Step |
Hyp |
Ref |
Expression |
1 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 · 𝐶 ) ∈ ℤ ) |
2 |
1
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 · 𝐶 ) ∈ ℤ ) |
3 |
|
zmulcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℤ ) |
4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 · 𝐶 ) ∈ ℤ ) |
5 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
6 |
|
congr |
⊢ ( ( ( 𝐴 · 𝐶 ) ∈ ℤ ∧ ( 𝐵 · 𝐶 ) ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
7 |
2 4 5 6
|
syl2an3an |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ) ) |
8 |
|
simpl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
9 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
10 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
11 |
9 10
|
jca |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) |
13 |
|
eqidd |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) |
14 |
8 12 13
|
3jca |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) ) |
15 |
14
|
ex |
⊢ ( 𝐶 ∈ ℤ → ( 𝑁 ∈ ℕ → ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) ) ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝑁 ∈ ℕ → ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) ) ) |
17 |
16
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) ) ) |
19 |
18
|
impcom |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) ) |
20 |
|
divgcdcoprmex |
⊢ ( ( 𝐶 ∈ ℤ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ∧ ( 𝐶 gcd 𝑁 ) = ( 𝐶 gcd 𝑁 ) ) → ∃ 𝑟 ∈ ℤ ∃ 𝑠 ∈ ℤ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) |
21 |
19 20
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ∃ 𝑟 ∈ ℤ ∃ 𝑠 ∈ ℤ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ∃ 𝑟 ∈ ℤ ∃ 𝑠 ∈ ℤ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) |
23 |
|
oveq2 |
⊢ ( 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) → ( 𝑘 · 𝑁 ) = ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) ) |
24 |
23
|
3ad2ant2 |
⊢ ( ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( 𝑘 · 𝑁 ) = ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) ) |
25 |
24
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( 𝑘 · 𝑁 ) = ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) ) |
26 |
|
oveq2 |
⊢ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) → ( 𝐴 · 𝐶 ) = ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) |
27 |
|
oveq2 |
⊢ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) → ( 𝐵 · 𝐶 ) = ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) |
28 |
26 27
|
oveq12d |
⊢ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) ) |
30 |
29
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) ) |
31 |
25 30
|
eqeq12d |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) ↔ ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) ) ) |
32 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℤ ) |
33 |
32
|
zcnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → 𝑘 ∈ ℂ ) |
34 |
33
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑘 ∈ ℂ ) |
35 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝐶 ∈ ℤ ) |
37 |
9
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝑁 ∈ ℤ ) |
39 |
36 38
|
gcdcld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℕ0 ) |
40 |
39
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℂ ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℂ ) |
42 |
|
simpr |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → 𝑠 ∈ ℤ ) |
43 |
42
|
zcnd |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → 𝑠 ∈ ℂ ) |
44 |
43
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑠 ∈ ℂ ) |
45 |
34 41 44
|
mul12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) = ( ( 𝐶 gcd 𝑁 ) · ( 𝑘 · 𝑠 ) ) ) |
46 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
47 |
46
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐴 ∈ ℂ ) |
48 |
47
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝐴 ∈ ℂ ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝐴 ∈ ℂ ) |
50 |
35
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
51 |
5
|
nnzd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
52 |
51
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝑁 ∈ ℤ ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
54 |
50 53
|
gcdcld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝐶 gcd 𝑁 ) ∈ ℕ0 ) |
55 |
54
|
nn0cnd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝐶 gcd 𝑁 ) ∈ ℂ ) |
56 |
55
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℂ ) |
57 |
|
