Step |
Hyp |
Ref |
Expression |
1 |
|
cyc3genpm.t |
⊢ 𝐶 = ( 𝑀 “ ( ◡ ♯ “ { 3 } ) ) |
2 |
|
cyc3genpm.a |
⊢ 𝐴 = ( pmEven ‘ 𝐷 ) |
3 |
|
cyc3genpm.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) |
4 |
|
cyc3genpm.n |
⊢ 𝑁 = ( ♯ ‘ 𝐷 ) |
5 |
|
cyc3genpm.m |
⊢ 𝑀 = ( toCyc ‘ 𝐷 ) |
6 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) |
7 |
|
lencl |
⊢ ( 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) → ( ♯ ‘ 𝑣 ) ∈ ℕ0 ) |
8 |
7
|
ad2antlr |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( ♯ ‘ 𝑣 ) ∈ ℕ0 ) |
9 |
8
|
nn0zd |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( ♯ ‘ 𝑣 ) ∈ ℤ ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → 𝑄 = ( 𝑆 Σg 𝑣 ) ) |
11 |
10
|
fveq2d |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑄 ) = ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑆 Σg 𝑣 ) ) ) |
12 |
|
simplll |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → 𝐷 ∈ Fin ) |
13 |
|
simpllr |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → 𝑄 ∈ 𝐴 ) |
14 |
13 2
|
eleqtrdi |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → 𝑄 ∈ ( pmEven ‘ 𝐷 ) ) |
15 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
16 |
|
eqid |
⊢ ( pmSgn ‘ 𝐷 ) = ( pmSgn ‘ 𝐷 ) |
17 |
3 15 16
|
psgnevpm |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ ( pmEven ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑄 ) = 1 ) |
18 |
12 14 17
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ 𝑄 ) = 1 ) |
19 |
|
eqid |
⊢ ran ( pmTrsp ‘ 𝐷 ) = ran ( pmTrsp ‘ 𝐷 ) |
20 |
3 19 16
|
psgnvalii |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑆 Σg 𝑣 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑣 ) ) ) |
21 |
12 6 20
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑆 Σg 𝑣 ) ) = ( - 1 ↑ ( ♯ ‘ 𝑣 ) ) ) |
22 |
11 18 21
|
3eqtr3rd |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( - 1 ↑ ( ♯ ‘ 𝑣 ) ) = 1 ) |
23 |
|
m1exp1 |
⊢ ( ( ♯ ‘ 𝑣 ) ∈ ℤ → ( ( - 1 ↑ ( ♯ ‘ 𝑣 ) ) = 1 ↔ 2 ∥ ( ♯ ‘ 𝑣 ) ) ) |
24 |
23
|
biimpa |
⊢ ( ( ( ♯ ‘ 𝑣 ) ∈ ℤ ∧ ( - 1 ↑ ( ♯ ‘ 𝑣 ) ) = 1 ) → 2 ∥ ( ♯ ‘ 𝑣 ) ) |
25 |
9 22 24
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → 2 ∥ ( ♯ ‘ 𝑣 ) ) |
26 |
|
oveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg ∅ ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg ∅ ) = ( 𝑆 Σg 𝑤 ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑥 = ∅ → ( ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ∅ ) = ( 𝑆 Σg 𝑤 ) ) ) |
29 |
28
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ) ↔ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ∅ ) = ( 𝑆 Σg 𝑤 ) ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑥 = 𝑢 → ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑢 ) ) |
31 |
30
|
eqeq1d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) |
32 |
31
|
rexbidv |
⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) |
33 |
32
|
imbi2d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ) ↔ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) ) |
34 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) → ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) ) |
35 |
34
|
eqeq1d |
⊢ ( 𝑥 = ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) → ( ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑥 = ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) → ( ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) ) |
