Metamath Proof Explorer


Theorem finixpnum

Description: A finite Cartesian product of numerable sets is numerable. (Contributed by Brendan Leahy, 24-Feb-2019)

Ref Expression
Assertion finixpnum ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ dom card ) → X 𝑥𝐴 𝐵 ∈ dom card )

Proof

Step Hyp Ref Expression
1 raleq ( 𝑤 = ∅ → ( ∀ 𝑥𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥 ∈ ∅ 𝐵 ∈ dom card ) )
2 ixpeq1 ( 𝑤 = ∅ → X 𝑥𝑤 𝐵 = X 𝑥 ∈ ∅ 𝐵 )
3 ixp0x X 𝑥 ∈ ∅ 𝐵 = { ∅ }
4 2 3 eqtrdi ( 𝑤 = ∅ → X 𝑥𝑤 𝐵 = { ∅ } )
5 4 eleq1d ( 𝑤 = ∅ → ( X 𝑥𝑤 𝐵 ∈ dom card ↔ { ∅ } ∈ dom card ) )
6 1 5 imbi12d ( 𝑤 = ∅ → ( ( ∀ 𝑥𝑤 𝐵 ∈ dom card → X 𝑥𝑤 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥 ∈ ∅ 𝐵 ∈ dom card → { ∅ } ∈ dom card ) ) )
7 raleq ( 𝑤 = 𝑦 → ( ∀ 𝑥𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥𝑦 𝐵 ∈ dom card ) )
8 ixpeq1 ( 𝑤 = 𝑦X 𝑥𝑤 𝐵 = X 𝑥𝑦 𝐵 )
9 8 eleq1d ( 𝑤 = 𝑦 → ( X 𝑥𝑤 𝐵 ∈ dom card ↔ X 𝑥𝑦 𝐵 ∈ dom card ) )
10 7 9 imbi12d ( 𝑤 = 𝑦 → ( ( ∀ 𝑥𝑤 𝐵 ∈ dom card → X 𝑥𝑤 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥𝑦 𝐵 ∈ dom card → X 𝑥𝑦 𝐵 ∈ dom card ) ) )
11 raleq ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) )
12 ralunb ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ↔ ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ) )
13 vex 𝑧 ∈ V
14 ralsnsg ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ↔ [ 𝑧 / 𝑥 ] 𝐵 ∈ dom card ) )
15 sbcel1g ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] 𝐵 ∈ dom card ↔ 𝑧 / 𝑥 𝐵 ∈ dom card ) )
16 14 15 bitrd ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ↔ 𝑧 / 𝑥 𝐵 ∈ dom card ) )
17 13 16 ax-mp ( ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ↔ 𝑧 / 𝑥 𝐵 ∈ dom card )
18 17 anbi2i ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) )
19 12 18 bitri ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ↔ ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) )
20 11 19 bitrdi ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥𝑤 𝐵 ∈ dom card ↔ ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) ) )
21 ixpeq1 ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → X 𝑥𝑤 𝐵 = X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 )
22 21 eleq1d ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( X 𝑥𝑤 𝐵 ∈ dom card ↔ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) )
23 20 22 imbi12d ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑥𝑤 𝐵 ∈ dom card → X 𝑥𝑤 𝐵 ∈ dom card ) ↔ ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) )
24 raleq ( 𝑤 = 𝐴 → ( ∀ 𝑥𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥𝐴 𝐵 ∈ dom card ) )
25 ixpeq1 ( 𝑤 = 𝐴X 𝑥𝑤 𝐵 = X 𝑥𝐴 𝐵 )
26 25 eleq1d ( 𝑤 = 𝐴 → ( X 𝑥𝑤 𝐵 ∈ dom card ↔ X 𝑥𝐴 𝐵 ∈ dom card ) )
27 24 26 imbi12d ( 𝑤 = 𝐴 → ( ( ∀ 𝑥𝑤 𝐵 ∈ dom card → X 𝑥𝑤 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥𝐴 𝐵 ∈ dom card → X 𝑥𝐴 𝐵 ∈ dom card ) ) )
28 snfi { ∅ } ∈ Fin
29 finnum ( { ∅ } ∈ Fin → { ∅ } ∈ dom card )
30 28 29 mp1i ( ∀ 𝑥 ∈ ∅ 𝐵 ∈ dom card → { ∅ } ∈ dom card )
31 pm2.27 ( ∀ 𝑥𝑦 𝐵 ∈ dom card → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card → X 𝑥𝑦 𝐵 ∈ dom card ) → X 𝑥𝑦 𝐵 ∈ dom card ) )
32 xpnum ( ( X 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) → ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ∈ dom card )
33 32 ancoms ( ( 𝑧 / 𝑥 𝐵 ∈ dom card ∧ X 𝑥𝑦 𝐵 ∈ dom card ) → ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ∈ dom card )
34 xp1st ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) → ( 1st𝑤 ) ∈ X 𝑥𝑦 𝐵 )
35 ixpfn ( ( 1st𝑤 ) ∈ X 𝑥𝑦 𝐵 → ( 1st𝑤 ) Fn 𝑦 )
