Step |
Hyp |
Ref |
Expression |
1 |
|
raleq |
⊢ ( 𝑤 = ∅ → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥 ∈ ∅ 𝐵 ∈ dom card ) ) |
2 |
|
ixpeq1 |
⊢ ( 𝑤 = ∅ → X 𝑥 ∈ 𝑤 𝐵 = X 𝑥 ∈ ∅ 𝐵 ) |
3 |
|
ixp0x |
⊢ X 𝑥 ∈ ∅ 𝐵 = { ∅ } |
4 |
2 3
|
eqtrdi |
⊢ ( 𝑤 = ∅ → X 𝑥 ∈ 𝑤 𝐵 = { ∅ } ) |
5 |
4
|
eleq1d |
⊢ ( 𝑤 = ∅ → ( X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ { ∅ } ∈ dom card ) ) |
6 |
1 5
|
imbi12d |
⊢ ( 𝑤 = ∅ → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card → X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥 ∈ ∅ 𝐵 ∈ dom card → { ∅ } ∈ dom card ) ) ) |
7 |
|
raleq |
⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) ) |
8 |
|
ixpeq1 |
⊢ ( 𝑤 = 𝑦 → X 𝑥 ∈ 𝑤 𝐵 = X 𝑥 ∈ 𝑦 𝐵 ) |
9 |
8
|
eleq1d |
⊢ ( 𝑤 = 𝑦 → ( X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card → X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) ) ) |
11 |
|
raleq |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) |
12 |
|
ralunb |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ↔ ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ) ) |
13 |
|
vex |
⊢ 𝑧 ∈ V |
14 |
|
ralsnsg |
⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ↔ [ 𝑧 / 𝑥 ] 𝐵 ∈ dom card ) ) |
15 |
|
sbcel1g |
⊢ ( 𝑧 ∈ V → ( [ 𝑧 / 𝑥 ] 𝐵 ∈ dom card ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) ) |
16 |
14 15
|
bitrd |
⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) ) |
17 |
13 16
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ↔ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) |
18 |
17
|
anbi2i |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ∀ 𝑥 ∈ { 𝑧 } 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) ) |
19 |
12 18
|
bitri |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ↔ ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) ) |
20 |
11 19
|
bitrdi |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) ) ) |
21 |
|
ixpeq1 |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → X 𝑥 ∈ 𝑤 𝐵 = X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
22 |
21
|
eleq1d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) |
23 |
20 22
|
imbi12d |
⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card → X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ) ↔ ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) ) |
24 |
|
raleq |
⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ dom card ) ) |
25 |
|
ixpeq1 |
⊢ ( 𝑤 = 𝐴 → X 𝑥 ∈ 𝑤 𝐵 = X 𝑥 ∈ 𝐴 𝐵 ) |
26 |
25
|
eleq1d |
⊢ ( 𝑤 = 𝐴 → ( X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ↔ X 𝑥 ∈ 𝐴 𝐵 ∈ dom card ) ) |
27 |
24 26
|
imbi12d |
⊢ ( 𝑤 = 𝐴 → ( ( ∀ 𝑥 ∈ 𝑤 𝐵 ∈ dom card → X 𝑥 ∈ 𝑤 𝐵 ∈ dom card ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ dom card → X 𝑥 ∈ 𝐴 𝐵 ∈ dom card ) ) ) |
28 |
|
snfi |
⊢ { ∅ } ∈ Fin |
29 |
|
finnum |
⊢ ( { ∅ } ∈ Fin → { ∅ } ∈ dom card ) |
30 |
28 29
|
mp1i |
⊢ ( ∀ 𝑥 ∈ ∅ 𝐵 ∈ dom card → { ∅ } ∈ dom card ) |
31 |
|
pm2.27 |
⊢ ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) ) |
32 |
|
xpnum |
⊢ ( ( X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) → ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ dom card ) |
33 |
32
|
ancoms |
⊢ ( ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ∧ X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ dom card ) |
34 |
|
xp1st |
⊢ ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ( 1st ‘ 𝑤 ) ∈ X 𝑥 ∈ 𝑦 𝐵 ) |
35 |
|
ixpfn |
⊢ ( ( 1st ‘ 𝑤 ) ∈ X 𝑥 ∈ 𝑦 𝐵 → ( 1st ‘ 𝑤 ) Fn 𝑦 ) |
36 |
34 35
|
syl |
⊢ ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ( 1st ‘ 𝑤 ) Fn 𝑦 ) |
37 |
|
fvex |
⊢ ( 2nd ‘ 𝑤 ) ∈ V |
38 |
13 37
|
fnsn |
⊢ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } Fn { 𝑧 } |
39 |
36 38
|
jctir |
⊢ ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } Fn { 𝑧 } ) ) |
40 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
41 |
40
|
biimpri |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
42 |
|
fnun |
⊢ ( ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } Fn { 𝑧 } ) ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ) |
43 |
39 41 42
|
syl2anr |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ) |
44 |
|
fvex |
⊢ ( 1st ‘ 𝑤 ) ∈ V |
45 |
44
|
elixp |
⊢ ( ( 1st ‘ 𝑤 ) ∈ X 𝑥 ∈ 𝑦 𝐵 ↔ ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
46 |
34 45
|
sylib |
⊢ ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
47 |
|
fvun1 |
⊢ ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } Fn { 𝑧 } ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑥 ∈ 𝑦 ) ) → ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) = ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) |
