| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) → 𝐴 ∈ V ) |
| 2 |
1
|
a1i |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) → 𝐴 ∈ V ) ) |
| 3 |
|
inex1g |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑣 ) ∈ V ) |
| 4 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ( 𝐴 ∈ V ↔ ( 𝐵 ∩ ∩ 𝑣 ) ∈ V ) ) |
| 5 |
3 4
|
syl5ibrcom |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → 𝐴 ∈ V ) ) |
| 6 |
5
|
rexlimdvw |
⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → 𝐴 ∈ V ) ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → 𝐴 ∈ V ) ) |
| 8 |
|
simpr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝐴 ∈ V ) |
| 9 |
|
snex |
⊢ { 𝐵 } ∈ V |
| 10 |
|
pwexg |
⊢ ( 𝐵 ∈ 𝑉 → 𝒫 𝐵 ∈ V ) |
| 11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝒫 𝐵 ∈ V ) |
| 12 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝐶 ⊆ 𝒫 𝐵 ) |
| 13 |
11 12
|
ssexd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → 𝐶 ∈ V ) |
| 14 |
|
unexg |
⊢ ( ( { 𝐵 } ∈ V ∧ 𝐶 ∈ V ) → ( { 𝐵 } ∪ 𝐶 ) ∈ V ) |
| 15 |
9 13 14
|
sylancr |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( { 𝐵 } ∪ 𝐶 ) ∈ V ) |
| 16 |
|
elfi |
⊢ ( ( 𝐴 ∈ V ∧ ( { 𝐵 } ∪ 𝐶 ) ∈ V ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) |
| 17 |
8 15 16
|
syl2anc |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) |
| 18 |
|
inss1 |
⊢ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ⊆ 𝒫 ( { 𝐵 } ∪ 𝐶 ) |
| 19 |
|
uncom |
⊢ ( { 𝐵 } ∪ 𝐶 ) = ( 𝐶 ∪ { 𝐵 } ) |
| 20 |
19
|
pweqi |
⊢ 𝒫 ( { 𝐵 } ∪ 𝐶 ) = 𝒫 ( 𝐶 ∪ { 𝐵 } ) |
| 21 |
18 20
|
sseqtri |
⊢ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ⊆ 𝒫 ( 𝐶 ∪ { 𝐵 } ) |
| 22 |
21
|
sseli |
⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ∈ 𝒫 ( 𝐶 ∪ { 𝐵 } ) ) |
| 23 |
9
|
elpwun |
⊢ ( 𝑤 ∈ 𝒫 ( 𝐶 ∪ { 𝐵 } ) ↔ ( 𝑤 ∖ { 𝐵 } ) ∈ 𝒫 𝐶 ) |
| 24 |
22 23
|
sylib |
⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → ( 𝑤 ∖ { 𝐵 } ) ∈ 𝒫 𝐶 ) |
| 25 |
24
|
ad2antrl |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝑤 ∖ { 𝐵 } ) ∈ 𝒫 𝐶 ) |
| 26 |
|
inss2 |
⊢ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ⊆ Fin |
| 27 |
26
|
sseli |
⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ∈ Fin ) |
| 28 |
|
diffi |
⊢ ( 𝑤 ∈ Fin → ( 𝑤 ∖ { 𝐵 } ) ∈ Fin ) |
| 29 |
27 28
|
syl |
⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → ( 𝑤 ∖ { 𝐵 } ) ∈ Fin ) |
| 30 |
29
|
ad2antrl |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝑤 ∖ { 𝐵 } ) ∈ Fin ) |
| 31 |
25 30
|
elind |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝑤 ∖ { 𝐵 } ) ∈ ( 𝒫 𝐶 ∩ Fin ) ) |
| 32 |
|
incom |
⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) |
| 33 |
|
simprr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ∩ 𝑤 ) |
| 34 |
|
simplr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 ∈ V ) |
| 35 |
33 34
|
eqeltrrd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ 𝑤 ∈ V ) |
| 36 |
|
intex |
⊢ ( 𝑤 ≠ ∅ ↔ ∩ 𝑤 ∈ V ) |
| 37 |
35 36
|
sylibr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝑤 ≠ ∅ ) |
| 38 |
|
intssuni |
⊢ ( 𝑤 ≠ ∅ → ∩ 𝑤 ⊆ ∪ 𝑤 ) |
| 39 |
37 38
|
syl |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ 𝑤 ⊆ ∪ 𝑤 ) |
| 40 |
18
|
sseli |
⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ∈ 𝒫 ( { 𝐵 } ∪ 𝐶 ) ) |
| 41 |
40
|
elpwid |
⊢ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) → 𝑤 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 42 |
41
|
ad2antrl |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝑤 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 43 |
|
pwidg |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ 𝒫 𝐵 ) |
