Metamath Proof Explorer


Theorem xrge0mulc1cn

Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses xrge0mulc1cn.k J=ordTop𝑡0+∞
xrge0mulc1cn.f F=x0+∞x𝑒C
xrge0mulc1cn.c φC0+∞
Assertion xrge0mulc1cn φFJCnJ

Proof

Step Hyp Ref Expression
1 xrge0mulc1cn.k J=ordTop𝑡0+∞
2 xrge0mulc1cn.f F=x0+∞x𝑒C
3 xrge0mulc1cn.c φC0+∞
4 letopon ordTopTopOn*
5 iccssxr 0+∞*
6 resttopon ordTopTopOn*0+∞*ordTop𝑡0+∞TopOn0+∞
7 4 5 6 mp2an ordTop𝑡0+∞TopOn0+∞
8 1 7 eqeltri JTopOn0+∞
9 8 a1i C=0JTopOn0+∞
10 0e0iccpnf 00+∞
11 10 a1i C=000+∞
12 simpl C=0x0+∞C=0
13 12 oveq2d C=0x0+∞x𝑒C=x𝑒0
14 simpr C=0x0+∞x0+∞
15 5 14 sselid C=0x0+∞x*
16 xmul01 x*x𝑒0=0
17 15 16 syl C=0x0+∞x𝑒0=0
18 13 17 eqtrd C=0x0+∞x𝑒C=0
19 18 mpteq2dva C=0x0+∞x𝑒C=x0+∞0
20 fconstmpt 0+∞×0=x0+∞0
21 19 2 20 3eqtr4g C=0F=0+∞×0
22 c0ex 0V
23 22 fconst2 F:0+∞0F=0+∞×0
24 21 23 sylibr C=0F:0+∞0
25 cnconst JTopOn0+∞JTopOn0+∞00+∞F:0+∞0FJCnJ
26 9 9 11 24 25 syl22anc C=0FJCnJ
27 26 adantl φC=0FJCnJ
28 eqid ordTop=ordTop
29 oveq1 x=yx𝑒C=y𝑒C
30 29 cbvmptv x*x𝑒C=y*y𝑒C
31 id C+C+
32 28 30 31 xrmulc1cn C+x*x𝑒CordTopCnordTop
33 letopuni *=ordTop
34 33 cnrest x*x𝑒CordTopCnordTop0+∞*x*x𝑒C0+∞ordTop𝑡0+∞CnordTop
35 32 5 34 sylancl C+x*x𝑒C0+∞ordTop𝑡0+∞CnordTop
36 resmpt 0+∞*x*x𝑒C0+∞=x0+∞x𝑒C
37 5 36 ax-mp x*x𝑒C0+∞=x0+∞x𝑒C
38 37 2 eqtr4i x*x𝑒C0+∞=F
39 1 eqcomi ordTop𝑡0+∞=J
40 39 oveq1i ordTop𝑡0+∞CnordTop=JCnordTop
41 35 38 40 3eltr3g C+FJCnordTop
42 4 a1i C+ordTopTopOn*
43 simpr C+x0+∞x0+∞
44 ioorp 0+∞=+
45 ioossicc 0+∞0+∞
46 44 45 eqsstrri +0+∞
47 simpl C+x0+∞C+
48 46 47 sselid C+x0+∞C0+∞
49 ge0xmulcl x0+∞C0+∞x𝑒C0+∞
50 43 48 49 syl2anc C+x0+∞x𝑒C0+∞
51 50 2 fmptd C+F:0+∞0+∞
52 51 frnd C+ranF0+∞
53 5 a1i C+0+∞*
54 cnrest2 ordTopTopOn*ranF0+∞0+∞*FJCnordTopFJCnordTop𝑡0+∞
55 42 52 53 54 syl3anc C+FJCnordTopFJCnordTop𝑡0+∞
56 41 55 mpbid C+FJCnordTop𝑡0+∞
57 1 oveq2i JCnJ=JCnordTop𝑡0+∞
58 56 57 eleqtrrdi C+FJCnJ
59 58 44 eleq2s C0+∞FJCnJ
60 59 adantl φC0+∞FJCnJ
61 0xr 0*
62 pnfxr +∞*
63 0ltpnf 0<+∞
64 elicoelioo 0*+∞*0<+∞C0+∞C=0C0+∞
65 61 62 63 64 mp3an C0+∞C=0C0+∞
66 3 65 sylib φC=0C0+∞
67 27 60 66 mpjaodan φFJCnJ