| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0red |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → 0 ∈ ℝ ) |
| 2 |
|
1red |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℝ ) |
| 3 |
|
simpr |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
| 4 |
|
reorelicc |
⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑡 < 0 ∨ 𝑡 ∈ ( 0 [,] 1 ) ∨ 1 < 𝑡 ) ) |
| 5 |
1 2 3 4
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( 𝑡 < 0 ∨ 𝑡 ∈ ( 0 [,] 1 ) ∨ 1 < 𝑡 ) ) |
| 6 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 7 |
6
|
a1i |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → 0 ∈ ℝ* ) |
| 8 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 9 |
8
|
a1i |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → 1 ∈ ℝ* ) |
| 10 |
|
simpl |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 ∈ ℝ ) |
| 11 |
10
|
recnd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 ∈ ℂ ) |
| 12 |
|
0red |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 0 ∈ ℝ ) |
| 13 |
|
1red |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 1 ∈ ℝ ) |
| 14 |
|
simpr |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 < 0 ) |
| 15 |
|
0lt1 |
⊢ 0 < 1 |
| 16 |
15
|
a1i |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 0 < 1 ) |
| 17 |
10 12 13 14 16
|
lttrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 < 1 ) |
| 18 |
10 17
|
ltned |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 ≠ 1 ) |
| 19 |
|
1subrec1sub |
⊢ ( ( 𝑡 ∈ ℂ ∧ 𝑡 ≠ 1 ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) = ( 𝑡 / ( 𝑡 − 1 ) ) ) |
| 20 |
11 18 19
|
syl2anc |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) = ( 𝑡 / ( 𝑡 − 1 ) ) ) |
| 21 |
10 13
|
resubcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − 1 ) ∈ ℝ ) |
| 22 |
|
1cnd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 1 ∈ ℂ ) |
| 23 |
11 22 18
|
subne0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − 1 ) ≠ 0 ) |
| 24 |
10 21 23
|
redivcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 / ( 𝑡 − 1 ) ) ∈ ℝ ) |
| 25 |
24
|
rexrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 / ( 𝑡 − 1 ) ) ∈ ℝ* ) |
| 26 |
20 25
|
eqeltrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ∈ ℝ* ) |
| 27 |
26
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ∈ ℝ* ) |
| 28 |
10
|
renegcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → - 𝑡 ∈ ℝ ) |
| 29 |
10 13
|
sublt0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − 1 ) < 0 ↔ 𝑡 < 1 ) ) |
| 30 |
17 29
|
mpbird |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − 1 ) < 0 ) |
| 31 |
21 30
|
negelrpd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → - ( 𝑡 − 1 ) ∈ ℝ+ ) |
| 32 |
10 12 14
|
ltled |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 ≤ 0 ) |
| 33 |
10
|
le0neg1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 ≤ 0 ↔ 0 ≤ - 𝑡 ) ) |
| 34 |
32 33
|
mpbid |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 0 ≤ - 𝑡 ) |
| 35 |
28 31 34
|
divge0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 0 ≤ ( - 𝑡 / - ( 𝑡 − 1 ) ) ) |
| 36 |
21
|
recnd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − 1 ) ∈ ℂ ) |
| 37 |
11 36 23
|
div2negd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( - 𝑡 / - ( 𝑡 − 1 ) ) = ( 𝑡 / ( 𝑡 − 1 ) ) ) |
| 38 |
20 37
|
eqtr4d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) = ( - 𝑡 / - ( 𝑡 − 1 ) ) ) |
| 39 |
35 38
|
breqtrrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 0 ≤ ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) |
| 40 |
39
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → 0 ≤ ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) |
| 41 |
|
1red |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → 1 ∈ ℝ ) |
| 42 |
13 10
|
resubcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − 𝑡 ) ∈ ℝ ) |
| 43 |
10 13
|
posdifd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 < 1 ↔ 0 < ( 1 − 𝑡 ) ) ) |
| 44 |
17 43
|
mpbid |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 0 < ( 1 − 𝑡 ) ) |
| 45 |
42 44
|
elrpd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − 𝑡 ) ∈ ℝ+ ) |
| 46 |
45
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 1 − 𝑡 ) ∈ ℝ+ ) |
| 47 |
46
|
rpreccld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 1 / ( 1 − 𝑡 ) ) ∈ ℝ+ ) |
| 48 |
41 47
|
ltsubrpd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) < 1 ) |
| 49 |
7 9 27 40 48
|
elicod |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ∈ ( 0 [,) 1 ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑙 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) → ( 1 − 𝑙 ) = ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) |
| 51 |