| 44 |
43
|
snssd |
⊢ ( 𝐵 ∈ 𝑉 → { 𝐵 } ⊆ 𝒫 𝐵 ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → { 𝐵 } ⊆ 𝒫 𝐵 ) |
| 46 |
|
simpr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → 𝐶 ⊆ 𝒫 𝐵 ) |
| 47 |
45 46
|
unssd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( { 𝐵 } ∪ 𝐶 ) ⊆ 𝒫 𝐵 ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( { 𝐵 } ∪ 𝐶 ) ⊆ 𝒫 𝐵 ) |
| 49 |
42 48
|
sstrd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝑤 ⊆ 𝒫 𝐵 ) |
| 50 |
|
sspwuni |
⊢ ( 𝑤 ⊆ 𝒫 𝐵 ↔ ∪ 𝑤 ⊆ 𝐵 ) |
| 51 |
49 50
|
sylib |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∪ 𝑤 ⊆ 𝐵 ) |
| 52 |
39 51
|
sstrd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ 𝑤 ⊆ 𝐵 ) |
| 53 |
33 52
|
eqsstrd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 ⊆ 𝐵 ) |
| 54 |
|
dfss2 |
⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 55 |
53 54
|
sylib |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝐴 ∩ 𝐵 ) = 𝐴 ) |
| 56 |
32 55
|
eqtr2id |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ( 𝐵 ∩ 𝐴 ) ) |
| 57 |
|
ineq2 |
⊢ ( 𝐴 = ∩ 𝑤 → ( 𝐵 ∩ 𝐴 ) = ( 𝐵 ∩ ∩ 𝑤 ) ) |
| 58 |
57
|
ad2antll |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝐵 ∩ 𝐴 ) = ( 𝐵 ∩ ∩ 𝑤 ) ) |
| 59 |
56 58
|
eqtrd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ( 𝐵 ∩ ∩ 𝑤 ) ) |
| 60 |
|
intun |
⊢ ∩ ( { 𝐵 } ∪ 𝑤 ) = ( ∩ { 𝐵 } ∩ ∩ 𝑤 ) |
| 61 |
|
intsng |
⊢ ( 𝐵 ∈ 𝑉 → ∩ { 𝐵 } = 𝐵 ) |
| 62 |
61
|
ineq1d |
⊢ ( 𝐵 ∈ 𝑉 → ( ∩ { 𝐵 } ∩ ∩ 𝑤 ) = ( 𝐵 ∩ ∩ 𝑤 ) ) |
| 63 |
60 62
|
eqtr2id |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑤 ) = ∩ ( { 𝐵 } ∪ 𝑤 ) ) |
| 64 |
63
|
ad3antrrr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ( 𝐵 ∩ ∩ 𝑤 ) = ∩ ( { 𝐵 } ∪ 𝑤 ) ) |
| 65 |
59 64
|
eqtrd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ∩ ( { 𝐵 } ∪ 𝑤 ) ) |
| 66 |
|
undif2 |
⊢ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( { 𝐵 } ∪ 𝑤 ) |
| 67 |
66
|
inteqi |
⊢ ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ∩ ( { 𝐵 } ∪ 𝑤 ) |
| 68 |
65 67
|
eqtr4di |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 69 |
|
intun |
⊢ ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( ∩ { 𝐵 } ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) |
| 70 |
61
|
ineq1d |
⊢ ( 𝐵 ∈ 𝑉 → ( ∩ { 𝐵 } ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 71 |
69 70
|
eqtrid |
⊢ ( 𝐵 ∈ 𝑉 → ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 72 |
71
|
ad3antrrr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∩ ( { 𝐵 } ∪ ( 𝑤 ∖ { 𝐵 } ) ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 73 |
68 72
|
eqtrd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → 𝐴 = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 74 |
|
inteq |
⊢ ( 𝑣 = ( 𝑤 ∖ { 𝐵 } ) → ∩ 𝑣 = ∩ ( 𝑤 ∖ { 𝐵 } ) ) |
| 75 |
74
|
ineq2d |
⊢ ( 𝑣 = ( 𝑤 ∖ { 𝐵 } ) → ( 𝐵 ∩ ∩ 𝑣 ) = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) |
| 76 |
75
|
rspceeqv |
⊢ ( ( ( 𝑤 ∖ { 𝐵 } ) ∈ ( 𝒫 𝐶 ∩ Fin ) ∧ 𝐴 = ( 𝐵 ∩ ∩ ( 𝑤 ∖ { 𝐵 } ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) |
| 77 |
31 73 76
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ ( 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ 𝐴 = ∩ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) |
| 78 |
77
|
rexlimdvaa |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 → ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |
| 79 |
|
ssun1 |
⊢ { 𝐵 } ⊆ ( { 𝐵 } ∪ 𝐶 ) |
| 80 |
79
|
a1i |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → { 𝐵 } ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 81 |
|
inss1 |
⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ 𝒫 𝐶 |
