| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem57.f |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 2 |
|
fourierdlem57.xre |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 3 |
|
fourierdlem57.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 4 |
|
fourierdlem57.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 5 |
|
fourierdlem57.fdv |
⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) : ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⟶ ℝ ) |
| 6 |
|
fourierdlem57.ab |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( - π [,] π ) ) |
| 7 |
|
fourierdlem57.n0 |
⊢ ( 𝜑 → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 8 |
|
fourierdlem57.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 9 |
|
fourierdlem57.o |
⊢ 𝑂 = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
| 10 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) : ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ⟶ ℝ ) |
| 11 |
2 3
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + 𝐴 ) ∈ ℝ ) |
| 12 |
11
|
rexrd |
⊢ ( 𝜑 → ( 𝑋 + 𝐴 ) ∈ ℝ* ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐴 ) ∈ ℝ* ) |
| 14 |
2 4
|
readdcld |
⊢ ( 𝜑 → ( 𝑋 + 𝐵 ) ∈ ℝ ) |
| 15 |
14
|
rexrd |
⊢ ( 𝜑 → ( 𝑋 + 𝐵 ) ∈ ℝ* ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐵 ) ∈ ℝ* ) |
| 17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑋 ∈ ℝ ) |
| 18 |
|
elioore |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → 𝑠 ∈ ℝ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ℝ ) |
| 20 |
17 19
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ℝ ) |
| 21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| 22 |
21
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 23 |
4
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 26 |
|
ioogtlb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑠 ) |
| 27 |
22 24 25 26
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐴 < 𝑠 ) |
| 28 |
21 19 17 27
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝐴 ) < ( 𝑋 + 𝑠 ) ) |
| 29 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐵 ∈ ℝ ) |
| 30 |
|
iooltub |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 𝐵 ) |
| 31 |
22 24 25 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 < 𝐵 ) |
| 32 |
19 29 17 31
|
ltadd2dd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) < ( 𝑋 + 𝐵 ) ) |
| 33 |
13 16 20 28 32
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑋 + 𝑠 ) ∈ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) |
| 34 |
10 33
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
| 35 |
|
2re |
⊢ 2 ∈ ℝ |
| 36 |
35
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℝ ) |
| 37 |
|
rehalfcl |
⊢ ( 𝑠 ∈ ℝ → ( 𝑠 / 2 ) ∈ ℝ ) |
| 38 |
19 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑠 / 2 ) ∈ ℝ ) |
| 39 |
38
|
resincld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℝ ) |
| 40 |
36 39
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℝ ) |
| 41 |
34 40
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ∈ ℝ ) |
| 42 |
38
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( cos ‘ ( 𝑠 / 2 ) ) ∈ ℝ ) |
| 43 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 44 |
43 20
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℝ ) |
| 45 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℝ ) |
| 46 |
44 45
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ∈ ℝ ) |
| 47 |
42 46
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ∈ ℝ ) |
| 48 |
41 47
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) ∈ ℝ ) |
| 49 |
40
|
resqcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ∈ ℝ ) |
| 50 |
|
2cnd |
⊢ ( 𝑠 ∈ ℝ → 2 ∈ ℂ ) |
| 51 |
37
|
recnd |
⊢ ( 𝑠 ∈ ℝ → ( 𝑠 / 2 ) ∈ ℂ ) |
| 52 |
51
|
sincld |
⊢ ( 𝑠 ∈ ℝ → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
| 53 |
50 52
|
mulcld |
⊢ ( 𝑠 ∈ ℝ → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
| 54 |
19 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ) |
| 55 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℂ ) |
| 56 |
19 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
| 57 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 58 |
57
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ≠ 0 ) |