37 |
36
|
imbi2d |
⊢ ( 𝑥 = ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) → ( ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ) ↔ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) ) ) |
38 |
|
oveq2 |
⊢ ( 𝑥 = 𝑣 → ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑣 ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) ) |
40 |
39
|
rexbidv |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ↔ ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑥 = 𝑣 → ( ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑥 ) = ( 𝑆 Σg 𝑤 ) ) ↔ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) ) ) |
42 |
|
wrd0 |
⊢ ∅ ∈ Word 𝐶 |
43 |
42
|
a1i |
⊢ ( 𝐷 ∈ Fin → ∅ ∈ Word 𝐶 ) |
44 |
|
simpr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑤 = ∅ ) → 𝑤 = ∅ ) |
45 |
44
|
oveq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑤 = ∅ ) → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ∅ ) ) |
46 |
45
|
eqeq2d |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑤 = ∅ ) → ( ( 𝑆 Σg ∅ ) = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg ∅ ) = ( 𝑆 Σg ∅ ) ) ) |
47 |
|
eqidd |
⊢ ( 𝐷 ∈ Fin → ( 𝑆 Σg ∅ ) = ( 𝑆 Σg ∅ ) ) |
48 |
43 46 47
|
rspcedvd |
⊢ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ∅ ) = ( 𝑆 Σg 𝑤 ) ) |
49 |
|
ccatcl |
⊢ ( ( 𝑣 ∈ Word 𝐶 ∧ 𝑐 ∈ Word 𝐶 ) → ( 𝑣 ++ 𝑐 ) ∈ Word 𝐶 ) |
50 |
49
|
ad5ant24 |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑣 ++ 𝑐 ) ∈ Word 𝐶 ) |
51 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑣 ++ 𝑐 ) → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ( 𝑣 ++ 𝑐 ) ) ) |
52 |
51
|
eqeq2d |
⊢ ( 𝑤 = ( 𝑣 ++ 𝑐 ) → ( ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg ( 𝑣 ++ 𝑐 ) ) ) ) |
53 |
52
|
adantl |
⊢ ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) ∧ 𝑤 = ( 𝑣 ++ 𝑐 ) ) → ( ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg ( 𝑣 ++ 𝑐 ) ) ) ) |
54 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) |
55 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) → 𝐷 ∈ Fin ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝐷 ∈ Fin ) |
57 |
3
|
symggrp |
⊢ ( 𝐷 ∈ Fin → 𝑆 ∈ Grp ) |
58 |
|
grpmnd |
⊢ ( 𝑆 ∈ Grp → 𝑆 ∈ Mnd ) |
59 |
56 57 58
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑆 ∈ Mnd ) |
60 |
19 3 15
|
symgtrf |
⊢ ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) |
61 |
60
|
a1i |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) ) |
62 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) → 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
63 |
62
|
ad2antrr |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
64 |
61 63
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑖 ∈ ( Base ‘ 𝑆 ) ) |
65 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
66 |
61 65
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑗 ∈ ( Base ‘ 𝑆 ) ) |
67 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
68 |
15 67
|
gsumws2 |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑖 ∈ ( Base ‘ 𝑆 ) ∧ 𝑗 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑆 Σg 〈“ 𝑖 𝑗 ”〉 ) = ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) ) |
69 |
59 64 66 68
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑆 Σg 〈“ 𝑖 𝑗 ”〉 ) = ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) ) |