50
|
oveq1d |
⊢ ( 𝑙 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) → ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) = ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) ) |
| 52 |
|
oveq1 |
⊢ ( 𝑙 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) → ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) = ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) |
| 53 |
51 52
|
oveq12d |
⊢ ( 𝑙 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) → ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 54 |
53
|
eqeq2d |
⊢ ( 𝑙 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) → ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 55 |
54
|
ralbidv |
⊢ ( 𝑙 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ∧ 𝑙 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 57 |
22 11
|
subcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − 𝑡 ) ∈ ℂ ) |
| 58 |
10 17
|
gtned |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 1 ≠ 𝑡 ) |
| 59 |
22 11 58
|
subne0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − 𝑡 ) ≠ 0 ) |
| 60 |
57 59
|
reccld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 / ( 1 − 𝑡 ) ) ∈ ℂ ) |
| 61 |
22 60
|
nncand |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) = ( 1 / ( 1 − 𝑡 ) ) ) |
| 62 |
61 60
|
eqeltrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ∈ ℂ ) |
| 63 |
22 60
|
subcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ∈ ℂ ) |
| 64 |
16
|
gt0ne0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 1 ≠ 0 ) |
| 65 |
36 11
|
subeq0ad |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 − 1 ) − 𝑡 ) = 0 ↔ ( 𝑡 − 1 ) = 𝑡 ) ) |
| 66 |
11 22 11
|
sub32d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − 1 ) − 𝑡 ) = ( ( 𝑡 − 𝑡 ) − 1 ) ) |
| 67 |
66
|
eqeq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 − 1 ) − 𝑡 ) = 0 ↔ ( ( 𝑡 − 𝑡 ) − 1 ) = 0 ) ) |
| 68 |
11
|
subidd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − 𝑡 ) = 0 ) |
| 69 |
68
|
oveq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − 𝑡 ) − 1 ) = ( 0 − 1 ) ) |
| 70 |
69
|
eqeq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 − 𝑡 ) − 1 ) = 0 ↔ ( 0 − 1 ) = 0 ) ) |
| 71 |
|
0cnd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 0 ∈ ℂ ) |
| 72 |
71 22 71
|
subaddd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 0 − 1 ) = 0 ↔ ( 1 + 0 ) = 0 ) ) |
| 73 |
22
|
addridd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 + 0 ) = 1 ) |
| 74 |
73
|
eqeq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 1 + 0 ) = 0 ↔ 1 = 0 ) ) |
| 75 |
72 74
|
bitrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 0 − 1 ) = 0 ↔ 1 = 0 ) ) |
| 76 |
67 70 75
|
3bitrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 − 1 ) − 𝑡 ) = 0 ↔ 1 = 0 ) ) |
| 77 |
65 76
|
bitr3d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − 1 ) = 𝑡 ↔ 1 = 0 ) ) |
| 78 |
77
|
necon3bid |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − 1 ) ≠ 𝑡 ↔ 1 ≠ 0 ) ) |
| 79 |
64 78
|
mpbird |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − 1 ) ≠ 𝑡 ) |
| 80 |
20
|
eqeq2d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ↔ 1 = ( 𝑡 / ( 𝑡 − 1 ) ) ) ) |
| 81 |
|
eqcom |
⊢ ( 1 = ( 𝑡 / ( 𝑡 − 1 ) ) ↔ ( 𝑡 / ( 𝑡 − 1 ) ) = 1 ) |
| 82 |
11 36 22 23
|
divmuld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 / ( 𝑡 − 1 ) ) = 1 ↔ ( ( 𝑡 − 1 ) · 1 ) = 𝑡 ) ) |
| 83 |
81 82
|
bitrid |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 = ( 𝑡 / ( 𝑡 − 1 ) ) ↔ ( ( 𝑡 − 1 ) · 1 ) = 𝑡 ) ) |
| 84 |
36
|
mulridd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − 1 ) · 1 ) = ( 𝑡 − 1 ) ) |
| 85 |
84
|
eqeq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 − 1 ) · 1 ) = 𝑡 ↔ ( 𝑡 − 1 ) = 𝑡 ) ) |
| 86 |
80 83 85
|
3bitrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 = ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ↔ ( 𝑡 − 1 ) = 𝑡 ) ) |
| 87 |
86
|
necon3bid |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 ≠ ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ↔ ( 𝑡 − 1 ) ≠ 𝑡 ) ) |
| 88 |
79 87
|
mpbird |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 1 ≠ ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) |
| 89 |
22 63 88
|
subne0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ≠ 0 ) |
| 90 |
61
|
oveq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 1 − 𝑡 ) ) = ( ( 1 / ( 1 − 𝑡 ) ) · ( 1 − 𝑡 ) ) ) |
| 91 |
57 59
|
recid2d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 1 / ( 1 − 𝑡 ) ) · ( 1 − 𝑡 ) ) = 1 ) |
| 92 |
90 91
|
eqtrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 1 − 𝑡 ) ) = 1 ) |
| 93 |
62 57 89 92
|
mvllmuld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − 𝑡 ) = ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) |