| 59 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ∈ ( - π [,] π ) ) |
| 60 |
|
eqcom |
⊢ ( 𝑠 = 0 ↔ 0 = 𝑠 ) |
| 61 |
60
|
biimpi |
⊢ ( 𝑠 = 0 → 0 = 𝑠 ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑠 = 0 ) → 0 = 𝑠 ) |
| 63 |
|
simpl |
⊢ ( ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑠 = 0 ) → 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 64 |
62 63
|
eqeltrd |
⊢ ( ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 65 |
64
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑠 = 0 ) → 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 66 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑠 = 0 ) → ¬ 0 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 67 |
65 66
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ¬ 𝑠 = 0 ) |
| 68 |
67
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑠 ≠ 0 ) |
| 69 |
|
fourierdlem44 |
⊢ ( ( 𝑠 ∈ ( - π [,] π ) ∧ 𝑠 ≠ 0 ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
| 70 |
59 68 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( sin ‘ ( 𝑠 / 2 ) ) ≠ 0 ) |
| 71 |
55 56 58 70
|
mulne0d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) |
| 72 |
|
2z |
⊢ 2 ∈ ℤ |
| 73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 2 ∈ ℤ ) |
| 74 |
54 71 73
|
expne0d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ≠ 0 ) |
| 75 |
48 49 74
|
redivcld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ∈ ℝ ) |
| 76 |
|
eqid |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) |
| 77 |
75 76
|
fmptd |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 78 |
9
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝜑 → ( ℝ D 𝑂 ) = ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) ) |
| 80 |
|
reelprrecn |
⊢ ℝ ∈ { ℝ , ℂ } |
| 81 |
80
|
a1i |
⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 82 |
46
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ∈ ℂ ) |
| 83 |
44
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 84 |
|
eqid |
⊢ ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) = ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) |
| 85 |
1 2 3 4 84 5
|
fourierdlem28 |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 86 |
45
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 87 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → 0 ∈ ℝ ) |
| 88 |
|
iooretop |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( topGen ‘ ran (,) ) |
| 89 |
|
tgioo4 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 90 |
88 89
|
eleqtri |
⊢ ( 𝐴 (,) 𝐵 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
| 91 |
90
|
a1i |
⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ) |
| 92 |
8
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 93 |
81 91 92
|
dvmptconst |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ 0 ) ) |
| 94 |
81 83 34 85 86 87 93
|
dvmptsub |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 0 ) ) ) |
| 95 |
34
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ∈ ℂ ) |
| 96 |
95
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 0 ) = ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) |
| 97 |
96
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) − 0 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 98 |
94 97
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) ) ) |
| 99 |
|
eldifsn |
⊢ ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ( ℂ ∖ { 0 } ) ↔ ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ℂ ∧ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ≠ 0 ) ) |
| 100 |
54 71 99
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ∈ ( ℂ ∖ { 0 } ) ) |
| 101 |
|
recn |
⊢ ( 𝑠 ∈ ℝ → 𝑠 ∈ ℂ ) |
| 102 |
57
|
a1i |
⊢ ( 𝑠 ∈ ℝ → 2 ≠ 0 ) |
| 103 |
101 50 102
|
divrec2d |
⊢ ( 𝑠 ∈ ℝ → ( 𝑠 / 2 ) = ( ( 1 / 2 ) · 𝑠 ) ) |
| 104 |
103
|
eqcomd |
⊢ ( 𝑠 ∈ ℝ → ( ( 1 / 2 ) · 𝑠 ) = ( 𝑠 / 2 ) ) |
| 105 |
18 104
|
syl |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 1 / 2 ) · 𝑠 ) = ( 𝑠 / 2 ) ) |
| 106 |
105
|
fveq2d |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) = ( cos ‘ ( 𝑠 / 2 ) ) ) |
| 107 |
|
halfcn |
⊢ ( 1 / 2 ) ∈ ℂ |
| 108 |
107
|
a1i |
⊢ ( 𝑠 ∈ ℂ → ( 1 / 2 ) ∈ ℂ ) |
| 109 |
|
id |
⊢ ( 𝑠 ∈ ℂ → 𝑠 ∈ ℂ ) |
| 110 |
108 109
|
mulcld |
⊢ ( 𝑠 ∈ ℂ → ( ( 1 / 2 ) · 𝑠 ) ∈ ℂ ) |
| 111 |
110
|
coscld |
