| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lbsext.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lbsext.j |
⊢ 𝐽 = ( LBasis ‘ 𝑊 ) |
| 3 |
|
lbsext.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 4 |
|
lbsext.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 5 |
|
lbsext.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝑉 ) |
| 6 |
|
lbsext.x |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐶 ∖ { 𝑥 } ) ) ) |
| 7 |
|
lbsext.s |
⊢ 𝑆 = { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } |
| 8 |
|
lbsext.p |
⊢ 𝑃 = ( LSubSp ‘ 𝑊 ) |
| 9 |
|
lbsext.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑆 ) |
| 10 |
|
lbsext.z |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 11 |
|
lbsext.r |
⊢ ( 𝜑 → [⊊] Or 𝐴 ) |
| 12 |
|
lbsext.t |
⊢ 𝑇 = ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) |
| 13 |
7
|
ssrab3 |
⊢ 𝑆 ⊆ 𝒫 𝑉 |
| 14 |
9 13
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ 𝒫 𝑉 ) |
| 15 |
|
sspwuni |
⊢ ( 𝐴 ⊆ 𝒫 𝑉 ↔ ∪ 𝐴 ⊆ 𝑉 ) |
| 16 |
14 15
|
sylib |
⊢ ( 𝜑 → ∪ 𝐴 ⊆ 𝑉 ) |
| 17 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 18 |
17
|
elpw2 |
⊢ ( ∪ 𝐴 ∈ 𝒫 𝑉 ↔ ∪ 𝐴 ⊆ 𝑉 ) |
| 19 |
16 18
|
sylibr |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝒫 𝑉 ) |
| 20 |
|
ssintub |
⊢ 𝐶 ⊆ ∩ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } |
| 21 |
|
simpl |
⊢ ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) → 𝐶 ⊆ 𝑧 ) |
| 22 |
21
|
a1i |
⊢ ( 𝑧 ∈ 𝒫 𝑉 → ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) → 𝐶 ⊆ 𝑧 ) ) |
| 23 |
22
|
ss2rabi |
⊢ { 𝑧 ∈ 𝒫 𝑉 ∣ ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) } ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } |
| 24 |
7 23
|
eqsstri |
⊢ 𝑆 ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } |
| 25 |
9 24
|
sstrdi |
⊢ ( 𝜑 → 𝐴 ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } ) |
| 26 |
|
intss |
⊢ ( 𝐴 ⊆ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } → ∩ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } ⊆ ∩ 𝐴 ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → ∩ { 𝑧 ∈ 𝒫 𝑉 ∣ 𝐶 ⊆ 𝑧 } ⊆ ∩ 𝐴 ) |
| 28 |
20 27
|
sstrid |
⊢ ( 𝜑 → 𝐶 ⊆ ∩ 𝐴 ) |
| 29 |
|
intssuni |
⊢ ( 𝐴 ≠ ∅ → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 30 |
10 29
|
syl |
⊢ ( 𝜑 → ∩ 𝐴 ⊆ ∪ 𝐴 ) |
| 31 |
28 30
|
sstrd |
⊢ ( 𝜑 → 𝐶 ⊆ ∪ 𝐴 ) |
| 32 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐴 ↔ ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
| 33 |
|
simpll1 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝜑 ) |
| 34 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 35 |
4 34
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 36 |
33 35
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑊 ∈ LMod ) |
| 37 |
33 9
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝐴 ⊆ 𝑆 ) |
| 38 |
33 11
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → [⊊] Or 𝐴 ) |
| 39 |
|
simpll2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑦 ∈ 𝐴 ) |
| 40 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑢 ∈ 𝐴 ) |
| 41 |
|
sorpssun |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝐴 ) |
| 42 |
38 39 40 41
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝐴 ) |
| 43 |
37 42
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 ) |
| 44 |
13 43
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ∈ 𝒫 𝑉 ) |
| 45 |
44
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑦 ∪ 𝑢 ) ⊆ 𝑉 ) |
| 46 |
45
|
ssdifssd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ⊆ 𝑉 ) |
| 47 |
|
ssun2 |
⊢ 𝑢 ⊆ ( 𝑦 ∪ 𝑢 ) |
| 48 |
|
ssdif |
⊢ ( 𝑢 ⊆ ( 𝑦 ∪ 𝑢 ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) |
| 49 |
47 48
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑢 ∖ { 𝑥 } ) ⊆ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) |
| 50 |
1 3
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ⊆ 𝑉 ∧ ( 𝑢 ∖ { 𝑥 } ) ⊆ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 51 |
36 46 49 50
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 52 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 53 |
51 52
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 54 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ) ) |
| 55 |
|
difeq1 |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝑧 ∖ { 𝑥 } ) = ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 57 |
56
|
eleq2d |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 58 |
57
|
notbid |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 59 |
58
|