| 94 |
93
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − 𝑡 ) = ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) |
| 95 |
94
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) = ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 96 |
20
|
oveq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) = ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ) |
| 97 |
20 96
|
oveq12d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) = ( ( 𝑡 / ( 𝑡 − 1 ) ) / ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ) ) |
| 98 |
|
subdivcomb2 |
⊢ ( ( 𝑡 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( 𝑡 − 1 ) ∈ ℂ ∧ ( 𝑡 − 1 ) ≠ 0 ) ) → ( ( 𝑡 − ( ( 𝑡 − 1 ) · 1 ) ) / ( 𝑡 − 1 ) ) = ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ) |
| 99 |
11 22 36 23 98
|
syl112anc |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − ( ( 𝑡 − 1 ) · 1 ) ) / ( 𝑡 − 1 ) ) = ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ) |
| 100 |
84
|
oveq2d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − ( ( 𝑡 − 1 ) · 1 ) ) = ( 𝑡 − ( 𝑡 − 1 ) ) ) |
| 101 |
11 22
|
nncand |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − ( 𝑡 − 1 ) ) = 1 ) |
| 102 |
100 101
|
eqtrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 − ( ( 𝑡 − 1 ) · 1 ) ) = 1 ) |
| 103 |
102
|
oveq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 − ( ( 𝑡 − 1 ) · 1 ) ) / ( 𝑡 − 1 ) ) = ( 1 / ( 𝑡 − 1 ) ) ) |
| 104 |
99 103
|
eqtr3d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) = ( 1 / ( 𝑡 − 1 ) ) ) |
| 105 |
104
|
oveq1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) · 𝑡 ) = ( ( 1 / ( 𝑡 − 1 ) ) · 𝑡 ) ) |
| 106 |
11 36 23
|
divrec2d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 / ( 𝑡 − 1 ) ) = ( ( 1 / ( 𝑡 − 1 ) ) · 𝑡 ) ) |
| 107 |
105 106
|
eqtr4d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) · 𝑡 ) = ( 𝑡 / ( 𝑡 − 1 ) ) ) |
| 108 |
20 63
|
eqeltrrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 / ( 𝑡 − 1 ) ) ∈ ℂ ) |
| 109 |
108 22
|
subcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ∈ ℂ ) |
| 110 |
79
|
necomd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 ≠ ( 𝑡 − 1 ) ) |
| 111 |
11 36 23 110
|
divne1d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 𝑡 / ( 𝑡 − 1 ) ) ≠ 1 ) |
| 112 |
108 22 111
|
subne0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ≠ 0 ) |
| 113 |
108 109 11 112
|
divmuld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( ( 𝑡 / ( 𝑡 − 1 ) ) / ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ) = 𝑡 ↔ ( ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) · 𝑡 ) = ( 𝑡 / ( 𝑡 − 1 ) ) ) ) |
| 114 |
107 113
|
mpbird |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 𝑡 / ( 𝑡 − 1 ) ) / ( ( 𝑡 / ( 𝑡 − 1 ) ) − 1 ) ) = 𝑡 ) |
| 115 |
97 114
|
eqtr2d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → 𝑡 = ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) ) |
| 116 |
115
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑡 = ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) ) |
| 117 |
116
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) = ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) |
| 118 |
95 117
|
oveq12d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 119 |
118
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 120 |
119
|
biimpd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 121 |
|
eqcom |
⊢ ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) = ( 𝑥 ‘ 𝑖 ) ) |
| 122 |
|
elmapi |
⊢ ( 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑥 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 123 |
122
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) → 𝑥 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 124 |
123
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → 𝑥 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 125 |
124
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) → 𝑥 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 126 |
125
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑖 ) ∈ ℝ ) |
| 127 |
126
|
recnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑖 ) ∈ ℂ ) |
| 128 |
|
1cnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℂ ) |
| 129 |
11
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑡 ∈ ℂ ) |
| 130 |
128 129
|
subcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − 𝑡 ) ∈ ℂ ) |
| 131 |
58
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 1 ≠ 𝑡 ) |
| 132 |
128 129 131
|
subne0d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − 𝑡 ) ≠ 0 ) |
| 133 |
130 132
|
reccld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 / ( 1 − 𝑡 ) ) ∈ ℂ ) |