70 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) |
71 |
69 70
|
eqtrd |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑆 Σg 〈“ 𝑖 𝑗 ”〉 ) = ( 𝑆 Σg 𝑐 ) ) |
72 |
54 71
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( ( 𝑆 Σg 𝑢 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 〈“ 𝑖 𝑗 ”〉 ) ) = ( ( 𝑆 Σg 𝑣 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑐 ) ) ) |
73 |
|
sswrd |
⊢ ( ran ( pmTrsp ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) → Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 ) ) |
74 |
61 73
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → Word ran ( pmTrsp ‘ 𝐷 ) ⊆ Word ( Base ‘ 𝑆 ) ) |
75 |
|
simp-7l |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) |
76 |
74 75
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑢 ∈ Word ( Base ‘ 𝑆 ) ) |
77 |
64 66
|
s2cld |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 〈“ 𝑖 𝑗 ”〉 ∈ Word ( Base ‘ 𝑆 ) ) |
78 |
15 67
|
gsumccat |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑢 ∈ Word ( Base ‘ 𝑆 ) ∧ 〈“ 𝑖 𝑗 ”〉 ∈ Word ( Base ‘ 𝑆 ) ) → ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( ( 𝑆 Σg 𝑢 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 〈“ 𝑖 𝑗 ”〉 ) ) ) |
79 |
59 76 77 78
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( ( 𝑆 Σg 𝑢 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 〈“ 𝑖 𝑗 ”〉 ) ) ) |
80 |
5
|
imaeq1i |
⊢ ( 𝑀 “ ( ◡ ♯ “ { 3 } ) ) = ( ( toCyc ‘ 𝐷 ) “ ( ◡ ♯ “ { 3 } ) ) |
81 |
1 80
|
eqtri |
⊢ 𝐶 = ( ( toCyc ‘ 𝐷 ) “ ( ◡ ♯ “ { 3 } ) ) |
82 |
81 2
|
cyc3evpm |
⊢ ( 𝐷 ∈ Fin → 𝐶 ⊆ 𝐴 ) |
83 |
3 15
|
evpmss |
⊢ ( pmEven ‘ 𝐷 ) ⊆ ( Base ‘ 𝑆 ) |
84 |
2 83
|
eqsstri |
⊢ 𝐴 ⊆ ( Base ‘ 𝑆 ) |
85 |
82 84
|
sstrdi |
⊢ ( 𝐷 ∈ Fin → 𝐶 ⊆ ( Base ‘ 𝑆 ) ) |
86 |
|
sswrd |
⊢ ( 𝐶 ⊆ ( Base ‘ 𝑆 ) → Word 𝐶 ⊆ Word ( Base ‘ 𝑆 ) ) |
87 |
56 85 86
|
3syl |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → Word 𝐶 ⊆ Word ( Base ‘ 𝑆 ) ) |
88 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑣 ∈ Word 𝐶 ) |
89 |
87 88
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑣 ∈ Word ( Base ‘ 𝑆 ) ) |
90 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑐 ∈ Word 𝐶 ) |
91 |
87 90
|
sseldd |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → 𝑐 ∈ Word ( Base ‘ 𝑆 ) ) |
92 |
15 67
|
gsumccat |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑣 ∈ Word ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ Word ( Base ‘ 𝑆 ) ) → ( 𝑆 Σg ( 𝑣 ++ 𝑐 ) ) = ( ( 𝑆 Σg 𝑣 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑐 ) ) ) |
93 |
59 89 91 92
|
syl3anc |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑆 Σg ( 𝑣 ++ 𝑐 ) ) = ( ( 𝑆 Σg 𝑣 ) ( +g ‘ 𝑆 ) ( 𝑆 Σg 𝑐 ) ) ) |
94 |
72 79 93
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg ( 𝑣 ++ 𝑐 ) ) ) |
95 |
50 53 94
|
rspcedvd |
⊢ ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑐 ∈ Word 𝐶 ) ∧ ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) |
96 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝑒 ∈ 𝐷 ) |
97 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝑓 ∈ 𝐷 ) |
98 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝑔 ∈ 𝐷 ) |
99 |
|
simplr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → ℎ ∈ 𝐷 ) |
100 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) |
101 |
100
|
simprd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) |
102 |
|