raleqbi1dv |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 60 |
54 59
|
anbi12d |
⊢ ( 𝑧 = ( 𝑦 ∪ 𝑢 ) → ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) ↔ ( 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) ) |
| 61 |
60 7
|
elrab2 |
⊢ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 ↔ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝒫 𝑉 ∧ ( 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) ) |
| 62 |
61
|
simprbi |
⊢ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 → ( 𝐶 ⊆ ( 𝑦 ∪ 𝑢 ) ∧ ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 63 |
62
|
simprd |
⊢ ( ( 𝑦 ∪ 𝑢 ) ∈ 𝑆 → ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 64 |
43 63
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 65 |
|
simpll3 |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ 𝑦 ) |
| 66 |
|
elun1 |
⊢ ( 𝑥 ∈ 𝑦 → 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ) |
| 68 |
|
rsp |
⊢ ( ∀ 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) → ( 𝑥 ∈ ( 𝑦 ∪ 𝑢 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) ) |
| 69 |
64 67 68
|
sylc |
⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ( 𝑦 ∪ 𝑢 ) ∖ { 𝑥 } ) ) ) |
| 70 |
53 69
|
pm2.65da |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) ∧ 𝑢 ∈ 𝐴 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 71 |
70
|
nrexdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ¬ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 72 |
1 2 3 4 5 6 7 8 9 10 11 12
|
lbsextlem2 |
⊢ ( 𝜑 → ( 𝑇 ∈ 𝑃 ∧ ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) ) |
| 73 |
72
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ 𝑃 ) |
| 74 |
1 8
|
lssss |
⊢ ( 𝑇 ∈ 𝑃 → 𝑇 ⊆ 𝑉 ) |
| 75 |
73 74
|
syl |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑉 ) |
| 76 |
72
|
simprd |
⊢ ( 𝜑 → ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) |
| 77 |
1 3
|
lspss |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ⊆ 𝑉 ∧ ( ∪ 𝐴 ∖ { 𝑥 } ) ⊆ 𝑇 ) → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 78 |
35 75 76 77
|
syl3anc |
⊢ ( 𝜑 → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ ( 𝑁 ‘ 𝑇 ) ) |
| 79 |
8 3
|
lspid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑇 ∈ 𝑃 ) → ( 𝑁 ‘ 𝑇 ) = 𝑇 ) |
| 80 |
35 73 79
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ 𝑇 ) = 𝑇 ) |
| 81 |
78 80
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ 𝑇 ) |
| 82 |
81
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ 𝑇 ) |
| 83 |
82 12
|
sseqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ⊆ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 84 |
83
|
sseld |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → 𝑥 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 85 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ 𝑢 ∈ 𝐴 ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ↔ ∃ 𝑢 ∈ 𝐴 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) |
| 86 |
84 85
|
imbitrdi |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ( 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) → ∃ 𝑢 ∈ 𝐴 𝑥 ∈ ( 𝑁 ‘ ( 𝑢 ∖ { 𝑥 } ) ) ) ) |
| 87 |
71 86
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝑦 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) |
| 88 |
87
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 89 |
32 88
|
biimtrid |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝐴 → ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 90 |
89
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) |
| 91 |
31 90
|
jca |
⊢ ( 𝜑 → ( 𝐶 ⊆ ∪ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 92 |
|
sseq2 |
⊢ ( 𝑧 = ∪ 𝐴 → ( 𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ ∪ 𝐴 ) ) |
| 93 |
|
difeq1 |
⊢ ( 𝑧 = ∪ 𝐴 → ( 𝑧 ∖ { 𝑥 } ) = ( ∪ 𝐴 ∖ { 𝑥 } ) ) |
| 94 |
93
|
fveq2d |
⊢ ( 𝑧 = ∪ 𝐴 → ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) |
| 95 |
94
|
eleq2d |
⊢ ( 𝑧 = ∪ 𝐴 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 96 |
95
|
notbid |
⊢ ( 𝑧 = ∪ 𝐴 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 97 |
96
|
raleqbi1dv |
⊢ ( 𝑧 = ∪ 𝐴 → ( ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) |
| 98 |
92 97
|
anbi12d |
⊢ ( 𝑧 = ∪ 𝐴 → ( ( 𝐶 ⊆ 𝑧 ∧ ∀ 𝑥 ∈ 𝑧 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑧 ∖ { 𝑥 } ) ) ) ↔ ( 𝐶 ⊆ ∪ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 99 |
98 7
|
elrab2 |
⊢ ( ∪ 𝐴 ∈ 𝑆 ↔ ( ∪ 𝐴 ∈ 𝒫 𝑉 ∧ ( 𝐶 ⊆ ∪ 𝐴 ∧ ∀ 𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ ( 𝑁 ‘ ( ∪ 𝐴 ∖ { 𝑥 } ) ) ) ) ) |
| 100 |
19 91 99
|
sylanbrc |
⊢ ( 𝜑 → ∪ 𝐴 ∈ 𝑆 ) |