| 134 |
128 133
|
subcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ∈ ℂ ) |
| 135 |
|
eldifi |
⊢ ( 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) → 𝑦 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) |
| 136 |
|
elmapi |
⊢ ( 𝑦 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑦 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 137 |
135 136
|
syl |
⊢ ( 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) → 𝑦 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 138 |
137
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) → 𝑦 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 139 |
138
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → 𝑦 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 140 |
139
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) → 𝑦 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 141 |
140
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ℝ ) |
| 142 |
141
|
recnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ℂ ) |
| 143 |
134 142
|
mulcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ∈ ℂ ) |
| 144 |
62
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ∈ ℂ ) |
| 145 |
|
elmapi |
⊢ ( 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 146 |
145
|
adantl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 147 |
146
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 148 |
147
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑝 ‘ 𝑖 ) ∈ ℝ ) |
| 149 |
148
|
recnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑝 ‘ 𝑖 ) ∈ ℂ ) |
| 150 |
144 149
|
mulcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) ∈ ℂ ) |
| 151 |
127 143 150
|
subadd2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) ↔ ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) = ( 𝑥 ‘ 𝑖 ) ) ) |
| 152 |
121 151
|
bitr4id |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) ) ) |
| 153 |
|
eqcom |
⊢ ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) ↔ ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) = ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 154 |
127 143
|
subcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ∈ ℂ ) |
| 155 |
89
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ≠ 0 ) |
| 156 |
154 144 149 155
|
divmuld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( 𝑝 ‘ 𝑖 ) ↔ ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) = ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 157 |
|
eqcom |
⊢ ( ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( 𝑝 ‘ 𝑖 ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) |
| 158 |
127 143 144 155
|
divsubdird |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( ( ( 𝑥 ‘ 𝑖 ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) − ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) ) |
| 159 |
127 144 155
|
divcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ‘ 𝑖 ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ∈ ℂ ) |
| 160 |
143 144 155
|
divcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ∈ ℂ ) |
| 161 |
159 160
|
negsubd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑥 ‘ 𝑖 ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) + - ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) = ( ( ( 𝑥 ‘ 𝑖 ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) − ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) ) |
| 162 |
127 144 155
|
divrec2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ‘ 𝑖 ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 163 |
143 144 155
|
divneg2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / - ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) |
| 164 |
128 134
|
negsubdi2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → - ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) = ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) |
| 165 |
164
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / - ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) ) |
| 166 |
134 128
|
subcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ∈ ℂ ) |
| 167 |
88
|
necomd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ≠ 1 ) |
| 168 |
63 22 167
|
subne0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 𝑡 < 0 ) → ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ≠ 0 ) |
| 169 |
168
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ≠ 0 ) |
| 170 |
134 142 166 169
|
div23d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) = ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) |
| 171 |
163 165 170
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) |