48 |
38 47
|
mp3an2 |
⊢ ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑥 ∈ 𝑦 ) ) → ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) = ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) |
49 |
48
|
anassrs |
⊢ ( ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) = ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ) |
50 |
49
|
eleq1d |
⊢ ( ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ↔ ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
51 |
50
|
biimprd |
⊢ ( ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) ∧ 𝑥 ∈ 𝑦 ) → ( ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ∈ 𝐵 → ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
52 |
51
|
ralimdva |
⊢ ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ( 𝑦 ∩ { 𝑧 } ) = ∅ ) → ( ∀ 𝑥 ∈ 𝑦 ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝑦 ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
53 |
52
|
ancoms |
⊢ ( ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ ( 1st ‘ 𝑤 ) Fn 𝑦 ) → ( ∀ 𝑥 ∈ 𝑦 ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝑦 ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
54 |
53
|
impr |
⊢ ( ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 1st ‘ 𝑤 ) ‘ 𝑥 ) ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝑦 ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) |
55 |
41 46 54
|
syl2an |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ∀ 𝑥 ∈ 𝑦 ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) |
56 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
57 |
41 56
|
jctir |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) |
58 |
|
fvun2 |
⊢ ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } Fn { 𝑧 } ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) → ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ‘ 𝑧 ) ) |
59 |
38 58
|
mp3an2 |
⊢ ( ( ( 1st ‘ 𝑤 ) Fn 𝑦 ∧ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ∧ 𝑧 ∈ { 𝑧 } ) ) → ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ‘ 𝑧 ) ) |
60 |
36 57 59
|
syl2anr |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑧 ) = ( { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ‘ 𝑧 ) ) |
61 |
|
csbfv |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) = ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑧 ) |
62 |
13 37
|
fvsn |
⊢ ( { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ‘ 𝑧 ) = ( 2nd ‘ 𝑤 ) |
63 |
62
|
eqcomi |
⊢ ( 2nd ‘ 𝑤 ) = ( { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ‘ 𝑧 ) |
64 |
60 61 63
|
3eqtr4g |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ⦋ 𝑧 / 𝑥 ⦌ ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) = ( 2nd ‘ 𝑤 ) ) |
65 |
|
xp2nd |
⊢ ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
66 |
65
|
adantl |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
67 |
64 66
|
eqeltrd |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ⦋ 𝑧 / 𝑥 ⦌ ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
68 |
|
ralsnsg |
⊢ ( 𝑧 ∈ V → ( ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ↔ [ 𝑧 / 𝑥 ] ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
69 |
13 68
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ↔ [ 𝑧 / 𝑥 ] ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) |
70 |
|
sbcel12 |
⊢ ( [ 𝑧 / 𝑥 ] ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
71 |
69 70
|
bitri |
⊢ ( ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ↔ ⦋ 𝑧 / 𝑥 ⦌ ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
72 |
67 71
|
sylibr |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) |
73 |
|
ralun |
⊢ ( ( ∀ 𝑥 ∈ 𝑦 ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ { 𝑧 } ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) |
74 |
55 72 73
|
syl2anc |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) |
75 |
|
snex |
⊢ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ∈ V |
76 |
44 75
|
unex |
⊢ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ∈ V |
77 |
76
|
elixp |
⊢ ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
78 |
43 74 77
|
sylanbrc |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) → ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
79 |
78
|
fmpttd |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) : ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ⟶ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
80 |
|
ixpfn |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ) |
81 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
82 |
|
fnssres |
⊢ ( ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑢 ↾ 𝑦 ) Fn 𝑦 ) |