| 82 |
81
|
sseli |
⊢ ( 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑣 ∈ 𝒫 𝐶 ) |
| 83 |
|
elpwi |
⊢ ( 𝑣 ∈ 𝒫 𝐶 → 𝑣 ⊆ 𝐶 ) |
| 84 |
|
ssun4 |
⊢ ( 𝑣 ⊆ 𝐶 → 𝑣 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 85 |
82 83 84
|
3syl |
⊢ ( 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑣 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 86 |
85
|
adantl |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑣 ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 87 |
80 86
|
unssd |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 88 |
|
vex |
⊢ 𝑣 ∈ V |
| 89 |
9 88
|
unex |
⊢ ( { 𝐵 } ∪ 𝑣 ) ∈ V |
| 90 |
89
|
elpw |
⊢ ( ( { 𝐵 } ∪ 𝑣 ) ∈ 𝒫 ( { 𝐵 } ∪ 𝐶 ) ↔ ( { 𝐵 } ∪ 𝑣 ) ⊆ ( { 𝐵 } ∪ 𝐶 ) ) |
| 91 |
87 90
|
sylibr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ∈ 𝒫 ( { 𝐵 } ∪ 𝐶 ) ) |
| 92 |
|
snfi |
⊢ { 𝐵 } ∈ Fin |
| 93 |
|
inss2 |
⊢ ( 𝒫 𝐶 ∩ Fin ) ⊆ Fin |
| 94 |
93
|
sseli |
⊢ ( 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) → 𝑣 ∈ Fin ) |
| 95 |
94
|
adantl |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → 𝑣 ∈ Fin ) |
| 96 |
|
unfi |
⊢ ( ( { 𝐵 } ∈ Fin ∧ 𝑣 ∈ Fin ) → ( { 𝐵 } ∪ 𝑣 ) ∈ Fin ) |
| 97 |
92 95 96
|
sylancr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ∈ Fin ) |
| 98 |
91 97
|
elind |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( { 𝐵 } ∪ 𝑣 ) ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ) |
| 99 |
61
|
eqcomd |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 = ∩ { 𝐵 } ) |
| 100 |
99
|
ineq1d |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑣 ) = ( ∩ { 𝐵 } ∩ ∩ 𝑣 ) ) |
| 101 |
|
intun |
⊢ ∩ ( { 𝐵 } ∪ 𝑣 ) = ( ∩ { 𝐵 } ∩ ∩ 𝑣 ) |
| 102 |
100 101
|
eqtr4di |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∩ ∩ 𝑣 ) = ∩ ( { 𝐵 } ∪ 𝑣 ) ) |
| 103 |
102
|
ad3antrrr |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐵 ∩ ∩ 𝑣 ) = ∩ ( { 𝐵 } ∪ 𝑣 ) ) |
| 104 |
|
inteq |
⊢ ( 𝑤 = ( { 𝐵 } ∪ 𝑣 ) → ∩ 𝑤 = ∩ ( { 𝐵 } ∪ 𝑣 ) ) |
| 105 |
104
|
rspceeqv |
⊢ ( ( ( { 𝐵 } ∪ 𝑣 ) ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ∧ ( 𝐵 ∩ ∩ 𝑣 ) = ∩ ( { 𝐵 } ∪ 𝑣 ) ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) |
| 106 |
98 103 105
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) |
| 107 |
|
eqeq1 |
⊢ ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ( 𝐴 = ∩ 𝑤 ↔ ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) ) |
| 108 |
107
|
rexbidv |
⊢ ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ( ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ↔ ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) ( 𝐵 ∩ ∩ 𝑣 ) = ∩ 𝑤 ) ) |
| 109 |
106 108
|
syl5ibrcom |
⊢ ( ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) ∧ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) ) → ( 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) |
| 110 |
109
|
rexlimdva |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) → ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ) ) |
| 111 |
78 110
|
impbid |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( ∃ 𝑤 ∈ ( 𝒫 ( { 𝐵 } ∪ 𝐶 ) ∩ Fin ) 𝐴 = ∩ 𝑤 ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |
| 112 |
17 111
|
bitrd |
⊢ ( ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) ∧ 𝐴 ∈ V ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |
| 113 |
112
|
ex |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ V → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) ) |
| 114 |
2 7 113
|
pm5.21ndd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ⊆ 𝒫 𝐵 ) → ( 𝐴 ∈ ( fi ‘ ( { 𝐵 } ∪ 𝐶 ) ) ↔ ∃ 𝑣 ∈ ( 𝒫 𝐶 ∩ Fin ) 𝐴 = ( 𝐵 ∩ ∩ 𝑣 ) ) ) |