| 172 |
162 171
|
oveq12d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑥 ‘ 𝑖 ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) + - ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 173 |
158 161 172
|
3eqtr2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 174 |
173
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 175 |
157 174
|
bitrid |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) = ( 𝑝 ‘ 𝑖 ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 176 |
156 175
|
bitr3d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) = ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 177 |
153 176
|
bitrid |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑥 ‘ 𝑖 ) − ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 178 |
152 177
|
bitrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 / ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) / ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) − 1 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 179 |
120 178
|
sylibrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 180 |
179
|
ralimdva |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 181 |
180
|
imp |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) ) · ( 𝑝 ‘ 𝑖 ) ) + ( ( 1 − ( 1 / ( 1 − 𝑡 ) ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 182 |
49 56 181
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 183 |
182
|
3mix2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 𝑡 < 0 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 184 |
183
|
exp31 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( 𝑡 < 0 → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) ) |
| 185 |
184
|
com23 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( 𝑡 < 0 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) ) |
| 186 |
185
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 𝑡 < 0 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) |
| 187 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → 𝑡 ∈ ( 0 [,] 1 ) ) |
| 188 |
|
oveq2 |
⊢ ( 𝑘 = 𝑡 → ( 1 − 𝑘 ) = ( 1 − 𝑡 ) ) |
| 189 |
188
|
oveq1d |
⊢ ( 𝑘 = 𝑡 → ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) = ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 190 |
|
oveq1 |
⊢ ( 𝑘 = 𝑡 → ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) = ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) |
| 191 |
189 190
|
oveq12d |
⊢ ( 𝑘 = 𝑡 → ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 192 |
191
|
eqeq2d |
⊢ ( 𝑘 = 𝑡 → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 193 |
192
|
ralbidv |
⊢ ( 𝑘 = 𝑡 → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 194 |
193
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) ∧ 𝑘 = 𝑡 ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 195 |
|
simplr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 196 |
187 194 195
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 197 |
196
|
3mix1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ∧ 𝑡 ∈ ( 0 [,] 1 ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 198 |
197
|
ex |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 𝑡 ∈ ( 0 [,] 1 ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) |
| 199 |
|
1red |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 1 ∈ ℝ ) |
| 200 |
|
simpl |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 𝑡 ∈ ℝ ) |
| 201 |
|
0red |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 0 ∈ ℝ ) |
| 202 |
15
|
a1i |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 0 < 1 ) |
| 203 |
|
simpr |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 1 < 𝑡 ) |
| 204 |
201 199 200 202 203
|
lttrd |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 0 < 𝑡 ) |
| 205 |
204
|
gt0ne0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 𝑡 ≠ 0 ) |
| 206 |
199 200 205
|
redivcld |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → ( 1 / 𝑡 ) ∈ ℝ ) |
| 207 |
200 204
|
recgt0d |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → 0 < ( 1 / 𝑡 ) ) |
| 208 |
|
recgt1i |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → ( 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) < 1 ) ) |
| 209 |
206
|
adantr |
⊢ ( ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) ∧ ( 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) < 1 ) ) → ( 1 / 𝑡 ) ∈ ℝ ) |
| 210 |
|
1red |
⊢ ( ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) ∧ ( 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) < 1 ) ) → 1 ∈ ℝ ) |
| 211 |
|
simprr |
⊢ ( ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) ∧ ( 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) < 1 ) ) → ( 1 / 𝑡 ) < 1 ) |
