 133 141 ralsn ebfPredTCcdaebfcθfPredTCcdabbfcζ
143 142 ralbii dPredRAaebfPredTCcdaebfcθdPredRAafPredTCcdabbfcζ
144 132 143 sylib dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAafPredTCcdabbfcζ
145 144 adantl κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAafPredTCcdabbfcζ
146 79 3mix3d κfPredTCcdabbfc
147 pm2.27 dabbfcdabbfcζζ
148 146 147 syl κfPredTCcdabbfcζζ
149 148 ralimdva κfPredTCcdabbfcζfPredTCcζ
150 149 ralimdv κdPredRAafPredTCcdabbfcζdPredRAafPredTCcζ
151 150 adantr κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAafPredTCcdabbfcζdPredRAafPredTCcζ
152 145 151 mpd κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAafPredTCcζ
153 87 124 152 3jca κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζ
154 ssralv bPredSBbbePredSBbbfcdaebfcθebfcdaebfcθ
155 125 154 ax-mp ePredSBbbfcdaebfcθebfcdaebfcθ
156 91 155 syl ePredSBbbfPredTCccdaebfcθebfcdaebfcθ
157 156 ralimi dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaaebfcdaebfcθ
158 ssralv PredRAaPredRAaadPredRAaaebfcdaebfcθdPredRAaebfcdaebfcθ
159 68 158 ax-mp dPredRAaaebfcdaebfcθdPredRAaebfcdaebfcθ
160 157 159 syl dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaebfcdaebfcθ
161 107 ralbii ebfcdaebfcθebdaebccχ
162 biidd e=bcccc
163 134 135 162 3orbi123d e=bdaebccdabbcc
164 15 equcoms e=bψχ
165 164 bicomd e=bχψ
166 163 165 imbi12d e=bdaebccχdabbccψ
167 133 166 ralsn ebdaebccχdabbccψ
168 161 167 bitri ebfcdaebfcθdabbccψ
169 168 ralbii dPredRAaebfcdaebfcθdPredRAadabbccψ
170 160 169 sylib dPredRAaaePredSBbbfPredTCccdaebfcθdPredRAadabbccψ
171 170 adantl κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAadabbccψ
172 predpoirr RPoA¬aPredRAa
173 6 172 syl κ¬aPredRAa
174 eleq1 d=adPredRAaaPredRAa
175 174 notbid d=a¬dPredRAa¬aPredRAa
176 173 175 syl5ibrcom κd=a¬dPredRAa
177 176 necon2ad κdPredRAada
178 177 imp κdPredRAada
179 178 3mix1d κdPredRAadabbcc
180 pm2.27 dabbccdabbccψψ
181 179 180 syl κdPredRAadabbccψψ
182 181 ralimdva κdPredRAadabbccψdPredRAaψ
183 182 adantr κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAadabbccψdPredRAaψ
184 171 183 mpd κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaψ
185 ssun2 aPredRAaa
186 ssralv aPredRAaadPredRAaaePredSBbfPredTCcdaebfcθdaePredSBbfPredTCcdaebfcθ
187 185 186 ax-mp dPredRAaaePredSBbfPredTCcdaebfcθdaePredSBbfPredTCcdaebfcθ
188 67 187 syl dPredRAaaePredSBbbfPredTCccdaebfcθdaePredSBbfPredTCcdaebfcθ
189 vex aV
190 neeq1 d=adaaa
191 biidd d=aebeb
192 biidd d=afcfc
193 190 191 192 3orbi123d d=adaebfcaaebfc
194 17 equcoms d=aτθ
195 194 bicomd d=aθτ
196 193 195 imbi12d d=adaebfcθaaebfcτ
197 196 2ralbidv d=aePredSBbfPredTCcdaebfcθePredSBbfPredTCcaaebfcτ
198 189 197 ralsn daePredSBbfPredTCcdaebfcθePredSBbfPredTCcaaebfcτ
199 188 198 sylib dPredRAaaePredSBbbfPredTCccdaebfcθePredSBbfPredTCcaaebfcτ
200 199 adantl κdPredRAaaePredSBbbfPredTCccdaebfcθePredSBbfPredTCcaaebfcτ
201 79 3mix3d κfPredTCcaaebfc
202 pm2.27 aaebfcaaebfcττ
203 201 202 syl κfPredTCcaaebfcττ
204 203 ralimdva κfPredTCcaaebfcτfPredTCcτ
205 204 ralimdv κePredSBbfPredTCcaaebfcτePredSBbfPredTCcτ