simpl |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → 𝑟 ∈ ℤ ) |
58 |
57
|
zcnd |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → 𝑟 ∈ ℂ ) |
59 |
58
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑟 ∈ ℂ ) |
60 |
49 56 59
|
mul12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) = ( ( 𝐶 gcd 𝑁 ) · ( 𝐴 · 𝑟 ) ) ) |
61 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
62 |
61
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝐵 ∈ ℂ ) |
64 |
63
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝐵 ∈ ℂ ) |
65 |
36 52
|
gcdcld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℕ0 ) |
66 |
65
|
nn0cnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℂ ) |
67 |
66
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℂ ) |
68 |
64 67 59
|
mul12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) = ( ( 𝐶 gcd 𝑁 ) · ( 𝐵 · 𝑟 ) ) ) |
69 |
60 68
|
oveq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) = ( ( ( 𝐶 gcd 𝑁 ) · ( 𝐴 · 𝑟 ) ) − ( ( 𝐶 gcd 𝑁 ) · ( 𝐵 · 𝑟 ) ) ) ) |
70 |
45 69
|
eqeq12d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) ↔ ( ( 𝐶 gcd 𝑁 ) · ( 𝑘 · 𝑠 ) ) = ( ( ( 𝐶 gcd 𝑁 ) · ( 𝐴 · 𝑟 ) ) − ( ( 𝐶 gcd 𝑁 ) · ( 𝐵 · 𝑟 ) ) ) ) ) |
71 |
46
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝐴 ∈ ℤ ) |
72 |
71
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝐴 ∈ ℤ ) |
73 |
57
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑟 ∈ ℤ ) |
74 |
72 73
|
zmulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐴 · 𝑟 ) ∈ ℤ ) |
75 |
74
|
zcnd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐴 · 𝑟 ) ∈ ℂ ) |
76 |
61
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝐵 ∈ ℤ ) |
77 |
76
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝐵 ∈ ℤ ) |
78 |
77 73
|
zmulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐵 · 𝑟 ) ∈ ℤ ) |
79 |
78
|
zcnd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐵 · 𝑟 ) ∈ ℂ ) |
80 |
67 75 79
|
subdid |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐶 gcd 𝑁 ) · ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) = ( ( ( 𝐶 gcd 𝑁 ) · ( 𝐴 · 𝑟 ) ) − ( ( 𝐶 gcd 𝑁 ) · ( 𝐵 · 𝑟 ) ) ) ) |
81 |
80
|
eqcomd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( ( 𝐶 gcd 𝑁 ) · ( 𝐴 · 𝑟 ) ) − ( ( 𝐶 gcd 𝑁 ) · ( 𝐵 · 𝑟 ) ) ) = ( ( 𝐶 gcd 𝑁 ) · ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) ) |
82 |
81
|
eqeq2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( ( 𝐶 gcd 𝑁 ) · ( 𝑘 · 𝑠 ) ) = ( ( ( 𝐶 gcd 𝑁 ) · ( 𝐴 · 𝑟 ) ) − ( ( 𝐶 gcd 𝑁 ) · ( 𝐵 · 𝑟 ) ) ) ↔ ( ( 𝐶 gcd 𝑁 ) · ( 𝑘 · 𝑠 ) ) = ( ( 𝐶 gcd 𝑁 ) · ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) ) ) |
83 |
32
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑘 ∈ ℤ ) |
84 |
42
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑠 ∈ ℤ ) |
85 |
83 84
|
zmulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝑘 · 𝑠 ) ∈ ℤ ) |
86 |
85
|
zcnd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝑘 · 𝑠 ) ∈ ℂ ) |
87 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
88 |
87 57
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐴 ∈ ℤ ∧ 𝑟 ∈ ℤ ) ) |
89 |
|
zmulcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑟 ∈ ℤ ) → ( 𝐴 · 𝑟 ) ∈ ℤ ) |
90 |
88 89
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐴 · 𝑟 ) ∈ ℤ ) |
91 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
92 |
91 57
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐵 ∈ ℤ ∧ 𝑟 ∈ ℤ ) ) |
93 |
|
zmulcl |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝑟 ∈ ℤ ) → ( 𝐵 · 𝑟 ) ∈ ℤ ) |
94 |
92 93
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐵 · 𝑟 ) ∈ ℤ ) |
95 |
90 94
|
zsubcld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ∈ ℤ ) |
96 |
95
|
zcnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ∈ ℂ ) |
97 |
96
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ∈ ℂ ) ) |
98 |
97
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ∈ ℂ ) ) |
99 |
98
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ∈ ℂ ) ) |
100 |
99
|
imp |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ∈ ℂ ) |
101 |
10
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → 𝑁 ≠ 0 ) |
102 |
101
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝑁 ≠ 0 ) |
103 |
|
gcd2n0cl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( 𝐶 gcd 𝑁 ) ∈ ℕ ) |
104 |
36 52 102 103
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 gcd 𝑁 ) ∈ ℕ ) |
105 |
|
nnne0 |
⊢ ( ( 𝐶 gcd 𝑁 ) ∈ ℕ → ( 𝐶 gcd 𝑁 ) ≠ 0 ) |
106 |
104 105