⊢ ( 𝑠 ∈ ℂ → ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ∈ ℂ ) |
| 112 |
18 101 111
|
3syl |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ∈ ℂ ) |
| 113 |
106 112
|
eqeltrrd |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → ( cos ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
| 114 |
113
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ) → ( cos ‘ ( 𝑠 / 2 ) ) ∈ ℂ ) |
| 115 |
|
ioossre |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ |
| 116 |
|
resmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) |
| 117 |
115 116
|
ax-mp |
⊢ ( ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
| 118 |
117
|
eqcomi |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) |
| 119 |
118
|
oveq2i |
⊢ ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( ℝ D ( ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 120 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 121 |
|
eqid |
⊢ ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
| 122 |
121 53
|
fmpti |
⊢ ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) : ℝ ⟶ ℂ |
| 123 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 124 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 125 |
124 89
|
dvres |
⊢ ( ( ( ℝ ⊆ ℂ ∧ ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) : ℝ ⟶ ℂ ) ∧ ( ℝ ⊆ ℝ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℝ ) ) → ( ℝ D ( ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( ( ℝ D ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) ) |
| 126 |
120 122 123 115 125
|
mp4an |
⊢ ( ℝ D ( ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) = ( ( ℝ D ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 127 |
|
resmpt |
⊢ ( ℝ ⊆ ℂ → ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) = ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) |
| 128 |
120 127
|
ax-mp |
⊢ ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) = ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 129 |
104
|
fveq2d |
⊢ ( 𝑠 ∈ ℝ → ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) = ( sin ‘ ( 𝑠 / 2 ) ) ) |
| 130 |
129
|
oveq2d |
⊢ ( 𝑠 ∈ ℝ → ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) = ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
| 131 |
130
|
mpteq2ia |
⊢ ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) = ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) |
| 132 |
128 131
|
eqtr2i |
⊢ ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) = ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) |
| 133 |
132
|
oveq2i |
⊢ ( ℝ D ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( ℝ D ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ) |
| 134 |
|
ioontr |
⊢ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) |
| 135 |
133 134
|
reseq12i |
⊢ ( ( ℝ D ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) = ( ( ℝ D ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ) ↾ ( 𝐴 (,) 𝐵 ) ) |
| 136 |
|
eqid |
⊢ ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) = ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 137 |
|
2cnd |
⊢ ( 𝑠 ∈ ℂ → 2 ∈ ℂ ) |
| 138 |
110
|
sincld |
⊢ ( 𝑠 ∈ ℂ → ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ∈ ℂ ) |
| 139 |
137 138
|
mulcld |
⊢ ( 𝑠 ∈ ℂ → ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ∈ ℂ ) |
| 140 |
136 139
|
fmpti |
⊢ ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) : ℂ ⟶ ℂ |
| 141 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 142 |
|
dmmptg |
⊢ ( ∀ 𝑠 ∈ ℂ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ∈ ℂ → dom ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) = ℂ ) |
| 143 |
|
2cn |
⊢ 2 ∈ ℂ |
| 144 |
143 107
|
mulcli |
⊢ ( 2 · ( 1 / 2 ) ) ∈ ℂ |
| 145 |
144
|
a1i |
⊢ ( 𝑠 ∈ ℂ → ( 2 · ( 1 / 2 ) ) ∈ ℂ ) |
| 146 |
145 111
|
mulcld |
⊢ ( 𝑠 ∈ ℂ → ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ∈ ℂ ) |
| 147 |
142 146
|
mprg |
⊢ dom ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) = ℂ |
| 148 |
120 147
|
sseqtrri |
⊢ ℝ ⊆ dom ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 149 |
|
dvasinbx |
⊢ ( ( 2 ∈ ℂ ∧ ( 1 / 2 ) ∈ ℂ ) → ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) = ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) |
| 150 |
143 107 149
|
mp2an |
