Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xrge0mulc1cn.k | |
|
xrge0mulc1cn.f | |
||
xrge0mulc1cn.c | |
||
Assertion | xrge0mulc1cn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0mulc1cn.k | |
|
2 | xrge0mulc1cn.f | |
|
3 | xrge0mulc1cn.c | |
|
4 | letopon | |
|
5 | iccssxr | |
|
6 | resttopon | |
|
7 | 4 5 6 | mp2an | |
8 | 1 7 | eqeltri | |
9 | 8 | a1i | |
10 | 0e0iccpnf | |
|
11 | 10 | a1i | |
12 | simpl | |
|
13 | 12 | oveq2d | |
14 | simpr | |
|
15 | 5 14 | sselid | |
16 | xmul01 | |
|
17 | 15 16 | syl | |
18 | 13 17 | eqtrd | |
19 | 18 | mpteq2dva | |
20 | fconstmpt | |
|
21 | 19 2 20 | 3eqtr4g | |
22 | c0ex | |
|
23 | 22 | fconst2 | |
24 | 21 23 | sylibr | |
25 | cnconst | |
|
26 | 9 9 11 24 25 | syl22anc | |
27 | 26 | adantl | |
28 | eqid | |
|
29 | oveq1 | |
|
30 | 29 | cbvmptv | |
31 | id | |
|
32 | 28 30 31 | xrmulc1cn | |
33 | letopuni | |
|
34 | 33 | cnrest | |
35 | 32 5 34 | sylancl | |
36 | resmpt | |
|
37 | 5 36 | ax-mp | |
38 | 37 2 | eqtr4i | |
39 | 1 | eqcomi | |
40 | 39 | oveq1i | |
41 | 35 38 40 | 3eltr3g | |
42 | 4 | a1i | |
43 | simpr | |
|
44 | ioorp | |
|
45 | ioossicc | |
|
46 | 44 45 | eqsstrri | |
47 | simpl | |
|
48 | 46 47 | sselid | |
49 | ge0xmulcl | |
|
50 | 43 48 49 | syl2anc | |
51 | 50 2 | fmptd | |
52 | 51 | frnd | |
53 | 5 | a1i | |
54 | cnrest2 | |
|
55 | 42 52 53 54 | syl3anc | |
56 | 41 55 | mpbid | |
57 | 1 | oveq2i | |
58 | 56 57 | eleqtrrdi | |
59 | 58 44 | eleq2s | |
60 | 59 | adantl | |
61 | 0xr | |
|
62 | pnfxr | |
|
63 | 0ltpnf | |
|
64 | elicoelioo | |
|
65 | 61 62 63 64 | mp3an | |
66 | 3 65 | sylib | |
67 | 27 60 66 | mpjaodan | |