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝐶 gcd 𝑁 ) ≠ 0 ) |
107 |
106
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐶 gcd 𝑁 ) ≠ 0 ) |
108 |
86 100 67 107
|
mulcand |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( ( 𝐶 gcd 𝑁 ) · ( 𝑘 · 𝑠 ) ) = ( ( 𝐶 gcd 𝑁 ) · ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) ↔ ( 𝑘 · 𝑠 ) = ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) ) |
109 |
70 82 108
|
3bitrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) ↔ ( 𝑘 · 𝑠 ) = ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) ) |
110 |
109
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) ↔ ( 𝑘 · 𝑠 ) = ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) ) |
111 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
112 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
113 |
111 112
|
anim12i |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
114 |
113
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
115 |
114
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ) |
116 |
115 58
|
anim12i |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑟 ∈ ℂ ) ) |
117 |
|
df-3an |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ ) ↔ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝑟 ∈ ℂ ) ) |
118 |
116 117
|
sylibr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ ) ) |
119 |
|
subdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝑟 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) · 𝑟 ) = ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) |
120 |
118 119
|
syl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐴 − 𝐵 ) · 𝑟 ) = ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ) |
121 |
120
|
eqcomd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) ) |
122 |
121
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) ) |
123 |
122
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) ↔ ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) ) ) |
124 |
5
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → 𝑁 ∈ ℂ ) |
125 |
124
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝑁 ∈ ℂ ) |
126 |
125
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑁 ∈ ℂ ) |
127 |
84
|
zcnd |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → 𝑠 ∈ ℂ ) |
128 |
66 106
|
jca |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝐶 gcd 𝑁 ) ∈ ℂ ∧ ( 𝐶 gcd 𝑁 ) ≠ 0 ) ) |
129 |
128
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐶 gcd 𝑁 ) ∈ ℂ ∧ ( 𝐶 gcd 𝑁 ) ≠ 0 ) ) |
130 |
|
divmul2 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑠 ∈ ℂ ∧ ( ( 𝐶 gcd 𝑁 ) ∈ ℂ ∧ ( 𝐶 gcd 𝑁 ) ≠ 0 ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ↔ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) ) |
131 |
126 127 129 130
|
syl3anc |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ↔ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) ) |
132 |
|
simpll |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ) |
133 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → 𝑟 ∈ ℤ ) |
134 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → 𝑁 ∈ ℕ ) |
135 |
134 36
|
jca |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ ) ) |
136 |
|
divgcdnnr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐶 ∈ ℤ ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) |
137 |
135 136
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) |
138 |
137
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) |
139 |
138
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) |
140 |
|
eleq1 |
⊢ ( 𝑠 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) → ( 𝑠 ∈ ℕ ↔ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) ) |
141 |
140
|
eqcoms |
⊢ ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 → ( 𝑠 ∈ ℕ ↔ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) ) |
142 |
141
|
adantl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( 𝑠 ∈ ℕ ↔ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ∈ ℕ ) ) |
143 |
139 142
|
mpbird |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → 𝑠 ∈ ℕ ) |
144 |
133 143
|
jca |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) |
145 |
132 144
|
jca |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) |
146 |
|
simpr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) |
147 |
145 146
|
jca |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) ) |
148 |
|
nnz |
⊢ ( 𝑠 ∈ ℕ → 𝑠 ∈ ℤ ) |
149 |
148
|
adantl |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 𝑠 ∈ ℤ ) |