simprr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) |
103 |
55
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝐷 ∈ Fin ) |
104 |
100
|
simpld |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝑒 ≠ 𝑓 ) |
105 |
|
simprl |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → 𝑔 ≠ ℎ ) |
106 |
1 2 3 4 5 67 96 97 98 99 101 102 103 104 105
|
cyc3genpmlem |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) ∧ 𝑔 ∈ 𝐷 ) ∧ ℎ ∈ 𝐷 ) ∧ ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) → ∃ 𝑐 ∈ Word 𝐶 ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) |
107 |
|
simp-6r |
⊢ ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) → 𝐷 ∈ Fin ) |
108 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) → 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) |
109 |
19 5
|
trsp2cyc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) → ∃ 𝑔 ∈ 𝐷 ∃ ℎ ∈ 𝐷 ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) |
110 |
107 108 109
|
syl2anc |
⊢ ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) → ∃ 𝑔 ∈ 𝐷 ∃ ℎ ∈ 𝐷 ( 𝑔 ≠ ℎ ∧ 𝑗 = ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) |
111 |
106 110
|
r19.29vva |
⊢ ( ( ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) ∧ 𝑒 ∈ 𝐷 ) ∧ 𝑓 ∈ 𝐷 ) ∧ ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) → ∃ 𝑐 ∈ Word 𝐶 ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) |
112 |
19 5
|
trsp2cyc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) → ∃ 𝑒 ∈ 𝐷 ∃ 𝑓 ∈ 𝐷 ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) |
113 |
55 62 112
|
syl2anc |
⊢ ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) → ∃ 𝑒 ∈ 𝐷 ∃ 𝑓 ∈ 𝐷 ( 𝑒 ≠ 𝑓 ∧ 𝑖 = ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) |
114 |
111 113
|
r19.29vva |
⊢ ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) → ∃ 𝑐 ∈ Word 𝐶 ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) = ( 𝑆 Σg 𝑐 ) ) |
115 |
95 114
|
r19.29a |
⊢ ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) |
116 |
115
|
adantl3r |
⊢ ( ( ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) ∧ 𝐷 ∈ Fin ) ∧ 𝑣 ∈ Word 𝐶 ) ∧ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) |
117 |
|
simpr |
⊢ ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) ∧ 𝐷 ∈ Fin ) → 𝐷 ∈ Fin ) |
118 |
|
simplr |
⊢ ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) ∧ 𝐷 ∈ Fin ) → ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) |
119 |
117 118
|
mpd |
⊢ ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) ∧ 𝐷 ∈ Fin ) → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) |
120 |
|
oveq2 |
⊢ ( 𝑣 = 𝑤 → ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) |
121 |
120
|
eqeq2d |
⊢ ( 𝑣 = 𝑤 → ( ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ↔ ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) |
122 |
121
|
cbvrexvw |
⊢ ( ∃ 𝑣 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ↔ ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) |
123 |
119 122
|
sylibr |
⊢ ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) ∧ 𝐷 ∈ Fin ) → ∃ 𝑣 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑣 ) ) |
124 |
116 123
|
r19.29a |
⊢ ( ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) ∧ 𝐷 ∈ Fin ) → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) |
125 |
124
|
ex |
