| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bgoldbtbnd.m |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ; 1 1 ) ) |
| 2 |
|
bgoldbtbnd.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ; 1 1 ) ) |
| 3 |
|
bgoldbtbnd.b |
⊢ ( 𝜑 → ∀ 𝑛 ∈ Even ( ( 4 < 𝑛 ∧ 𝑛 < 𝑁 ) → 𝑛 ∈ GoldbachEven ) ) |
| 4 |
|
bgoldbtbnd.d |
⊢ ( 𝜑 → 𝐷 ∈ ( ℤ≥ ‘ 3 ) ) |
| 5 |
|
bgoldbtbnd.f |
⊢ ( 𝜑 → 𝐹 ∈ ( RePart ‘ 𝐷 ) ) |
| 6 |
|
bgoldbtbnd.i |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 7 |
|
bgoldbtbnd.0 |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 7 ) |
| 8 |
|
bgoldbtbnd.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ 1 ) = ; 1 3 ) |
| 9 |
|
bgoldbtbnd.l |
⊢ ( 𝜑 → 𝑀 < ( 𝐹 ‘ 𝐷 ) ) |
| 10 |
|
bgoldbtbndlem2.s |
⊢ 𝑆 = ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) |
| 11 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → 𝐼 ∈ ℤ ) |
| 12 |
|
elfzoel2 |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → 𝐷 ∈ ℤ ) |
| 13 |
|
elfzom1b |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) ↔ ( 𝐼 − 1 ) ∈ ( 0 ..^ ( 𝐷 − 1 ) ) ) ) |
| 14 |
|
fzossrbm1 |
⊢ ( 𝐷 ∈ ℤ → ( 0 ..^ ( 𝐷 − 1 ) ) ⊆ ( 0 ..^ 𝐷 ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 0 ..^ ( 𝐷 − 1 ) ) ⊆ ( 0 ..^ 𝐷 ) ) |
| 16 |
15
|
sseld |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( ( 𝐼 − 1 ) ∈ ( 0 ..^ ( 𝐷 − 1 ) ) → ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝐷 ) ) ) |
| 17 |
13 16
|
sylbid |
⊢ ( ( 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝐷 ) ) ) |
| 18 |
17
|
com12 |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( ( 𝐼 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝐷 ) ) ) |
| 19 |
11 12 18
|
mp2and |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝐷 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝐼 − 1 ) → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑖 = ( 𝐼 − 1 ) → ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ) ) |
| 22 |
|
fvoveq1 |
⊢ ( 𝑖 = ( 𝐼 − 1 ) → ( 𝐹 ‘ ( 𝑖 + 1 ) ) = ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) ) |
| 23 |
22 20
|
oveq12d |
⊢ ( 𝑖 = ( 𝐼 − 1 ) → ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 24 |
23
|
breq1d |
⊢ ( 𝑖 = ( 𝐼 − 1 ) → ( ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ↔ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) |
| 25 |
23
|
breq2d |
⊢ ( 𝑖 = ( 𝐼 − 1 ) → ( 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ↔ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) |
| 26 |
21 24 25
|
3anbi123d |
⊢ ( 𝑖 = ( 𝐼 − 1 ) → ( ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) ↔ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ) |
| 27 |
26
|
rspcv |
⊢ ( ( 𝐼 − 1 ) ∈ ( 0 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ) |
| 28 |
19 27
|
syl |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ) |
| 29 |
6 28
|
syl5com |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ) |
| 30 |
29
|
a1d |
⊢ ( 𝜑 → ( 𝑋 ∈ Odd → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ) ) |
| 31 |
30
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) |
| 32 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝑋 ∈ Odd ) |
| 33 |
|
oddprmALTV |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ Odd ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ Odd ) |
| 35 |
32 34
|
anim12i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → ( 𝑋 ∈ Odd ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ Odd ) ) |
| 36 |
35
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝑋 ∈ Odd ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ Odd ) ) |
| 37 |
|
omoeALTV |
⊢ ( ( 𝑋 ∈ Odd ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ Odd ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ Even ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ Even ) |
| 39 |
10 38
|
eqeltrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → 𝑆 ∈ Even ) |
| 40 |
11
|
zcnd |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → 𝐼 ∈ ℂ ) |
| 41 |
40
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝐼 ∈ ℂ ) |
| 42 |
|
npcan1 |
⊢ ( 𝐼 ∈ ℂ → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
| 43 |
41 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
| 44 |
43
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) = ( 𝐹 ‘ 𝐼 ) ) |
| 45 |
44
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) = ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 46 |
45
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ↔ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ↔ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) |
| 48 |
|
eldifi |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℙ ) |
| 49 |
|
prmz |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℙ → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℤ ) |
| 50 |
|
zre |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℤ → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) |
| 51 |
|
simp1 |
⊢ ( ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ) |
| 52 |
51
|
ralimi |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ) |
| 53 |
|
fzo0ss1 |
⊢ ( 1 ..^ 𝐷 ) ⊆ ( 0 ..^ 𝐷 ) |
| 54 |
53
|
sseli |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → 𝐼 ∈ ( 0 ..^ 𝐷 ) ) |
| 55 |
54
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝐼 ∈ ( 0 ..^ 𝐷 ) ) |
| 56 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝐼 ) ) |
| 57 |
56
|
eleq1d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ↔ ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
| 58 |
57
|
rspcv |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
| 59 |
55 58
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) |
| 60 |
59
|
ex |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) ) |
| 61 |
60
|
com23 |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) ) |
| 62 |
61
|
a1i |
⊢ ( 𝑋 ∈ Odd → ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) ) ) |
| 63 |
62
|
com13 |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝜑 → ( 𝑋 ∈ Odd → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) ) ) |
| 64 |
52 63
|
syl |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( 𝜑 → ( 𝑋 ∈ Odd → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) ) ) |
| 65 |
6 64
|
mpcom |
⊢ ( 𝜑 → ( 𝑋 ∈ Odd → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) ) ) |
| 66 |
65
|
3imp |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ) |
| 67 |
|
eldifi |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝐼 ) ∈ ℙ ) |
| 68 |
|
prmz |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ℙ → ( 𝐹 ‘ 𝐼 ) ∈ ℤ ) |
| 69 |
|
zre |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ℤ → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 70 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ; 1 1 ) → 𝑁 ∈ ℤ ) |
| 71 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 72 |
|
oddz |
⊢ ( 𝑋 ∈ Odd → 𝑋 ∈ ℤ ) |
| 73 |
72
|
zred |
⊢ ( 𝑋 ∈ Odd → 𝑋 ∈ ℝ ) |
| 74 |
|
simplr |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → 𝑋 ∈ ℝ ) |
| 75 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 76 |
|
4re |
⊢ 4 ∈ ℝ |
| 77 |
76
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → 4 ∈ ℝ ) |
| 78 |
74 75 77
|
lesubaddd |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ↔ 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ) ) |
| 79 |
|
simpllr |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → 𝑋 ∈ ℝ ) |
| 80 |
|
simplrr |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) |
| 81 |
79 80
|
resubcld |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 82 |
76
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → 4 ∈ ℝ ) |
| 83 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 84 |
82 83
|
readdcld |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∈ ℝ ) |
| 85 |
84 80
|
resubcld |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 86 |
|
simplll |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → 𝑁 ∈ ℝ ) |
| 87 |
77 75
|
readdcld |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∈ ℝ ) |
| 88 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) |
| 89 |
74 87 88
|
lesub1d |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ↔ ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ≤ ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) |
| 90 |
89
|
biimpa |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ≤ ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 91 |
90
|
adantrr |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ≤ ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 92 |
|
resubcl |
⊢ ( ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 93 |
92
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 94 |
|
simpll |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → 𝑁 ∈ ℝ ) |
| 95 |
|
ltaddsub2 |
⊢ ( ( 4 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ↔ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) |
| 96 |
95
|
bicomd |
⊢ ( ( 4 ∈ ℝ ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ↔ ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ) ) |
| 97 |
77 93 94 96
|
syl3anc |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ↔ ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ) ) |
| 98 |
97
|
biimpd |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ) ) |
| 99 |
98
|
adantld |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) → ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ) ) |
| 100 |
99
|
imp |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ) |
| 101 |
|
4cn |
⊢ 4 ∈ ℂ |
| 102 |
101
|
a1i |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → 4 ∈ ℂ ) |
| 103 |
75
|
recnd |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℂ ) |
| 104 |
|
recn |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℂ ) |
| 105 |
104
|
adantl |
⊢ ( ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℂ ) |
| 106 |
105
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℂ ) |
| 107 |
102 103 106
|
addsubassd |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) = ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) |
| 108 |
107
|
breq1d |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ↔ ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ) ) |
| 109 |
108
|
adantr |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ↔ ( 4 + ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) < 𝑁 ) ) |
| 110 |
100 109
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( ( 4 + ( 𝐹 ‘ 𝐼 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) |
| 111 |
81 85 86 91 110
|
lelttrd |
⊢ ( ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) ∧ ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) ∧ ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) |
| 112 |
111
|