83 |
80 81 82
|
sylancl |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( 𝑢 ↾ 𝑦 ) Fn 𝑦 ) |
84 |
|
vex |
⊢ 𝑢 ∈ V |
85 |
84
|
elixp |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 ) ) |
86 |
|
ssralv |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝑦 ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 ) ) |
87 |
81 86
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝑦 ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 ) |
88 |
|
fvres |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) = ( 𝑢 ‘ 𝑥 ) ) |
89 |
88
|
eleq1d |
⊢ ( 𝑥 ∈ 𝑦 → ( ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ↔ ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 ) ) |
90 |
89
|
biimprd |
⊢ ( 𝑥 ∈ 𝑦 → ( ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 → ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
91 |
90
|
ralimia |
⊢ ( ∀ 𝑥 ∈ 𝑦 ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝑦 ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) |
92 |
87 91
|
syl |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝑦 ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) |
93 |
92
|
adantl |
⊢ ( ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝑢 ‘ 𝑥 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ 𝑦 ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) |
94 |
85 93
|
sylbi |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ∀ 𝑥 ∈ 𝑦 ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) |
95 |
84
|
resex |
⊢ ( 𝑢 ↾ 𝑦 ) ∈ V |
96 |
95
|
elixp |
⊢ ( ( 𝑢 ↾ 𝑦 ) ∈ X 𝑥 ∈ 𝑦 𝐵 ↔ ( ( 𝑢 ↾ 𝑦 ) Fn 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ( ( 𝑢 ↾ 𝑦 ) ‘ 𝑥 ) ∈ 𝐵 ) ) |
97 |
83 94 96
|
sylanbrc |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( 𝑢 ↾ 𝑦 ) ∈ X 𝑥 ∈ 𝑦 𝐵 ) |
98 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) |
99 |
98 56
|
sselii |
⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
100 |
|
csbeq1 |
⊢ ( 𝑤 = 𝑧 → ⦋ 𝑤 / 𝑥 ⦌ 𝐵 = ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
101 |
100
|
fvixp |
⊢ ( ( 𝑢 ∈ X 𝑤 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( 𝑢 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
102 |
99 101
|
mpan2 |
⊢ ( 𝑢 ∈ X 𝑤 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑤 / 𝑥 ⦌ 𝐵 → ( 𝑢 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
103 |
|
nfcv |
⊢ Ⅎ 𝑤 𝐵 |
104 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
105 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑤 → 𝐵 = ⦋ 𝑤 / 𝑥 ⦌ 𝐵 ) |
106 |
103 104 105
|
cbvixp |
⊢ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = X 𝑤 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑤 / 𝑥 ⦌ 𝐵 |
107 |
102 106
|
eleq2s |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( 𝑢 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) |
108 |
|
opelxpi |
⊢ ( ( ( 𝑢 ↾ 𝑦 ) ∈ X 𝑥 ∈ 𝑦 𝐵 ∧ ( 𝑢 ‘ 𝑧 ) ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
109 |
97 107 108
|
syl2anc |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
110 |
109
|
adantl |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ) |
111 |
|
disj3 |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ 𝑦 = ( 𝑦 ∖ { 𝑧 } ) ) |
112 |
40 111
|
sylbb1 |
⊢ ( ¬ 𝑧 ∈ 𝑦 → 𝑦 = ( 𝑦 ∖ { 𝑧 } ) ) |
113 |
|
difun2 |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) = ( 𝑦 ∖ { 𝑧 } ) |
114 |
112 113
|
eqtr4di |
⊢ ( ¬ 𝑧 ∈ 𝑦 → 𝑦 = ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) |
115 |
114
|
reseq2d |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑢 ↾ 𝑦 ) = ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ) |
116 |
115
|
uneq1d |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( 𝑢 ↾ 𝑦 ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
117 |
116
|
adantr |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( ( 𝑢 ↾ 𝑦 ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
118 |
|
fvex |
⊢ ( 𝑢 ‘ 𝑧 ) ∈ V |
119 |
95 118
|
op1std |
⊢ ( 𝑤 = 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 → ( 1st ‘ 𝑤 ) = ( 𝑢 ↾ 𝑦 ) ) |
120 |
95 118
|
op2ndd |
⊢ ( 𝑤 = 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 → ( 2nd ‘ 𝑤 ) = ( 𝑢 ‘ 𝑧 ) ) |
121 |
120
|
opeq2d |
⊢ ( 𝑤 = 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 → 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 = 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 ) |
122 |
121
|
sneqd |
⊢ ( 𝑤 = 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 → { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } = { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) |
123 |
119 122
|
uneq12d |