206 205 adantr κdPredRAaaePredSBbbfPredTCccdaebfcθePredSBbfPredTCcaaebfcτePredSBbfPredTCcτ
207 200 206 mpd κdPredRAaaePredSBbbfPredTCccdaebfcθePredSBbfPredTCcτ
208 ssralv aPredRAaadPredRAaaePredSBbfcdaebfcθdaePredSBbfcdaebfcθ
209 185 208 ax-mp dPredRAaaePredSBbfcdaebfcθdaePredSBbfcdaebfcθ
210 95 209 syl dPredRAaaePredSBbbfPredTCccdaebfcθdaePredSBbfcdaebfcθ
211 196 2ralbidv d=aePredSBbfcdaebfcθePredSBbfcaaebfcτ
212 189 211 ralsn daePredSBbfcdaebfcθePredSBbfcaaebfcτ
213 biidd f=caaaa
214 213 101 102 3orbi123d f=caaebfcaaebcc
215 20 bicomd c=fτσ
216 215 equcoms f=cτσ
217 214 216 imbi12d f=caaebfcτaaebccσ
218 99 217 ralsn fcaaebfcτaaebccσ
219 218 ralbii ePredSBbfcaaebfcτePredSBbaaebccσ
220 212 219 bitri daePredSBbfcdaebfcθePredSBbaaebccσ
221 210 220 sylib dPredRAaaePredSBbbfPredTCccdaebfcθePredSBbaaebccσ
222 221 adantl κdPredRAaaePredSBbbfPredTCccdaebfcθePredSBbaaebccσ
223 117 3mix2d κePredSBbaaebcc
224 pm2.27 aaebccaaebccσσ
225 223 224 syl κePredSBbaaebccσσ
226 225 ralimdva κePredSBbaaebccσePredSBbσ
227 226 adantr κdPredRAaaePredSBbbfPredTCccdaebfcθePredSBbaaebccσePredSBbσ
228 222 227 mpd κdPredRAaaePredSBbbfPredTCccdaebfcθePredSBbσ
229 184 207 228 3jca κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaψePredSBbfPredTCcτePredSBbσ
230 ssralv aPredRAaadPredRAaaebfPredTCcdaebfcθdaebfPredTCcdaebfcθ
231 185 230 ax-mp dPredRAaaebfPredTCcdaebfcθdaebfPredTCcdaebfcθ
232 129 231 syl dPredRAaaePredSBbbfPredTCccdaebfcθdaebfPredTCcdaebfcθ
233 196 2ralbidv d=aebfPredTCcdaebfcθebfPredTCcaaebfcτ
234 189 233 ralsn daebfPredTCcdaebfcθebfPredTCcaaebfcτ
235 biidd e=baaaa
236 235 135 136 3orbi123d e=baaebfcaabbfc
237 equcomi e=bb=e
238 bicom1 ηττη
239 237 18 238 3syl e=bτη
240 236 239 imbi12d e=baaebfcτaabbfcη
241 240 ralbidv e=bfPredTCcaaebfcτfPredTCcaabbfcη
242 133 241 ralsn ebfPredTCcaaebfcτfPredTCcaabbfcη
243 234 242 bitri daebfPredTCcdaebfcθfPredTCcaabbfcη
244 232 243 sylib dPredRAaaePredSBbbfPredTCccdaebfcθfPredTCcaabbfcη
245 244 adantl κdPredRAaaePredSBbbfPredTCccdaebfcθfPredTCcaabbfcη
246 79 3mix3d κfPredTCcaabbfc
247 pm2.27 aabbfcaabbfcηη
248 246 247 syl κfPredTCcaabbfcηη
249 248 ralimdva κfPredTCcaabbfcηfPredTCcη
250 249 adantr κdPredRAaaePredSBbbfPredTCccdaebfcθfPredTCcaabbfcηfPredTCcη
251 245 250 mpd κdPredRAaaePredSBbbfPredTCccdaebfcθfPredTCcη
252 153 229 251 3jca κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcη
253 252 ex κdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcη
254 253 adantr κaAbBcCdPredRAaaePredSBbbfPredTCccdaebfcθdPredRAaePredSBbfPredTCcθdPredRAaePredSBbχdPredRAafPredTCcζdPredRAaψePredSBbfPredTCcτePredSBbσfPredTCcη
255 254 24 syld κaAbBcCdPredRAaaePredSBbbfPredTCccdaebfcθφ
256 58 255 sylbid κaAbBcCdefdefPredUA×B×Cabcθφ
257 256 expcom aAbBcCκdefdefPredUA×B×Cabcθφ
258 257 a2d aAbBcCκdefdefPredUA×B×Cabcθκφ
259 37 258 biimtrid aAbBcCdefdefPredUA×B×Cabcκθκφ
260 14 imbi2d a=dκφκψ
261 15 imbi2d b=eκψκχ
262 16 imbi2d c=fκχκθ
263 21 imbi2d a=Xκφκρ
264 22 imbi2d b=Yκρκμ
265 23 imbi2d c=Zκμκλ
266 259 260 261 262 263 264 265 frpoins3xp3g UFrA×B×CUPoA×B×CUSeA×B×CXAYBZCκλ
267 25 26 27 2 3 4 266 syl33anc κκλ
268 267 pm2.43i κλ