36 34 35 syl ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) → ( 1st𝑤 ) Fn 𝑦 )
37 fvex ( 2nd𝑤 ) ∈ V
38 13 37 fnsn { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } Fn { 𝑧 }
39 36 38 jctir ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) → ( ( 1st𝑤 ) Fn 𝑦 ∧ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } Fn { 𝑧 } ) )
40 disjsn ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧𝑦 )
41 40 biimpri ( ¬ 𝑧𝑦 → ( 𝑦 ∩ { 𝑧 } ) = ∅ )
42 fnun ( ( ( ( 1st𝑤 ) Fn 𝑦 ∧ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } Fn { 𝑧 } ) ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) Fn ( 𝑦 ∪ { 𝑧 } ) )
43 39 41 42 syl2anr ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) Fn ( 𝑦 ∪ { 𝑧 } ) )
44 fvex ( 1st𝑤 ) ∈ V
45 44 elixp ( ( 1st𝑤 ) ∈ X 𝑥𝑦 𝐵 ↔ ( ( 1st𝑤 ) Fn 𝑦 ∧ ∀ 𝑥𝑦 ( ( 1st𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) )
46 34 45 sylib ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) → ( ( 1st𝑤 ) Fn 𝑦 ∧ ∀ 𝑥𝑦 ( ( 1st𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) )
47 fvun1 ( ( ( 1st𝑤 ) Fn 𝑦 ∧ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } Fn { 𝑧 } ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑥𝑦 ) ) → ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) = ( ( 1st𝑤 ) ‘ 𝑥 ) )
48 38 47 mp3an2 ( ( ( 1st𝑤 ) Fn 𝑦 ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑥𝑦 ) ) → ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) = ( ( 1st𝑤 ) ‘ 𝑥 ) )
49 48 anassrs ( ( ( ( 1st𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) ∧ 𝑥𝑦 ) → ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) = ( ( 1st𝑤 ) ‘ 𝑥 ) )
50 49 eleq1d ( ( ( ( 1st𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) ∧ 𝑥𝑦 ) → ( ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ↔ ( ( 1st𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) )
51 50 biimprd ( ( ( ( 1st𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) ∧ 𝑥𝑦 ) → ( ( ( 1st𝑤 ) ‘ 𝑥 ) ∈ 𝐵 → ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ) )
52 51 ralimdva ( ( ( 1st𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( ∀ 𝑥𝑦 ( ( 1st𝑤 ) ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥𝑦 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ) )
53 52 ancoms ( ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ ( 1st𝑤 ) Fn 𝑦 ) → ( ∀ 𝑥𝑦 ( ( 1st𝑤 ) ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥𝑦 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ) )
54 53 impr ( ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ ( ( 1st𝑤 ) Fn 𝑦 ∧ ∀ 𝑥𝑦 ( ( 1st𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) ) → ∀ 𝑥𝑦 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 )
55 41 46 54 syl2an ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → ∀ 𝑥𝑦 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 )
56 vsnid 𝑧 ∈ { 𝑧 }
57 41 56 jctir ( ¬ 𝑧𝑦 → ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) )
58 fvun2 ( ( ( 1st𝑤 ) Fn 𝑦 ∧ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } Fn { 𝑧 } ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) → ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑧 ) = ( { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ‘ 𝑧 ) )
59 38 58 mp3an2 ( ( ( 1st𝑤 ) Fn 𝑦 ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) → ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑧 ) = ( { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ‘ 𝑧 ) )
60 36 57 59 syl2anr ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑧 ) = ( { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ‘ 𝑧 ) )
