Metamath Proof Explorer


Theorem elrfi

Description: Elementhood in a set of relative finite intersections. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion elrfi BVC𝒫BAfiBCv𝒫CFinA=Bv

Proof

Step Hyp Ref Expression
1 elex AfiBCAV
2 1 a1i BVC𝒫BAfiBCAV
3 inex1g BVBvV
4 eleq1 A=BvAVBvV
5 3 4 syl5ibrcom BVA=BvAV
6 5 rexlimdvw BVv𝒫CFinA=BvAV
7 6 adantr BVC𝒫Bv𝒫CFinA=BvAV
8 simpr BVC𝒫BAVAV
9 snex BV
10 pwexg BV𝒫BV
11 10 ad2antrr BVC𝒫BAV𝒫BV
12 simplr BVC𝒫BAVC𝒫B
13 11 12 ssexd BVC𝒫BAVCV
14 unexg BVCVBCV
15 9 13 14 sylancr BVC𝒫BAVBCV
16 elfi AVBCVAfiBCw𝒫BCFinA=w
17 8 15 16 syl2anc BVC𝒫BAVAfiBCw𝒫BCFinA=w
18 inss1 𝒫BCFin𝒫BC
19 uncom BC=CB
20 19 pweqi 𝒫BC=𝒫CB
21 18 20 sseqtri 𝒫BCFin𝒫CB
22 21 sseli w𝒫BCFinw𝒫CB
23 9 elpwun w𝒫CBwB𝒫C
24 22 23 sylib w𝒫BCFinwB𝒫C
25 24 ad2antrl BVC𝒫BAVw𝒫BCFinA=wwB𝒫C
26 inss2 𝒫BCFinFin
27 26 sseli w𝒫BCFinwFin
28 diffi wFinwBFin
29 27 28 syl w𝒫BCFinwBFin
30 29 ad2antrl BVC𝒫BAVw𝒫BCFinA=wwBFin
31 25 30 elind BVC𝒫BAVw𝒫BCFinA=wwB𝒫CFin
32 incom BA=AB
33 simprr BVC𝒫BAVw𝒫BCFinA=wA=w
34 simplr BVC𝒫BAVw𝒫BCFinA=wAV
35 33 34 eqeltrrd BVC𝒫BAVw𝒫BCFinA=wwV
36 intex wwV
37 35 36 sylibr BVC𝒫BAVw𝒫BCFinA=ww
38 intssuni www
39 37 38 syl BVC𝒫BAVw𝒫BCFinA=www
40 18 sseli w𝒫BCFinw𝒫BC
41 40 elpwid w𝒫BCFinwBC
42 41 ad2antrl BVC𝒫BAVw𝒫BCFinA=wwBC
43 pwidg BVB𝒫B
44 43 snssd BVB𝒫B
45 44 adantr BVC𝒫BB𝒫B
46 simpr BVC𝒫BC𝒫B
47 45 46 unssd BVC𝒫BBC𝒫B
48 47 ad2antrr BVC𝒫BAVw𝒫BCFinA=wBC𝒫B
49 42 48 sstrd BVC𝒫BAVw𝒫BCFinA=ww𝒫B
50 sspwuni w𝒫BwB
51 49 50 sylib BVC𝒫BAVw𝒫BCFinA=wwB
52 39 51 sstrd BVC𝒫BAVw𝒫BCFinA=wwB
53 33 52 eqsstrd BVC𝒫BAVw𝒫BCFinA=wAB
54 df-ss ABAB=A
55 53 54 sylib BVC𝒫BAVw𝒫BCFinA=wAB=A
56 32 55 eqtr2id BVC𝒫BAVw𝒫BCFinA=wA=BA
57 ineq2 A=wBA=Bw
58 57 ad2antll BVC𝒫BAVw𝒫BCFinA=wBA=Bw
59 56 58 eqtrd BVC𝒫BAVw𝒫BCFinA=wA=Bw
60 intun Bw=Bw
61 intsng BVB=B
62 61 ineq1d BVBw=Bw
63 60 62 eqtr2id BVBw=Bw
64 63 ad3antrrr BVC𝒫BAVw𝒫BCFinA=wBw=Bw
65 59 64 eqtrd BVC𝒫BAVw𝒫BCFinA=wA=Bw
66 undif2 BwB=Bw
67 66 inteqi BwB=Bw
68 65 67 eqtr4di BVC𝒫BAVw𝒫BCFinA=wA=BwB
69 intun BwB=BwB
70 61 ineq1d BVBwB=BwB
71 69 70 eqtrid BVBwB=BwB
72 71 ad3antrrr BVC𝒫BAVw𝒫BCFinA=wBwB=BwB
73 68 72 eqtrd BVC𝒫BAVw𝒫BCFinA=wA=BwB
74 inteq v=wBv=wB
75 74 ineq2d v=wBBv=BwB
76 75 rspceeqv wB𝒫CFinA=BwBv𝒫CFinA=Bv
77 31 73 76 syl2anc BVC𝒫BAVw𝒫BCFinA=wv𝒫CFinA=Bv
78 77 rexlimdvaa BVC𝒫BAVw𝒫BCFinA=wv𝒫CFinA=Bv
79 ssun1 BBC
80 79 a1i BVC𝒫BAVv𝒫CFinBBC
81 inss1 𝒫CFin𝒫C
82 81 sseli v𝒫CFinv𝒫C
83 elpwi v𝒫CvC
84 ssun4 vCvBC
85 82 83 84 3syl v𝒫CFinvBC
86 85 adantl BVC𝒫BAVv𝒫CFinvBC
87 80 86 unssd BVC𝒫BAVv𝒫CFinBvBC
88 vex vV
89 9 88 unex BvV
90 89 elpw Bv𝒫BCBvBC
91 87 90 sylibr BVC𝒫BAVv𝒫CFinBv𝒫BC
92 snfi BFin
93 inss2 𝒫CFinFin
94 93 sseli v𝒫CFinvFin
95 94 adantl BVC𝒫BAVv𝒫CFinvFin
96 unfi BFinvFinBvFin
97 92 95 96 sylancr BVC𝒫BAVv𝒫CFinBvFin
98 91 97 elind BVC𝒫BAVv𝒫CFinBv𝒫BCFin
99 61 eqcomd BVB=B
100 99 ineq1d BVBv=Bv
101 intun Bv=Bv
102 100 101 eqtr4di BVBv=Bv
103 102 ad3antrrr BVC𝒫BAVv𝒫CFinBv=Bv
104 inteq w=Bvw=Bv
105 104 rspceeqv Bv𝒫BCFinBv=Bvw𝒫BCFinBv=w
106 98 103 105 syl2anc BVC𝒫BAVv𝒫CFinw𝒫BCFinBv=w
107 eqeq1 A=BvA=wBv=w
108 107 rexbidv A=Bvw𝒫BCFinA=ww𝒫BCFinBv=w
109 106 108 syl5ibrcom BVC𝒫BAVv𝒫CFinA=Bvw𝒫BCFinA=w
110 109 rexlimdva BVC𝒫BAVv𝒫CFinA=Bvw𝒫BCFinA=w
111 78 110 impbid BVC𝒫BAVw𝒫BCFinA=wv𝒫CFinA=Bv
112 17 111 bitrd BVC𝒫BAVAfiBCv𝒫CFinA=Bv
113 112 ex BVC𝒫BAVAfiBCv𝒫CFinA=Bv
114 2 7 113 pm5.21ndd BVC𝒫BAfiBCv𝒫CFinA=Bv