| 212 |
209 210 211
|
ltled |
⊢ ( ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) ∧ ( 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) < 1 ) ) → ( 1 / 𝑡 ) ≤ 1 ) |
| 213 |
208 212
|
mpdan |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → ( 1 / 𝑡 ) ≤ 1 ) |
| 214 |
206 207 213
|
3jca |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → ( ( 1 / 𝑡 ) ∈ ℝ ∧ 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) ≤ 1 ) ) |
| 215 |
|
1re |
⊢ 1 ∈ ℝ |
| 216 |
6 215
|
pm3.2i |
⊢ ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) |
| 217 |
|
elioc2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( ( 1 / 𝑡 ) ∈ ( 0 (,] 1 ) ↔ ( ( 1 / 𝑡 ) ∈ ℝ ∧ 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) ≤ 1 ) ) ) |
| 218 |
216 217
|
mp1i |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → ( ( 1 / 𝑡 ) ∈ ( 0 (,] 1 ) ↔ ( ( 1 / 𝑡 ) ∈ ℝ ∧ 0 < ( 1 / 𝑡 ) ∧ ( 1 / 𝑡 ) ≤ 1 ) ) ) |
| 219 |
214 218
|
mpbird |
⊢ ( ( 𝑡 ∈ ℝ ∧ 1 < 𝑡 ) → ( 1 / 𝑡 ) ∈ ( 0 (,] 1 ) ) |
| 220 |
219
|
ad4ant23 |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 1 / 𝑡 ) ∈ ( 0 (,] 1 ) ) |
| 221 |
|
oveq2 |
⊢ ( 𝑚 = ( 1 / 𝑡 ) → ( 1 − 𝑚 ) = ( 1 − ( 1 / 𝑡 ) ) ) |
| 222 |
221
|
oveq1d |
⊢ ( 𝑚 = ( 1 / 𝑡 ) → ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) = ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 223 |
|
oveq1 |
⊢ ( 𝑚 = ( 1 / 𝑡 ) → ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) = ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) |
| 224 |
222 223
|
oveq12d |
⊢ ( 𝑚 = ( 1 / 𝑡 ) → ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) |
| 225 |
224
|
eqeq2d |
⊢ ( 𝑚 = ( 1 / 𝑡 ) → ( ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ↔ ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 226 |
225
|
ralbidv |
⊢ ( 𝑚 = ( 1 / 𝑡 ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 227 |
226
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ∧ 𝑚 = ( 1 / 𝑡 ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 228 |
|
simplr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → 𝑡 ∈ ℝ ) |
| 229 |
228
|
recnd |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → 𝑡 ∈ ℂ ) |
| 230 |
229
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑡 ∈ ℂ ) |
| 231 |
204
|
ex |
⊢ ( 𝑡 ∈ ℝ → ( 1 < 𝑡 → 0 < 𝑡 ) ) |
| 232 |
|
gt0ne0 |
⊢ ( ( 𝑡 ∈ ℝ ∧ 0 < 𝑡 ) → 𝑡 ≠ 0 ) |
| 233 |
232
|
ex |
⊢ ( 𝑡 ∈ ℝ → ( 0 < 𝑡 → 𝑡 ≠ 0 ) ) |
| 234 |
231 233
|
syld |
⊢ ( 𝑡 ∈ ℝ → ( 1 < 𝑡 → 𝑡 ≠ 0 ) ) |
| 235 |
234
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( 1 < 𝑡 → 𝑡 ≠ 0 ) ) |
| 236 |
235
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → 𝑡 ≠ 0 ) |
| 237 |
236
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑡 ≠ 0 ) |
| 238 |
230 237
|
reccld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑡 ) ∈ ℂ ) |
| 239 |
|
1cnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ℂ ) |
| 240 |
230 237
|
recne0d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 / 𝑡 ) ≠ 0 ) |
| 241 |
238 239 238 240
|
divsubdird |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) = ( ( ( 1 / 𝑡 ) / ( 1 / 𝑡 ) ) − ( 1 / ( 1 / 𝑡 ) ) ) ) |
| 242 |
238 240
|
dividd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 / 𝑡 ) / ( 1 / 𝑡 ) ) = 1 ) |
| 243 |
230 237
|
recrecd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 / ( 1 / 𝑡 ) ) = 𝑡 ) |
| 244 |
242 243
|
oveq12d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 / 𝑡 ) / ( 1 / 𝑡 ) ) − ( 1 / ( 1 / 𝑡 ) ) ) = ( 1 − 𝑡 ) ) |
| 245 |
241 244
|
eqtr2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − 𝑡 ) = ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) ) |
| 246 |
245
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) = ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 247 |
229 236
|
recrecd |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → ( 1 / ( 1 / 𝑡 ) ) = 𝑡 ) |
| 248 |
247
|
eqcomd |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → 𝑡 = ( 1 / ( 1 / 𝑡 ) ) ) |
| 249 |
248
|
adantr |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → 𝑡 = ( 1 / ( 1 / 𝑡 ) ) ) |
| 250 |
249
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) = ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) |
| 251 |
246 250
|
oveq12d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 252 |
251
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 253 |
252
|
biimpd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( 𝑝 ‘ 𝑖 ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 254 |
|
eqcom |
⊢ ( ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ↔ ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) = ( 𝑦 ‘ 𝑖 ) ) |
| 255 |
139