150 |
149
|
anim2i |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( 𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) |
151 |
150
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) |
152 |
|
dvdsmul2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → 𝑠 ∥ ( 𝑘 · 𝑠 ) ) |
153 |
151 152
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → 𝑠 ∥ ( 𝑘 · 𝑠 ) ) |
154 |
|
breq2 |
⊢ ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝑠 ∥ ( 𝑘 · 𝑠 ) ↔ 𝑠 ∥ ( ( 𝐴 − 𝐵 ) · 𝑟 ) ) ) |
155 |
|
zsubcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℤ ) |
156 |
155
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
157 |
156
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝐴 − 𝐵 ) ∈ ℂ ) |
158 |
|
zcn |
⊢ ( 𝑟 ∈ ℤ → 𝑟 ∈ ℂ ) |
159 |
158
|
adantr |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 𝑟 ∈ ℂ ) |
160 |
159
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → 𝑟 ∈ ℂ ) |
161 |
160
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → 𝑟 ∈ ℂ ) |
162 |
157 161
|
mulcomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝐴 − 𝐵 ) · 𝑟 ) = ( 𝑟 · ( 𝐴 − 𝐵 ) ) ) |
163 |
162
|
breq2d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑠 ∥ ( ( 𝐴 − 𝐵 ) · 𝑟 ) ↔ 𝑠 ∥ ( 𝑟 · ( 𝐴 − 𝐵 ) ) ) ) |
164 |
148
|
anim2i |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) |
165 |
|
gcdcom |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) → ( 𝑟 gcd 𝑠 ) = ( 𝑠 gcd 𝑟 ) ) |
166 |
164 165
|
syl |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( 𝑟 gcd 𝑠 ) = ( 𝑠 gcd 𝑟 ) ) |
167 |
166
|
eqeq1d |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → ( ( 𝑟 gcd 𝑠 ) = 1 ↔ ( 𝑠 gcd 𝑟 ) = 1 ) ) |
168 |
167
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 ↔ ( 𝑠 gcd 𝑟 ) = 1 ) ) |
169 |
168
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 ↔ ( 𝑠 gcd 𝑟 ) = 1 ) ) |
170 |
164
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) |
171 |
170
|
ancomd |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ) ) |
172 |
155 171
|
anim12i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝐴 − 𝐵 ) ∈ ℤ ∧ ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ) ) ) |
173 |
172
|
ancomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ) ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
174 |
|
df-3an |
⊢ ( ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ↔ ( ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ) ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
175 |
173 174
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) ) |
176 |
|
coprmdvds |
⊢ ( ( 𝑠 ∈ ℤ ∧ 𝑟 ∈ ℤ ∧ ( 𝐴 − 𝐵 ) ∈ ℤ ) → ( ( 𝑠 ∥ ( 𝑟 · ( 𝐴 − 𝐵 ) ) ∧ ( 𝑠 gcd 𝑟 ) = 1 ) → 𝑠 ∥ ( 𝐴 − 𝐵 ) ) ) |
177 |
175 176
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝑠 ∥ ( 𝑟 · ( 𝐴 − 𝐵 ) ) ∧ ( 𝑠 gcd 𝑟 ) = 1 ) → 𝑠 ∥ ( 𝐴 − 𝐵 ) ) ) |
178 |
|
simpr |
⊢ ( ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) → 𝑠 ∈ ℕ ) |
179 |
178
|
adantl |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → 𝑠 ∈ ℕ ) |
180 |
179
|
anim2i |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑠 ∈ ℕ ) ) |
181 |
180
|
ancomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑠 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
182 |
|
3anass |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( 𝑠 ∈ ℕ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) ) |
183 |
181 182
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) |
184 |
|
moddvds |
⊢ ( ( 𝑠 ∈ ℕ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ↔ 𝑠 ∥ ( 𝐴 − 𝐵 ) ) ) |
185 |
183 184
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ↔ 𝑠 ∥ ( 𝐴 − 𝐵 ) ) ) |
186 |
177 185
|
sylibrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝑠 ∥ ( 𝑟 · ( 𝐴 − 𝐵 ) ) ∧ ( 𝑠 gcd 𝑟 ) = 1 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) |
187 |
186
|
expcomd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝑠 gcd 𝑟 ) = 1 → ( 𝑠 ∥ ( 𝑟 · ( 𝐴 − 𝐵 ) ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
188 |
169 187
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( 𝑠 ∥ ( 𝑟 · ( 𝐴 − 𝐵 ) ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
189 |
188
|
com23 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑠 ∥ ( 𝑟 · ( 𝐴 − 𝐵 ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
190 |
163 189
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑠 ∥ ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
191 |
190
|
com3l |
⊢ ( 𝑠 ∥ ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
192 |
154 191
|