exp32 |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( 𝑋 ≤ ( 4 + ( 𝐹 ‘ 𝐼 ) ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) |
| 113 |
78 112
|
sylbid |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) |
| 114 |
113
|
com23 |
⊢ ( ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) ∧ ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) |
| 115 |
114
|
exp32 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ ℝ ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) |
| 116 |
73 115
|
sylan2 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑋 ∈ Odd ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) |
| 117 |
116
|
ex |
⊢ ( 𝑁 ∈ ℝ → ( 𝑋 ∈ Odd → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) ) |
| 118 |
2 70 71 117
|
4syl |
⊢ ( 𝜑 → ( 𝑋 ∈ Odd → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) ) |
| 119 |
118
|
imp |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) |
| 120 |
119
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) |
| 121 |
69 120
|
syl5com |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ℤ → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) |
| 122 |
67 68 121
|
3syl |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) ) |
| 123 |
66 122
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) |
| 124 |
50 123
|
syl5com |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℤ → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) |
| 125 |
48 49 124
|
3syl |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) |
| 126 |
125
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) |
| 127 |
47 126
|
sylbid |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ) → ( ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) |
| 128 |
127
|
expcom |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) |
| 129 |
128
|
com23 |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) → ( ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) ) |
| 130 |
129
|
imp |
⊢ ( ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) |
| 131 |
130
|
3adant3 |
⊢ ( ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) ) |
| 132 |
131
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) |
| 133 |
132
|
com12 |
⊢ ( ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 → ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) |
| 134 |
133
|
adantl |
⊢ ( ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) → ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) ) |
| 135 |
134
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < 𝑁 ) |
| 136 |
10 135
|
eqbrtrid |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → 𝑆 < 𝑁 ) |
| 137 |
76
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → 4 ∈ ℝ ) |
| 138 |
|
1eluzge0 |
⊢ 1 ∈ ( ℤ≥ ‘ 0 ) |
| 139 |
|
fzoss1 |
⊢ ( 1 ∈ ( ℤ≥ ‘ 0 ) → ( 1 ..^ 𝐷 ) ⊆ ( 0 ..^ 𝐷 ) ) |
| 140 |
138 139
|
mp1i |
⊢ ( 𝜑 → ( 1 ..^ 𝐷 ) ⊆ ( 0 ..^ 𝐷 ) ) |
| 141 |
140
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝐼 ∈ ( 0 ..^ 𝐷 ) ) |
| 142 |
|
fvoveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝐹 ‘ ( 𝑖 + 1 ) ) = ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) |
| 143 |
142 56
|
oveq12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) = ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) ) |
| 144 |
143
|
breq1d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ↔ ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) < ( 𝑁 − 4 ) ) ) |
| 145 |
143
|
breq2d |
⊢ ( 𝑖 = 𝐼 → ( 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ↔ 4 < ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) ) ) |
| 146 |
57 144 145
|
3anbi123d |
⊢ ( 𝑖 = 𝐼 → ( ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) ↔ ( ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) ) ) ) |
| 147 |
146
|
rspcv |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) ) ) ) |
| 148 |
141 147
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) ) ) ) |
| 149 |
68
|
zred |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ℙ → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 150 |
67 149
|
syl |
⊢ ( ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 151 |
150
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ 𝐼 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝐼 + 1 ) ) − ( 𝐹 ‘ 𝐼 ) ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 152 |
148 151
|
syl6 |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) ) |
| 153 |
152
|
ex |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝐷 ) ( ( 𝐹 ‘ 𝑖 ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( 𝑖 + 1 ) ) − ( 𝐹 ‘ 𝑖 ) ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) ) ) |
| 154 |
6 153
|
mpid |
⊢ ( 𝜑 → ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) ) |
| 155 |
154
|
imp |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 156 |
155
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 157 |
156
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ ) |
| 158 |
49
|
zred |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℙ → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) |
| 159 |
48 158
|
syl |
⊢ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) |
| 160 |
159
|
3ad2ant1 |
⊢ ( ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) |
| 161 |
160
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) |
| 162 |
157 161