61 csbfv 𝑧 / 𝑥 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) = ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑧 )
62 13 37 fvsn ( { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ‘ 𝑧 ) = ( 2nd𝑤 )
63 62 eqcomi ( 2nd𝑤 ) = ( { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ‘ 𝑧 )
64 60 61 63 3eqtr4g ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → 𝑧 / 𝑥 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) = ( 2nd𝑤 ) )
65 xp2nd ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) → ( 2nd𝑤 ) ∈ 𝑧 / 𝑥 𝐵 )
66 65 adantl ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → ( 2nd𝑤 ) ∈ 𝑧 / 𝑥 𝐵 )
67 64 66 eqeltrd ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → 𝑧 / 𝑥 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝑧 / 𝑥 𝐵 )
68 ralsnsg ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵[ 𝑧 / 𝑥 ] ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ) )
69 13 68 ax-mp ( ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵[ 𝑧 / 𝑥 ] ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 )
70 sbcel12 ( [ 𝑧 / 𝑥 ] ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 𝑧 / 𝑥 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝑧 / 𝑥 𝐵 )
71 69 70 bitri ( ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 𝑧 / 𝑥 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝑧 / 𝑥 𝐵 )
72 67 71 sylibr ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 )
73 ralun ( ( ∀ 𝑥𝑦 ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 )
74 55 72 73 syl2anc ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 )
75 snex { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ∈ V
76 44 75 unex ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ∈ V
77 76 elixp ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ‘ 𝑥 ) ∈ 𝐵 ) )
78 43 74 77 sylanbrc ( ( ¬ 𝑧𝑦𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ) → ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 )
79 78 fmpttd ( ¬ 𝑧𝑦 → ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) : ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ⟶ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 )
80 ixpfn ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) )
81 ssun1 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } )
82 fnssres ( ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑢𝑦 ) Fn 𝑦 )
83 80 81 82 sylancl ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( 𝑢𝑦 ) Fn 𝑦 )
84 vex 𝑢 ∈ V
85 84 elixp ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢𝑥 ) ∈ 𝐵 ) )
86 ssralv ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢𝑥 ) ∈ 𝐵 → ∀ 𝑥𝑦 ( 𝑢𝑥 ) ∈ 𝐵 ) )
87 81 86 ax-mp ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢𝑥 ) ∈ 𝐵 → ∀ 𝑥𝑦 ( 𝑢𝑥 ) ∈ 𝐵 )
88 fvres ( 𝑥𝑦 → ( ( 𝑢𝑦 ) ‘ 𝑥 ) = ( 𝑢𝑥 ) )
89 88 eleq1d ( 𝑥𝑦 → ( ( ( 𝑢𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑢𝑥 ) ∈ 𝐵 ) )
90 89 biimprd ( 𝑥𝑦 → ( ( 𝑢𝑥 ) ∈ 𝐵 → ( ( 𝑢𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) )
91 90 ralimia ( ∀ 𝑥𝑦 ( 𝑢𝑥 ) ∈ 𝐵 → ∀ 𝑥𝑦 ( ( 𝑢𝑦 ) ‘ 𝑥 ) ∈ 𝐵 )
92 87 91 syl ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢𝑥 ) ∈ 𝐵 → ∀ 𝑥𝑦 ( ( 𝑢𝑦 ) ‘ 𝑥 ) ∈ 𝐵 )
93 92 adantl ( ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢𝑥 ) ∈ 𝐵 ) → ∀ 𝑥𝑦 ( ( 𝑢𝑦 ) ‘ 𝑥 ) ∈ 𝐵 )
94 85 93 sylbi ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ∀ 𝑥𝑦 ( ( 𝑢𝑦 ) ‘ 𝑥 ) ∈ 𝐵 )
95 84 resex ( 𝑢𝑦 ) ∈ V
96 95 elixp ( ( 𝑢𝑦 ) ∈ X 𝑥𝑦 𝐵 ↔ ( ( 𝑢𝑦 ) Fn 𝑦 ∧ ∀ 𝑥𝑦 ( ( 𝑢𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) )
97 83 94 96 sylanbrc ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( 𝑢𝑦 ) ∈ X 𝑥𝑦 𝐵 )
98 ssun2 { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } )
99 98 56 sselii 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } )
100 csbeq1 ( 𝑤 = 𝑧 𝑤 / 𝑥 𝐵 = 𝑧 / 𝑥 𝐵 )
101 100 fvixp ( ( 𝑢X 𝑤 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑤 / 𝑥 𝐵𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑢𝑧 ) ∈ 𝑧 / 𝑥 𝐵 )
102 99 101 mpan2 ( 𝑢X 𝑤 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑤 / 𝑥 𝐵 → ( 𝑢𝑧 ) ∈ 𝑧 / 𝑥 𝐵 )
103 nfcv 𝑤 𝐵
104 nfcsb1v 𝑥 𝑤 / 𝑥 𝐵
105 csbeq1a ( 𝑥 = 𝑤𝐵 = 𝑤 / 𝑥 𝐵 )
106 103 104 105 cbvixp X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = X 𝑤 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝑤 / 𝑥 𝐵
107 102 106 eleq2s ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( 𝑢𝑧 ) ∈ 𝑧 / 𝑥 𝐵 )
108 opelxpi ( ( ( 𝑢𝑦 ) ∈ X 𝑥𝑦 𝐵 ∧ ( 𝑢𝑧 ) ∈ 𝑧 / 𝑥 𝐵 ) → ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) )
109 97 107 108 syl2anc ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) )
110 109 adantl ( ( ¬ 𝑧𝑦𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) )
111 disj3 ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ 𝑦 = ( 𝑦 ∖ { 𝑧 } ) )
112 40 111 sylbb1 ( ¬ 𝑧𝑦𝑦 = ( 𝑦 ∖ { 𝑧 } ) )
113 difun2 ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) = ( 𝑦 ∖ { 𝑧 } )
114 112 113 eqtr4di ( ¬ 𝑧𝑦𝑦 = ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) )
115 114 reseq2d ( ¬ 𝑧𝑦 → ( 𝑢𝑦 ) = ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) )
116 115 uneq1d ( ¬ 𝑧𝑦 → ( ( 𝑢𝑦 ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
117 116 adantr ( ( ¬ 𝑧𝑦𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( ( 𝑢𝑦 ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
118 fvex ( 𝑢𝑧 ) ∈ V
119 95 118 op1std ( 𝑤 = ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ → ( 1st𝑤 ) = ( 𝑢𝑦 ) )
120 95 118 op2ndd ( 𝑤 = ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ → ( 2nd𝑤 ) = ( 𝑢𝑧 ) )
121 120 opeq2d ( 𝑤 = ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ → ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ = ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ )
122 121 sneqd ( 𝑤 = ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ → { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } = { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } )
123 119 122 uneq12d ( 𝑤 = ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ → ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) = ( ( 𝑢𝑦 ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
124 eqid ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) = ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) )
125 snex { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ∈ V
126 95 125 unex ( ( 𝑢𝑦 ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) ∈ V
127 123 124 126 fvmpt ( ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) → ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ) = ( ( 𝑢𝑦 ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
128 109 127 syl ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ) = ( ( 𝑢𝑦 ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
129 128 adantl ( ( ¬ 𝑧𝑦𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ) = ( ( 𝑢𝑦 ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
130 fnsnsplit ( ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑢 = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