syl6bi |
⊢ ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝑠 ∥ ( 𝑘 · 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) ) |
193 |
192
|
com14 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( 𝑠 ∥ ( 𝑘 · 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) ) |
194 |
153 193
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
195 |
194
|
ex |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) ) |
196 |
195
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) ) |
197 |
196
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝑘 ∈ ℤ ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) ) |
198 |
197
|
impl |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
199 |
198
|
adantr |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
200 |
199
|
imp |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) |
201 |
|
eqtr2 |
⊢ ( ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑀 ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → 𝑀 = 𝑠 ) |
202 |
|
oveq2 |
⊢ ( 𝑀 = 𝑠 → ( 𝐴 mod 𝑀 ) = ( 𝐴 mod 𝑠 ) ) |
203 |
|
oveq2 |
⊢ ( 𝑀 = 𝑠 → ( 𝐵 mod 𝑀 ) = ( 𝐵 mod 𝑠 ) ) |
204 |
202 203
|
eqeq12d |
⊢ ( 𝑀 = 𝑠 → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) |
205 |
201 204
|
syl |
⊢ ( ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑀 ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) |
206 |
205
|
ex |
⊢ ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑀 → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
207 |
206
|
eqcoms |
⊢ ( 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
208 |
207
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
209 |
208
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
210 |
209
|
ad2antrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) ) |
211 |
210
|
imp |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) |
212 |
211
|
adantr |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ↔ ( 𝐴 mod 𝑠 ) = ( 𝐵 mod 𝑠 ) ) ) |
213 |
200 212
|
sylibrd |
⊢ ( ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |
214 |
213
|
ex |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℕ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) |
215 |
147 214
|
syl |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) |
216 |
215
|
ex |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) = 𝑠 → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) ) |
217 |
131 216
|
sylbird |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) ) |
218 |
217
|
com3l |
⊢ ( 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) ) |
219 |
218
|
a1i |
⊢ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) → ( 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) → ( ( 𝑟 gcd 𝑠 ) = 1 → ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) ) ) |
220 |
219
|
3imp |
⊢ ( ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) |
221 |
220
|
impcom |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 − 𝐵 ) · 𝑟 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |
222 |
123 221
|
sylbid |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝑘 · 𝑠 ) = ( ( 𝐴 · 𝑟 ) − ( 𝐵 · 𝑟 ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |
223 |
110 222
|
sylbid |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝑘 · ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ) = ( ( 𝐴 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) − ( 𝐵 · ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |
224 |
31 223
|
sylbid |
⊢ ( ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) ∧ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) ) → ( ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |
225 |
224
|
ex |
⊢ ( ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) ∧ ( 𝑟 ∈ ℤ ∧ 𝑠 ∈ ℤ ) ) → ( ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) |
226 |
225
|
rexlimdvva |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ∃ 𝑟 ∈ ℤ ∃ 𝑠 ∈ ℤ ( 𝐶 = ( ( 𝐶 gcd 𝑁 ) · 𝑟 ) ∧ 𝑁 = ( ( 𝐶 gcd 𝑁 ) · 𝑠 ) ∧ ( 𝑟 gcd 𝑠 ) = 1 ) → ( ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) ) |
227 |
22 226
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |
228 |
227
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑁 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐵 · 𝐶 ) ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |
229 |
7 228
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 = ( 𝑁 / ( 𝐶 gcd 𝑁 ) ) ) ) → ( ( ( 𝐴 · 𝐶 ) mod 𝑁 ) = ( ( 𝐵 · 𝐶 ) mod 𝑁 ) → ( 𝐴 mod 𝑀 ) = ( 𝐵 mod 𝑀 ) ) ) |