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 163 |
73
|
3ad2ant2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝑋 ∈ ℝ ) |
| 164 |
|
resubcl |
⊢ ( ( 𝑋 ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ℝ ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 165 |
163 160 164
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 166 |
165
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ∈ ℝ ) |
| 167 |
40 42
|
syl |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐷 ) → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
| 168 |
167
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐼 − 1 ) + 1 ) = 𝐼 ) |
| 169 |
168
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) = ( 𝐹 ‘ 𝐼 ) ) |
| 170 |
169
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) = ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 171 |
170
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ↔ 4 < ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) |
| 172 |
171
|
biimpcd |
⊢ ( 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 4 < ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) |
| 173 |
172
|
3ad2ant3 |
⊢ ( ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) → ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 4 < ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) |
| 174 |
173
|
impcom |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → 4 < ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 175 |
174
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → 4 < ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 176 |
163
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → 𝑋 ∈ ℝ ) |
| 177 |
|
eluzge3nn |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 3 ) → 𝐷 ∈ ℕ ) |
| 178 |
4 177
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ℕ ) |
| 179 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝐷 ∈ ℕ ) |
| 180 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝐹 ∈ ( RePart ‘ 𝐷 ) ) |
| 181 |
138 139
|
mp1i |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 3 ) → ( 1 ..^ 𝐷 ) ⊆ ( 0 ..^ 𝐷 ) ) |
| 182 |
|
fzossfz |
⊢ ( 0 ..^ 𝐷 ) ⊆ ( 0 ... 𝐷 ) |
| 183 |
181 182
|
sstrdi |
⊢ ( 𝐷 ∈ ( ℤ≥ ‘ 3 ) → ( 1 ..^ 𝐷 ) ⊆ ( 0 ... 𝐷 ) ) |
| 184 |
4 183
|
syl |
⊢ ( 𝜑 → ( 1 ..^ 𝐷 ) ⊆ ( 0 ... 𝐷 ) ) |
| 185 |
184
|
sselda |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → 𝐼 ∈ ( 0 ... 𝐷 ) ) |
| 186 |
179 180 185
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐹 ‘ 𝐼 ) ∈ ℝ* ) |
| 187 |
|
fzofzp1 |
⊢ ( 𝐼 ∈ ( 0 ..^ 𝐷 ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝐷 ) ) |
| 188 |
141 187
|
syl |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐼 + 1 ) ∈ ( 0 ... 𝐷 ) ) |
| 189 |
179 180 188
|
iccpartxr |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) |
| 190 |
186 189
|
jca |
⊢ ( ( 𝜑 ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) ) |
| 191 |
190
|
3adant2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) ) |
| 192 |
|
elico1 |
⊢ ( ( ( 𝐹 ‘ 𝐼 ) ∈ ℝ* ∧ ( 𝐹 ‘ ( 𝐼 + 1 ) ) ∈ ℝ* ) → ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ∧ 𝑋 < ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ) ) |
| 193 |
191 192
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ↔ ( 𝑋 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ∧ 𝑋 < ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ) ) |
| 194 |
|
simp2 |
⊢ ( ( 𝑋 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ∧ 𝑋 < ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) → ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ) |
| 195 |
193 194
|
biimtrdi |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) → ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ) ) |
| 196 |
195
|
adantrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) → ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ) ) |
| 197 |
196
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → ( ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) → ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ) ) |
| 198 |
197
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝐹 ‘ 𝐼 ) ≤ 𝑋 ) |
| 199 |
157 176 161 198
|
lesub1dd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( ( 𝐹 ‘ 𝐼 ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ≤ ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 200 |
137 162 166 175 199
|
ltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → 4 < ( 𝑋 − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) |
| 201 |
200 10
|
breqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → 4 < 𝑆 ) |
| 202 |
39 136 201
|
3jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) ∧ ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) ) → ( 𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆 ) ) |
| 203 |
202
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) ∧ ( ( 𝐹 ‘ ( 𝐼 − 1 ) ) ∈ ( ℙ ∖ { 2 } ) ∧ ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) < ( 𝑁 − 4 ) ∧ 4 < ( ( 𝐹 ‘ ( ( 𝐼 − 1 ) + 1 ) ) − ( 𝐹 ‘ ( 𝐼 − 1 ) ) ) ) ) → ( ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) → ( 𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆 ) ) ) |
| 204 |
31 203
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ ( 1 ..^ 𝐷 ) ) → ( ( 𝑋 ∈ ( ( 𝐹 ‘ 𝐼 ) [,) ( 𝐹 ‘ ( 𝐼 + 1 ) ) ) ∧ ( 𝑋 − ( 𝐹 ‘ 𝐼 ) ) ≤ 4 ) → ( 𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆 ) ) ) |