| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cyc3genpm.t | ⊢ 𝐶  =  ( 𝑀  “  ( ◡ ♯  “  { 3 } ) ) | 
						
							| 2 |  | cyc3genpm.a | ⊢ 𝐴  =  ( pmEven ‘ 𝐷 ) | 
						
							| 3 |  | cyc3genpm.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝐷 ) | 
						
							| 4 |  | cyc3genpm.n | ⊢ 𝑁  =  ( ♯ ‘ 𝐷 ) | 
						
							| 5 |  | cyc3genpm.m | ⊢ 𝑀  =  ( toCyc ‘ 𝐷 ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 7 |  | lencl | ⊢ ( 𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  →  ( ♯ ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 8 | 7 | ad2antlr | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( ♯ ‘ 𝑣 )  ∈  ℕ0 ) | 
						
							| 9 | 8 | nn0zd | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( ♯ ‘ 𝑣 )  ∈  ℤ ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  𝑄  =  ( 𝑆  Σg  𝑣 ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑄 )  =  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑆  Σg  𝑣 ) ) ) | 
						
							| 12 |  | simplll | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  𝐷  ∈  Fin ) | 
						
							| 13 |  | simpllr | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 14 | 13 2 | eleqtrdi | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  𝑄  ∈  ( pmEven ‘ 𝐷 ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 16 |  | eqid | ⊢ ( pmSgn ‘ 𝐷 )  =  ( pmSgn ‘ 𝐷 ) | 
						
							| 17 | 3 15 16 | psgnevpm | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  ( pmEven ‘ 𝐷 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑄 )  =  1 ) | 
						
							| 18 | 12 14 17 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ 𝑄 )  =  1 ) | 
						
							| 19 |  | eqid | ⊢ ran  ( pmTrsp ‘ 𝐷 )  =  ran  ( pmTrsp ‘ 𝐷 ) | 
						
							| 20 | 3 19 16 | psgnvalii | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑆  Σg  𝑣 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑣 ) ) ) | 
						
							| 21 | 12 6 20 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( ( pmSgn ‘ 𝐷 ) ‘ ( 𝑆  Σg  𝑣 ) )  =  ( - 1 ↑ ( ♯ ‘ 𝑣 ) ) ) | 
						
							| 22 | 11 18 21 | 3eqtr3rd | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( - 1 ↑ ( ♯ ‘ 𝑣 ) )  =  1 ) | 
						
							| 23 |  | m1exp1 | ⊢ ( ( ♯ ‘ 𝑣 )  ∈  ℤ  →  ( ( - 1 ↑ ( ♯ ‘ 𝑣 ) )  =  1  ↔  2  ∥  ( ♯ ‘ 𝑣 ) ) ) | 
						
							| 24 | 23 | biimpa | ⊢ ( ( ( ♯ ‘ 𝑣 )  ∈  ℤ  ∧  ( - 1 ↑ ( ♯ ‘ 𝑣 ) )  =  1 )  →  2  ∥  ( ♯ ‘ 𝑣 ) ) | 
						
							| 25 | 9 22 24 | syl2anc | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  2  ∥  ( ♯ ‘ 𝑣 ) ) | 
						
							| 26 |  | oveq2 | ⊢ ( 𝑥  =  ∅  →  ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  ∅ ) ) | 
						
							| 27 | 26 | eqeq1d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  ∅ )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 28 | 27 | rexbidv | ⊢ ( 𝑥  =  ∅  →  ( ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ∅ )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 29 | 28 | imbi2d | ⊢ ( 𝑥  =  ∅  →  ( ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 ) )  ↔  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ∅ )  =  ( 𝑆  Σg  𝑤 ) ) ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑢 ) ) | 
						
							| 31 | 30 | eqeq1d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( 𝑥  =  𝑢  →  ( ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 33 | 32 | imbi2d | ⊢ ( 𝑥  =  𝑢  →  ( ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 ) )  ↔  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 )  →  ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) ) ) | 
						
							| 35 | 34 | eqeq1d | ⊢ ( 𝑥  =  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 )  →  ( ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 36 | 35 | rexbidv | ⊢ ( 𝑥  =  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 )  →  ( ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 37 | 36 | imbi2d | ⊢ ( 𝑥  =  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 )  →  ( ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 ) )  ↔  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑥  =  𝑣  →  ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑣 ) ) | 
						
							| 39 | 38 | eqeq1d | ⊢ ( 𝑥  =  𝑣  →  ( ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 40 | 39 | rexbidv | ⊢ ( 𝑥  =  𝑣  →  ( ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 )  ↔  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( 𝑥  =  𝑣  →  ( ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑥 )  =  ( 𝑆  Σg  𝑤 ) )  ↔  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) ) ) | 
						
							| 42 |  | wrd0 | ⊢ ∅  ∈  Word  𝐶 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝐷  ∈  Fin  →  ∅  ∈  Word  𝐶 ) | 
						
							| 44 |  | simpr | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑤  =  ∅ )  →  𝑤  =  ∅ ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑤  =  ∅ )  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  ∅ ) ) | 
						
							| 46 | 45 | eqeq2d | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑤  =  ∅ )  →  ( ( 𝑆  Σg  ∅ )  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  ∅ )  =  ( 𝑆  Σg  ∅ ) ) ) | 
						
							| 47 |  | eqidd | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑆  Σg  ∅ )  =  ( 𝑆  Σg  ∅ ) ) | 
						
							| 48 | 43 46 47 | rspcedvd | ⊢ ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ∅ )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 49 |  | ccatcl | ⊢ ( ( 𝑣  ∈  Word  𝐶  ∧  𝑐  ∈  Word  𝐶 )  →  ( 𝑣  ++  𝑐 )  ∈  Word  𝐶 ) | 
						
							| 50 | 49 | ad5ant24 | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑣  ++  𝑐 )  ∈  Word  𝐶 ) | 
						
							| 51 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝑣  ++  𝑐 )  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  ( 𝑣  ++  𝑐 ) ) ) | 
						
							| 52 | 51 | eqeq2d | ⊢ ( 𝑤  =  ( 𝑣  ++  𝑐 )  →  ( ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  ( 𝑣  ++  𝑐 ) ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  ∧  𝑤  =  ( 𝑣  ++  𝑐 ) )  →  ( ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  ( 𝑣  ++  𝑐 ) ) ) ) | 
						
							| 54 |  | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) ) | 
						
							| 55 |  | simpllr | ⊢ ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  →  𝐷  ∈  Fin ) | 
						
							| 56 | 55 | ad2antrr | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝐷  ∈  Fin ) | 
						
							| 57 | 3 | symggrp | ⊢ ( 𝐷  ∈  Fin  →  𝑆  ∈  Grp ) | 
						
							| 58 |  | grpmnd | ⊢ ( 𝑆  ∈  Grp  →  𝑆  ∈  Mnd ) | 
						
							| 59 | 56 57 58 | 3syl | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑆  ∈  Mnd ) | 
						
							| 60 | 19 3 15 | symgtrf | ⊢ ran  ( pmTrsp ‘ 𝐷 )  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 61 | 60 | a1i | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ran  ( pmTrsp ‘ 𝐷 )  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 62 |  | simp-5r | ⊢ ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  →  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 63 | 62 | ad2antrr | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 64 | 61 63 | sseldd | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑖  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 65 |  | simp-6r | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 66 | 61 65 | sseldd | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑗  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 67 |  | eqid | ⊢ ( +g ‘ 𝑆 )  =  ( +g ‘ 𝑆 ) | 
						
							| 68 | 15 67 | gsumws2 | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑖  ∈  ( Base ‘ 𝑆 )  ∧  𝑗  ∈  ( Base ‘ 𝑆 ) )  →  ( 𝑆  Σg  〈“ 𝑖 𝑗 ”〉 )  =  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) ) | 
						
							| 69 | 59 64 66 68 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑆  Σg  〈“ 𝑖 𝑗 ”〉 )  =  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 ) ) | 
						
							| 70 |  | simpr | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) ) | 
						
							| 71 | 69 70 | eqtrd | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑆  Σg  〈“ 𝑖 𝑗 ”〉 )  =  ( 𝑆  Σg  𝑐 ) ) | 
						
							| 72 | 54 71 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( ( 𝑆  Σg  𝑢 ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  〈“ 𝑖 𝑗 ”〉 ) )  =  ( ( 𝑆  Σg  𝑣 ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  𝑐 ) ) ) | 
						
							| 73 |  | sswrd | ⊢ ( ran  ( pmTrsp ‘ 𝐷 )  ⊆  ( Base ‘ 𝑆 )  →  Word  ran  ( pmTrsp ‘ 𝐷 )  ⊆  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 74 | 61 73 | syl | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  Word  ran  ( pmTrsp ‘ 𝐷 )  ⊆  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 75 |  | simp-7l | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 76 | 74 75 | sseldd | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑢  ∈  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 77 | 64 66 | s2cld | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  〈“ 𝑖 𝑗 ”〉  ∈  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 78 | 15 67 | gsumccat | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑢  ∈  Word  ( Base ‘ 𝑆 )  ∧  〈“ 𝑖 𝑗 ”〉  ∈  Word  ( Base ‘ 𝑆 ) )  →  ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( ( 𝑆  Σg  𝑢 ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  〈“ 𝑖 𝑗 ”〉 ) ) ) | 
						
							| 79 | 59 76 77 78 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( ( 𝑆  Σg  𝑢 ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  〈“ 𝑖 𝑗 ”〉 ) ) ) | 
						
							| 80 | 5 | imaeq1i | ⊢ ( 𝑀  “  ( ◡ ♯  “  { 3 } ) )  =  ( ( toCyc ‘ 𝐷 )  “  ( ◡ ♯  “  { 3 } ) ) | 
						
							| 81 | 1 80 | eqtri | ⊢ 𝐶  =  ( ( toCyc ‘ 𝐷 )  “  ( ◡ ♯  “  { 3 } ) ) | 
						
							| 82 | 81 2 | cyc3evpm | ⊢ ( 𝐷  ∈  Fin  →  𝐶  ⊆  𝐴 ) | 
						
							| 83 | 3 15 | evpmss | ⊢ ( pmEven ‘ 𝐷 )  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 84 | 2 83 | eqsstri | ⊢ 𝐴  ⊆  ( Base ‘ 𝑆 ) | 
						
							| 85 | 82 84 | sstrdi | ⊢ ( 𝐷  ∈  Fin  →  𝐶  ⊆  ( Base ‘ 𝑆 ) ) | 
						
							| 86 |  | sswrd | ⊢ ( 𝐶  ⊆  ( Base ‘ 𝑆 )  →  Word  𝐶  ⊆  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 87 | 56 85 86 | 3syl | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  Word  𝐶  ⊆  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 88 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑣  ∈  Word  𝐶 ) | 
						
							| 89 | 87 88 | sseldd | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑣  ∈  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 90 |  | simplr | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑐  ∈  Word  𝐶 ) | 
						
							| 91 | 87 90 | sseldd | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  𝑐  ∈  Word  ( Base ‘ 𝑆 ) ) | 
						
							| 92 | 15 67 | gsumccat | ⊢ ( ( 𝑆  ∈  Mnd  ∧  𝑣  ∈  Word  ( Base ‘ 𝑆 )  ∧  𝑐  ∈  Word  ( Base ‘ 𝑆 ) )  →  ( 𝑆  Σg  ( 𝑣  ++  𝑐 ) )  =  ( ( 𝑆  Σg  𝑣 ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  𝑐 ) ) ) | 
						
							| 93 | 59 89 91 92 | syl3anc | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑆  Σg  ( 𝑣  ++  𝑐 ) )  =  ( ( 𝑆  Σg  𝑣 ) ( +g ‘ 𝑆 ) ( 𝑆  Σg  𝑐 ) ) ) | 
						
							| 94 | 72 79 93 | 3eqtr4d | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  ( 𝑣  ++  𝑐 ) ) ) | 
						
							| 95 | 50 53 94 | rspcedvd | ⊢ ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑐  ∈  Word  𝐶 )  ∧  ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) )  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 96 |  | simp-6r | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝑒  ∈  𝐷 ) | 
						
							| 97 |  | simp-5r | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝑓  ∈  𝐷 ) | 
						
							| 98 |  | simpllr | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝑔  ∈  𝐷 ) | 
						
							| 99 |  | simplr | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  ℎ  ∈  𝐷 ) | 
						
							| 100 |  | simp-4r | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) | 
						
							| 101 | 100 | simprd | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) | 
						
							| 102 |  | simprr | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) | 
						
							| 103 | 55 | ad6antr | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝐷  ∈  Fin ) | 
						
							| 104 | 100 | simpld | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝑒  ≠  𝑓 ) | 
						
							| 105 |  | simprl | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  𝑔  ≠  ℎ ) | 
						
							| 106 | 1 2 3 4 5 67 96 97 98 99 101 102 103 104 105 | cyc3genpmlem | ⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  ∧  𝑔  ∈  𝐷 )  ∧  ℎ  ∈  𝐷 )  ∧  ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) )  →  ∃ 𝑐  ∈  Word  𝐶 ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) ) | 
						
							| 107 |  | simp-6r | ⊢ ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  →  𝐷  ∈  Fin ) | 
						
							| 108 |  | simp-7r | ⊢ ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  →  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) ) | 
						
							| 109 | 19 5 | trsp2cyc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  →  ∃ 𝑔  ∈  𝐷 ∃ ℎ  ∈  𝐷 ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) | 
						
							| 110 | 107 108 109 | syl2anc | ⊢ ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  →  ∃ 𝑔  ∈  𝐷 ∃ ℎ  ∈  𝐷 ( 𝑔  ≠  ℎ  ∧  𝑗  =  ( 𝑀 ‘ 〈“ 𝑔 ℎ ”〉 ) ) ) | 
						
							| 111 | 106 110 | r19.29vva | ⊢ ( ( ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  ∧  𝑒  ∈  𝐷 )  ∧  𝑓  ∈  𝐷 )  ∧  ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) )  →  ∃ 𝑐  ∈  Word  𝐶 ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) ) | 
						
							| 112 | 19 5 | trsp2cyc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  →  ∃ 𝑒  ∈  𝐷 ∃ 𝑓  ∈  𝐷 ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) | 
						
							| 113 | 55 62 112 | syl2anc | ⊢ ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  →  ∃ 𝑒  ∈  𝐷 ∃ 𝑓  ∈  𝐷 ( 𝑒  ≠  𝑓  ∧  𝑖  =  ( 𝑀 ‘ 〈“ 𝑒 𝑓 ”〉 ) ) ) | 
						
							| 114 | 111 113 | r19.29vva | ⊢ ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  →  ∃ 𝑐  ∈  Word  𝐶 ( 𝑖 ( +g ‘ 𝑆 ) 𝑗 )  =  ( 𝑆  Σg  𝑐 ) ) | 
						
							| 115 | 95 114 | r19.29a | ⊢ ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 116 | 115 | adantl3r | ⊢ ( ( ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) )  ∧  𝐷  ∈  Fin )  ∧  𝑣  ∈  Word  𝐶 )  ∧  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) )  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 117 |  | simpr | ⊢ ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) )  ∧  𝐷  ∈  Fin )  →  𝐷  ∈  Fin ) | 
						
							| 118 |  | simplr | ⊢ ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) )  ∧  𝐷  ∈  Fin )  →  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 119 | 117 118 | mpd | ⊢ ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) )  ∧  𝐷  ∈  Fin )  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 120 |  | oveq2 | ⊢ ( 𝑣  =  𝑤  →  ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 121 | 120 | eqeq2d | ⊢ ( 𝑣  =  𝑤  →  ( ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 )  ↔  ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 122 | 121 | cbvrexvw | ⊢ ( ∃ 𝑣  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 )  ↔  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 123 | 119 122 | sylibr | ⊢ ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) )  ∧  𝐷  ∈  Fin )  →  ∃ 𝑣  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑣 ) ) | 
						
							| 124 | 116 123 | r19.29a | ⊢ ( ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) )  ∧  𝐷  ∈  Fin )  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 125 | 124 | ex | ⊢ ( ( ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) ) )  →  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 126 | 125 | ex3 | ⊢ ( ( 𝑢  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑖  ∈  ran  ( pmTrsp ‘ 𝐷 )  ∧  𝑗  ∈  ran  ( pmTrsp ‘ 𝐷 ) )  →  ( ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑢 )  =  ( 𝑆  Σg  𝑤 ) )  →  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  ( 𝑢  ++  〈“ 𝑖 𝑗 ”〉 ) )  =  ( 𝑆  Σg  𝑤 ) ) ) ) | 
						
							| 127 | 29 33 37 41 48 126 | wrdt2ind | ⊢ ( ( 𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  2  ∥  ( ♯ ‘ 𝑣 ) )  →  ( 𝐷  ∈  Fin  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 128 | 127 | imp | ⊢ ( ( ( 𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 )  ∧  2  ∥  ( ♯ ‘ 𝑣 ) )  ∧  𝐷  ∈  Fin )  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 129 | 6 25 12 128 | syl21anc | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 130 | 10 | eqeq1d | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( 𝑄  =  ( 𝑆  Σg  𝑤 )  ↔  ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 131 | 130 | rexbidv | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ( ∃ 𝑤  ∈  Word  𝐶 𝑄  =  ( 𝑆  Σg  𝑤 )  ↔  ∃ 𝑤  ∈  Word  𝐶 ( 𝑆  Σg  𝑣 )  =  ( 𝑆  Σg  𝑤 ) ) ) | 
						
							| 132 | 129 131 | mpbird | ⊢ ( ( ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  ∧  𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) )  ∧  𝑄  =  ( 𝑆  Σg  𝑣 ) )  →  ∃ 𝑤  ∈  Word  𝐶 𝑄  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 133 | 84 | sseli | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝑆 ) ) | 
						
							| 134 | 3 15 19 | psgnfitr | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑄  ∈  ( Base ‘ 𝑆 )  ↔  ∃ 𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) 𝑄  =  ( 𝑆  Σg  𝑣 ) ) ) | 
						
							| 135 | 134 | biimpa | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  ( Base ‘ 𝑆 ) )  →  ∃ 𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) 𝑄  =  ( 𝑆  Σg  𝑣 ) ) | 
						
							| 136 | 133 135 | sylan2 | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  →  ∃ 𝑣  ∈  Word  ran  ( pmTrsp ‘ 𝐷 ) 𝑄  =  ( 𝑆  Σg  𝑣 ) ) | 
						
							| 137 | 132 136 | r19.29a | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑄  ∈  𝐴 )  →  ∃ 𝑤  ∈  Word  𝐶 𝑄  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 138 |  | simpr | ⊢ ( ( ( 𝐷  ∈  Fin  ∧  𝑤  ∈  Word  𝐶 )  ∧  𝑄  =  ( 𝑆  Σg  𝑤 ) )  →  𝑄  =  ( 𝑆  Σg  𝑤 ) ) | 
						
							| 139 | 3 | altgnsg | ⊢ ( 𝐷  ∈  Fin  →  ( pmEven ‘ 𝐷 )  ∈  ( NrmSGrp ‘ 𝑆 ) ) | 
						
							| 140 | 2 139 | eqeltrid | ⊢ ( 𝐷  ∈  Fin  →  𝐴  ∈  ( NrmSGrp ‘ 𝑆 ) ) | 
						
							| 141 |  | nsgsubg | ⊢ ( 𝐴  ∈  ( NrmSGrp ‘ 𝑆 )  →  𝐴  ∈  ( SubGrp ‘ 𝑆 ) ) | 
						
							| 142 |  | subgsubm | ⊢ ( 𝐴  ∈  ( SubGrp ‘ 𝑆 )  →  𝐴  ∈  ( SubMnd ‘ 𝑆 ) ) | 
						
							| 143 | 140 141 142 | 3syl | ⊢ ( 𝐷  ∈  Fin  →  𝐴  ∈  ( SubMnd ‘ 𝑆 ) ) | 
						
							| 144 | 143 | adantr | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑤  ∈  Word  𝐶 )  →  𝐴  ∈  ( SubMnd ‘ 𝑆 ) ) | 
						
							| 145 |  | sswrd | ⊢ ( 𝐶  ⊆  𝐴  →  Word  𝐶  ⊆  Word  𝐴 ) | 
						
							| 146 | 82 145 | syl | ⊢ ( 𝐷  ∈  Fin  →  Word  𝐶  ⊆  Word  𝐴 ) | 
						
							| 147 | 146 | sselda | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑤  ∈  Word  𝐶 )  →  𝑤  ∈  Word  𝐴 ) | 
						
							| 148 |  | gsumwsubmcl | ⊢ ( ( 𝐴  ∈  ( SubMnd ‘ 𝑆 )  ∧  𝑤  ∈  Word  𝐴 )  →  ( 𝑆  Σg  𝑤 )  ∈  𝐴 ) | 
						
							| 149 | 144 147 148 | syl2anc | ⊢ ( ( 𝐷  ∈  Fin  ∧  𝑤  ∈  Word  𝐶 )  →  ( 𝑆  Σg  𝑤 )  ∈  𝐴 ) | 
						
							| 150 | 149 | adantr | ⊢ ( ( ( 𝐷  ∈  Fin  ∧  𝑤  ∈  Word  𝐶 )  ∧  𝑄  =  ( 𝑆  Σg  𝑤 ) )  →  ( 𝑆  Σg  𝑤 )  ∈  𝐴 ) | 
						
							| 151 | 138 150 | eqeltrd | ⊢ ( ( ( 𝐷  ∈  Fin  ∧  𝑤  ∈  Word  𝐶 )  ∧  𝑄  =  ( 𝑆  Σg  𝑤 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 152 | 151 | r19.29an | ⊢ ( ( 𝐷  ∈  Fin  ∧  ∃ 𝑤  ∈  Word  𝐶 𝑄  =  ( 𝑆  Σg  𝑤 ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 153 | 137 152 | impbida | ⊢ ( 𝐷  ∈  Fin  →  ( 𝑄  ∈  𝐴  ↔  ∃ 𝑤  ∈  Word  𝐶 𝑄  =  ( 𝑆  Σg  𝑤 ) ) ) |