131 80 99 130 sylancl ( 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵𝑢 = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
132 131 adantl ( ( ¬ 𝑧𝑦𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → 𝑢 = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { ⟨ 𝑧 , ( 𝑢𝑧 ) ⟩ } ) )
133 117 129 132 3eqtr4rd ( ( ¬ 𝑧𝑦𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → 𝑢 = ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ) )
134 fveq2 ( 𝑣 = ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ → ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ 𝑣 ) = ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ) )
135 134 rspceeqv ( ( ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ∧ 𝑢 = ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ ⟨ ( 𝑢𝑦 ) , ( 𝑢𝑧 ) ⟩ ) ) → ∃ 𝑣 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ 𝑣 ) )
136 110 133 135 syl2anc ( ( ¬ 𝑧𝑦𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ∃ 𝑣 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ 𝑣 ) )
137 136 ralrimiva ( ¬ 𝑧𝑦 → ∀ 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵𝑣 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ 𝑣 ) )
138 dffo3 ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) : ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) –ontoX 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) : ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ⟶ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∧ ∀ 𝑢X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵𝑣 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) ‘ 𝑣 ) ) )
139 79 137 138 sylanbrc ( ¬ 𝑧𝑦 → ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) : ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) –ontoX 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 )
140 fonum ( ( ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ∈ dom card ∧ ( 𝑤 ∈ ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) ↦ ( ( 1st𝑤 ) ∪ { ⟨ 𝑧 , ( 2nd𝑤 ) ⟩ } ) ) : ( X 𝑥𝑦 𝐵 × 𝑧 / 𝑥 𝐵 ) –ontoX 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card )
141 33 139 140 syl2anr ( ( ¬ 𝑧𝑦 ∧ ( 𝑧 / 𝑥 𝐵 ∈ dom card ∧ X 𝑥𝑦 𝐵 ∈ dom card ) ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card )
142 141 expr ( ( ¬ 𝑧𝑦 𝑧 / 𝑥 𝐵 ∈ dom card ) → ( X 𝑥𝑦 𝐵 ∈ dom card → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) )
143 31 142 syl9r ( ( ¬ 𝑧𝑦 𝑧 / 𝑥 𝐵 ∈ dom card ) → ( ∀ 𝑥𝑦 𝐵 ∈ dom card → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card → X 𝑥𝑦 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) )
144 143 expimpd ( ¬ 𝑧𝑦 → ( ( 𝑧 / 𝑥 𝐵 ∈ dom card ∧ ∀ 𝑥𝑦 𝐵 ∈ dom card ) → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card → X 𝑥𝑦 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) )
145 144 ancomsd ( ¬ 𝑧𝑦 → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card → X 𝑥𝑦 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) )
146 145 com23 ( ¬ 𝑧𝑦 → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card → X 𝑥𝑦 𝐵 ∈ dom card ) → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) )
147 146 adantl ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧𝑦 ) → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card → X 𝑥𝑦 𝐵 ∈ dom card ) → ( ( ∀ 𝑥𝑦 𝐵 ∈ dom card ∧ 𝑧 / 𝑥 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) )
148 6 10 23 27 30 147 findcard2s ( 𝐴 ∈ Fin → ( ∀ 𝑥𝐴 𝐵 ∈ dom card → X 𝑥𝐴 𝐵 ∈ dom card ) )
149 148 imp ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴 𝐵 ∈ dom card ) → X 𝑥𝐴 𝐵 ∈ dom card )