⊢ ( 𝑤 = 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 → ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) = ( ( 𝑢 ↾ 𝑦 ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
124 |
|
eqid |
⊢ ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) = ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) |
125 |
|
snex |
⊢ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ∈ V |
126 |
95 125
|
unex |
⊢ ( ( 𝑢 ↾ 𝑦 ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ∈ V |
127 |
123 124 126
|
fvmpt |
⊢ ( 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) → ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ) = ( ( 𝑢 ↾ 𝑦 ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
128 |
109 127
|
syl |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ) = ( ( 𝑢 ↾ 𝑦 ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
129 |
128
|
adantl |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ) = ( ( 𝑢 ↾ 𝑦 ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
130 |
|
fnsnsplit |
⊢ ( ( 𝑢 Fn ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → 𝑢 = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
131 |
80 99 130
|
sylancl |
⊢ ( 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → 𝑢 = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
132 |
131
|
adantl |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → 𝑢 = ( ( 𝑢 ↾ ( ( 𝑦 ∪ { 𝑧 } ) ∖ { 𝑧 } ) ) ∪ { 〈 𝑧 , ( 𝑢 ‘ 𝑧 ) 〉 } ) ) |
133 |
117 129 132
|
3eqtr4rd |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → 𝑢 = ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ) ) |
134 |
|
fveq2 |
⊢ ( 𝑣 = 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 → ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 𝑣 ) = ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ) ) |
135 |
134
|
rspceeqv |
⊢ ( ( 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∧ 𝑢 = ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 〈 ( 𝑢 ↾ 𝑦 ) , ( 𝑢 ‘ 𝑧 ) 〉 ) ) → ∃ 𝑣 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 𝑣 ) ) |
136 |
110 133 135
|
syl2anc |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ∃ 𝑣 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 𝑣 ) ) |
137 |
136
|
ralrimiva |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ∀ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∃ 𝑣 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 𝑣 ) ) |
138 |
|
dffo3 |
⊢ ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) : ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) –onto→ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) : ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ⟶ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∧ ∀ 𝑢 ∈ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∃ 𝑣 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) 𝑢 = ( ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) ‘ 𝑣 ) ) ) |
139 |
79 137 138
|
sylanbrc |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) : ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) –onto→ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) |
140 |
|
fonum |
⊢ ( ( ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ∈ dom card ∧ ( 𝑤 ∈ ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) ↦ ( ( 1st ‘ 𝑤 ) ∪ { 〈 𝑧 , ( 2nd ‘ 𝑤 ) 〉 } ) ) : ( X 𝑥 ∈ 𝑦 𝐵 × ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ) –onto→ X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) |
141 |
33 139 140
|
syl2anr |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ∧ X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) |
142 |
141
|
expr |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) → ( X 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) |
143 |
31 142
|
syl9r |
⊢ ( ( ¬ 𝑧 ∈ 𝑦 ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) → ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) ) |
144 |
143
|
expimpd |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ∧ ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) ) |
145 |
144
|
ancomsd |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) ) |
146 |
145
|
com23 |
⊢ ( ¬ 𝑧 ∈ 𝑦 → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) ) |
147 |
146
|
adantl |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card → X 𝑥 ∈ 𝑦 𝐵 ∈ dom card ) → ( ( ∀ 𝑥 ∈ 𝑦 𝐵 ∈ dom card ∧ ⦋ 𝑧 / 𝑥 ⦌ 𝐵 ∈ dom card ) → X 𝑥 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom card ) ) ) |
148 |
6 10 23 27 30 147
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ dom card → X 𝑥 ∈ 𝐴 𝐵 ∈ dom card ) ) |
149 |
148
|
imp |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ dom card ) → X 𝑥 ∈ 𝐴 𝐵 ∈ dom card ) |