⊢ ( ( ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) ∧ ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) ) → ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) ) |
126 |
125
|
ex3 |
⊢ ( ( 𝑢 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑖 ∈ ran ( pmTrsp ‘ 𝐷 ) ∧ 𝑗 ∈ ran ( pmTrsp ‘ 𝐷 ) ) → ( ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑢 ) = ( 𝑆 Σg 𝑤 ) ) → ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg ( 𝑢 ++ 〈“ 𝑖 𝑗 ”〉 ) ) = ( 𝑆 Σg 𝑤 ) ) ) ) |
127 |
29 33 37 41 48 126
|
wrdt2ind |
⊢ ( ( 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 2 ∥ ( ♯ ‘ 𝑣 ) ) → ( 𝐷 ∈ Fin → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) ) |
128 |
127
|
imp |
⊢ ( ( ( 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ∧ 2 ∥ ( ♯ ‘ 𝑣 ) ) ∧ 𝐷 ∈ Fin ) → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) |
129 |
6 25 12 128
|
syl21anc |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) |
130 |
10
|
eqeq1d |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( 𝑄 = ( 𝑆 Σg 𝑤 ) ↔ ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) ) |
131 |
130
|
rexbidv |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ( ∃ 𝑤 ∈ Word 𝐶 𝑄 = ( 𝑆 Σg 𝑤 ) ↔ ∃ 𝑤 ∈ Word 𝐶 ( 𝑆 Σg 𝑣 ) = ( 𝑆 Σg 𝑤 ) ) ) |
132 |
129 131
|
mpbird |
⊢ ( ( ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) ) ∧ 𝑄 = ( 𝑆 Σg 𝑣 ) ) → ∃ 𝑤 ∈ Word 𝐶 𝑄 = ( 𝑆 Σg 𝑤 ) ) |
133 |
84
|
sseli |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝑆 ) ) |
134 |
3 15 19
|
psgnfitr |
⊢ ( 𝐷 ∈ Fin → ( 𝑄 ∈ ( Base ‘ 𝑆 ) ↔ ∃ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) 𝑄 = ( 𝑆 Σg 𝑣 ) ) ) |
135 |
134
|
biimpa |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ ( Base ‘ 𝑆 ) ) → ∃ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) 𝑄 = ( 𝑆 Σg 𝑣 ) ) |
136 |
133 135
|
sylan2 |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑣 ∈ Word ran ( pmTrsp ‘ 𝐷 ) 𝑄 = ( 𝑆 Σg 𝑣 ) ) |
137 |
132 136
|
r19.29a |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑄 ∈ 𝐴 ) → ∃ 𝑤 ∈ Word 𝐶 𝑄 = ( 𝑆 Σg 𝑤 ) ) |
138 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶 ) ∧ 𝑄 = ( 𝑆 Σg 𝑤 ) ) → 𝑄 = ( 𝑆 Σg 𝑤 ) ) |
139 |
3
|
altgnsg |
⊢ ( 𝐷 ∈ Fin → ( pmEven ‘ 𝐷 ) ∈ ( NrmSGrp ‘ 𝑆 ) ) |
140 |
2 139
|
eqeltrid |
⊢ ( 𝐷 ∈ Fin → 𝐴 ∈ ( NrmSGrp ‘ 𝑆 ) ) |
141 |
|
nsgsubg |
⊢ ( 𝐴 ∈ ( NrmSGrp ‘ 𝑆 ) → 𝐴 ∈ ( SubGrp ‘ 𝑆 ) ) |
142 |
|
subgsubm |
⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝑆 ) → 𝐴 ∈ ( SubMnd ‘ 𝑆 ) ) |
143 |
140 141 142
|
3syl |
⊢ ( 𝐷 ∈ Fin → 𝐴 ∈ ( SubMnd ‘ 𝑆 ) ) |
144 |
143
|
adantr |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶 ) → 𝐴 ∈ ( SubMnd ‘ 𝑆 ) ) |
145 |
|
sswrd |
⊢ ( 𝐶 ⊆ 𝐴 → Word 𝐶 ⊆ Word 𝐴 ) |
146 |
82 145
|
syl |
⊢ ( 𝐷 ∈ Fin → Word 𝐶 ⊆ Word 𝐴 ) |
147 |
146
|
sselda |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶 ) → 𝑤 ∈ Word 𝐴 ) |
148 |
|
gsumwsubmcl |
⊢ ( ( 𝐴 ∈ ( SubMnd ‘ 𝑆 ) ∧ 𝑤 ∈ Word 𝐴 ) → ( 𝑆 Σg 𝑤 ) ∈ 𝐴 ) |
149 |
144 147 148
|
syl2anc |
⊢ ( ( 𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶 ) → ( 𝑆 Σg 𝑤 ) ∈ 𝐴 ) |
150 |
149
|
adantr |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶 ) ∧ 𝑄 = ( 𝑆 Σg 𝑤 ) ) → ( 𝑆 Σg 𝑤 ) ∈ 𝐴 ) |
151 |
138 150
|
eqeltrd |
⊢ ( ( ( 𝐷 ∈ Fin ∧ 𝑤 ∈ Word 𝐶 ) ∧ 𝑄 = ( 𝑆 Σg 𝑤 ) ) → 𝑄 ∈ 𝐴 ) |
152 |
151
|
r19.29an |
⊢ ( ( 𝐷 ∈ Fin ∧ ∃ 𝑤 ∈ Word 𝐶 𝑄 = ( 𝑆 Σg 𝑤 ) ) → 𝑄 ∈ 𝐴 ) |
153 |
137 152
|
impbida |
⊢ ( 𝐷 ∈ Fin → ( 𝑄 ∈ 𝐴 ↔ ∃ 𝑤 ∈ Word 𝐶 𝑄 = ( 𝑆 Σg 𝑤 ) ) ) |