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → 𝑦 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 256 |
255
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ℝ ) |
| 257 |
256
|
recnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑦 ‘ 𝑖 ) ∈ ℂ ) |
| 258 |
239 238
|
subcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 − ( 1 / 𝑡 ) ) ∈ ℂ ) |
| 259 |
124
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → 𝑥 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 260 |
259
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑖 ) ∈ ℝ ) |
| 261 |
260
|
recnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑥 ‘ 𝑖 ) ∈ ℂ ) |
| 262 |
258 261
|
mulcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ∈ ℂ ) |
| 263 |
146
|
ad2antrr |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → 𝑝 : ( 1 ... 𝑁 ) ⟶ ℝ ) |
| 264 |
263
|
ffvelcdmda |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑝 ‘ 𝑖 ) ∈ ℝ ) |
| 265 |
264
|
recnd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝑝 ‘ 𝑖 ) ∈ ℂ ) |
| 266 |
238 265
|
mulcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ∈ ℂ ) |
| 267 |
257 262 266
|
subaddd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) = ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ↔ ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) = ( 𝑦 ‘ 𝑖 ) ) ) |
| 268 |
254 267
|
bitr4id |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ↔ ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) = ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) |
| 269 |
|
eqcom |
⊢ ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) = ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ↔ ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) = ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) ) |
| 270 |
257 262
|
subcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) ∈ ℂ ) |
| 271 |
270 238 265 240
|
divmuld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) = ( 𝑝 ‘ 𝑖 ) ↔ ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) = ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) ) ) |
| 272 |
269 271
|
bitr4id |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) = ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ↔ ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) = ( 𝑝 ‘ 𝑖 ) ) ) |
| 273 |
|
eqcom |
⊢ ( ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) = ( 𝑝 ‘ 𝑖 ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) ) |
| 274 |
257 262 238 240
|
divsubdird |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) = ( ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) − ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) ) |
| 275 |
257 238 240
|
divcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) ∈ ℂ ) |
| 276 |
262 238 240
|
divcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ∈ ℂ ) |
| 277 |
275 276
|
negsubd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) + - ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) = ( ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) − ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) ) |
| 278 |
262 238 240
|
divnegd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) = ( - ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) |
| 279 |
258 261
|
mulneg1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( - ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) = - ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 280 |
279
|
eqcomd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → - ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) = ( - ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 281 |
280
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( - ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) = ( ( - ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) |
| 282 |
239 238
|
negsubdi2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → - ( 1 − ( 1 / 𝑡 ) ) = ( ( 1 / 𝑡 ) − 1 ) ) |
| 283 |
282
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( - ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) = ( ( ( 1 / 𝑡 ) − 1 ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 284 |
283
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( - ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) = ( ( ( ( 1 / 𝑡 ) − 1 ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) |
| 285 |
238 239
|
subcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 / 𝑡 ) − 1 ) ∈ ℂ ) |
| 286 |
285 261 238 240
|
div23d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1 / 𝑡 ) − 1 ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) = ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 287 |
284 286
|
eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( - ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) = ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 288 |
278 281 287
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → - ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) = ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) |
| 289 |
288
|
oveq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) + - ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) = ( ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) + ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) ) |
| 290 |
257 238 240
|
divrec2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) = ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) |
| 291 |
290
|
oveq1d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) + ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) = ( ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) + ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) ) |
| 292 |
238 240
|
reccld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 1 / ( 1 / 𝑡 ) ) ∈ ℂ ) |
| 293 |
292 257
|
mulcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ∈ ℂ ) |
| 294 |
285 238 240
|
divcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) ∈ ℂ ) |
| 295 |
294 261
|
mulcld |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ∈ ℂ ) |
| 296 |
293 295
|
addcomd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) + ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 297 |
289 291 296
|
3eqtrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) / ( 1 / 𝑡 ) ) + - ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) / ( 1 / 𝑡 ) ) ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 298 |
274 277 297
|
3eqtr2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) |
| 299 |
298
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 300 |
273 299
|
bitrid |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑦 ‘ 𝑖 ) − ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) ) / ( 1 / 𝑡 ) ) = ( 𝑝 ‘ 𝑖 ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 301 |
268 272 300
|
3bitrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ↔ ( 𝑝 ‘ 𝑖 ) = ( ( ( ( ( 1 / 𝑡 ) − 1 ) / ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / ( 1 / 𝑡 ) ) · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
| 302 |
253 301
|
sylibrd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 303 |
302
|
ralimdva |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 304 |
303
|
imp |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − ( 1 / 𝑡 ) ) · ( 𝑥 ‘ 𝑖 ) ) + ( ( 1 / 𝑡 ) · ( 𝑝 ‘ 𝑖 ) ) ) ) |
| 305 |
220 227 304
|
rspcedvd |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) |
| 306 |
305
|
3mix3d |
⊢ ( ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ 1 < 𝑡 ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) |
| 307 |
306
|
exp31 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( 1 < 𝑡 → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) ) |
| 308 |
307
|
com23 |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( 1 < 𝑡 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) ) |
| 309 |
308
|
imp |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( 1 < 𝑡 → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) |
| 310 |
186 198 309
|
3jaod |
⊢ ( ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) ∧ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) → ( ( 𝑡 < 0 ∨ 𝑡 ∈ ( 0 [,] 1 ) ∨ 1 < 𝑡 ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) |
| 311 |
310
|
ex |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( ( 𝑡 < 0 ∨ 𝑡 ∈ ( 0 [,] 1 ) ∨ 1 < 𝑡 ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) ) |
| 312 |
5 311
|
mpid |
⊢ ( ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) ∧ 𝑡 ∈ ℝ ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) |
| 313 |
312
|
rexlimdva |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑥 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ∧ 𝑦 ∈ ( ( ℝ ↑m ( 1 ... 𝑁 ) ) ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ ( ℝ ↑m ( 1 ... 𝑁 ) ) ) → ( ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) → ( ∃ 𝑘 ∈ ( 0 [,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑘 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑘 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑙 ∈ ( 0 [,) 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( ( ( 1 − 𝑙 ) · ( 𝑝 ‘ 𝑖 ) ) + ( 𝑙 · ( 𝑦 ‘ 𝑖 ) ) ) ∨ ∃ 𝑚 ∈ ( 0 (,] 1 ) ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝑦 ‘ 𝑖 ) = ( ( ( 1 − 𝑚 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑚 · ( 𝑝 ‘ 𝑖 ) ) ) ) ) ) |