⊢ ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) = ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 151 |
150
|
dmeqi |
⊢ dom ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) = dom ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 152 |
148 151
|
sseqtrri |
⊢ ℝ ⊆ dom ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) |
| 153 |
|
dvres3 |
⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) ) ) → ( ℝ D ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) ↾ ℝ ) ) |
| 154 |
80 140 141 152 153
|
mp4an |
⊢ ( ℝ D ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) ↾ ℝ ) |
| 155 |
154
|
reseq1i |
⊢ ( ( ℝ D ( ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) |
| 156 |
150
|
reseq1i |
⊢ ( ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) ↾ ℝ ) = ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) |
| 157 |
156
|
reseq1i |
⊢ ( ( ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) |
| 158 |
|
resabs1 |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℝ → ( ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ) |
| 159 |
115 158
|
ax-mp |
⊢ ( ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) |
| 160 |
|
ioosscn |
⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 161 |
|
resmpt |
⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ → ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) |
| 162 |
160 161
|
ax-mp |
⊢ ( ( 𝑠 ∈ ℂ ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 163 |
157 159 162
|
3eqtri |
⊢ ( ( ( ℂ D ( 𝑠 ∈ ℂ ↦ ( 2 · ( sin ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) ) ↾ ℝ ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 164 |
135 155 163
|
3eqtri |
⊢ ( ( ℝ D ( 𝑠 ∈ ℝ ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 (,) 𝐵 ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 165 |
119 126 164
|
3eqtri |
⊢ ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 166 |
143 57
|
recidi |
⊢ ( 2 · ( 1 / 2 ) ) = 1 |
| 167 |
166
|
oveq1i |
⊢ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) = ( 1 · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) |
| 168 |
167
|
a1i |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) = ( 1 · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) |
| 169 |
112
|
mullidd |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → ( 1 · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) = ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) |
| 170 |
168 169 106
|
3eqtrd |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) → ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) = ( cos ‘ ( 𝑠 / 2 ) ) ) |
| 171 |
170
|
mpteq2ia |
⊢ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 2 · ( 1 / 2 ) ) · ( cos ‘ ( ( 1 / 2 ) · 𝑠 ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( cos ‘ ( 𝑠 / 2 ) ) ) |
| 172 |
165 171
|
eqtri |
⊢ ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( cos ‘ ( 𝑠 / 2 ) ) ) |
| 173 |
172
|
a1i |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( cos ‘ ( 𝑠 / 2 ) ) ) ) |
| 174 |
81 82 34 98 100 114 173
|
dvmptdiv |
⊢ ( 𝜑 → ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) / ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) |
| 175 |
79 174
|
eqtrd |
⊢ ( 𝜑 → ( ℝ D 𝑂 ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) |
| 176 |
175
|
feq1d |
⊢ ( 𝜑 → ( ( ℝ D 𝑂 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ↔ ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) ) |
| 177 |
77 176
|
mpbird |
⊢ ( 𝜑 → ( ℝ D 𝑂 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ) |
| 178 |
177 175
|
jca |
⊢ ( 𝜑 → ( ( ℝ D 𝑂 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( ℝ D 𝑂 ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) ) |
| 179 |
178 172
|
pm3.2i |
⊢ ( ( 𝜑 → ( ( ℝ D 𝑂 ) : ( 𝐴 (,) 𝐵 ) ⟶ ℝ ∧ ( ℝ D 𝑂 ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( ( ( ( ℝ D ( 𝐹 ↾ ( ( 𝑋 + 𝐴 ) (,) ( 𝑋 + 𝐵 ) ) ) ) ‘ ( 𝑋 + 𝑠 ) ) · ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) − ( ( cos ‘ ( 𝑠 / 2 ) ) · ( ( 𝐹 ‘ ( 𝑋 + 𝑠 ) ) − 𝐶 ) ) ) / ( ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ↑ 2 ) ) ) ) ) ∧ ( ℝ D ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 2 · ( sin ‘ ( 𝑠 / 2 ) ) ) ) ) = ( 𝑠 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( cos ‘ ( 𝑠 / 2 ) ) ) ) |