| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reprpmtf1o.s |
⊢ ( 𝜑 → 𝑆 ∈ ℕ ) |
| 2 |
|
reprpmtf1o.m |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
reprpmtf1o.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℕ ) |
| 4 |
|
reprpmtf1o.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 0 ..^ 𝑆 ) ) |
| 5 |
|
reprpmtf1o.o |
⊢ 𝑂 = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } |
| 6 |
|
reprpmtf1o.p |
⊢ 𝑃 = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } |
| 7 |
|
reprpmtf1o.t |
⊢ 𝑇 = if ( 𝑋 = 0 , ( I ↾ ( 0 ..^ 𝑆 ) ) , ( ( pmTrsp ‘ ( 0 ..^ 𝑆 ) ) ‘ { 𝑋 , 0 } ) ) |
| 8 |
|
reprpmtf1o.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝑃 ↦ ( 𝑐 ∘ 𝑇 ) ) |
| 9 |
|
eqid |
⊢ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) = ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) |
| 10 |
|
eqid |
⊢ ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) = ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) |
| 11 |
|
ovexd |
⊢ ( 𝜑 → ( 0 ..^ 𝑆 ) ∈ V ) |
| 12 |
|
nnex |
⊢ ℕ ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 14 |
13 3
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 15 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑆 ) ↔ 𝑆 ∈ ℕ ) |
| 16 |
1 15
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝑆 ) ) |
| 17 |
11 4 16 7
|
pmtridf1o |
⊢ ( 𝜑 → 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
| 18 |
9 9 10 11 11 14 17
|
fmptco1f1o |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1-onto→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 19 |
|
f1of1 |
⊢ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1-onto→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 21 |
|
ssrab2 |
⊢ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) |
| 22 |
6
|
ssrab3 |
⊢ 𝑃 ⊆ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) |
| 23 |
22
|
a1i |
⊢ ( 𝜑 → 𝑃 ⊆ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
| 24 |
1
|
nnnn0d |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
| 25 |
3 2 24
|
reprval |
⊢ ( 𝜑 → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 26 |
23 25
|
sseqtrd |
⊢ ( 𝜑 → 𝑃 ⊆ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 27 |
26
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 28 |
21 27
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 29 |
28
|
ex |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑃 → 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) ) |
| 30 |
29
|
ssrdv |
⊢ ( 𝜑 → 𝑃 ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 31 |
|
f1ores |
⊢ ( ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ 𝑃 ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) : 𝑃 –1-1-onto→ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ) |
| 32 |
20 30 31
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) : 𝑃 –1-1-onto→ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ) |
| 33 |
|
resmpt |
⊢ ( 𝑃 ⊆ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) = ( 𝑐 ∈ 𝑃 ↦ ( 𝑐 ∘ 𝑇 ) ) ) |
| 34 |
30 33
|
syl |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) = ( 𝑐 ∈ 𝑃 ↦ ( 𝑐 ∘ 𝑇 ) ) ) |
| 35 |
34 8
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) = 𝐹 ) |
| 36 |
|
eqidd |
⊢ ( 𝜑 → 𝑃 = 𝑃 ) |
| 37 |
|
vex |
⊢ 𝑑 ∈ V |
| 38 |
37
|
a1i |
⊢ ( 𝜑 → 𝑑 ∈ V ) |
| 39 |
10 38 30
|
elimampt |
⊢ ( 𝜑 → ( 𝑑 ∈ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ) |
| 40 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 = ( 𝑐 ∘ 𝑇 ) ) |
| 41 |
|
f1of |
⊢ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) –1-1-onto→ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 42 |
18 41
|
syl |
⊢ ( 𝜑 → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 44 |
10
|
fmpt |
⊢ ( ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) : ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ⟶ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 45 |
43 44
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 46 |
28
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 47 |
|
rspa |
⊢ ( ( ∀ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) → ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 48 |
45 46 47
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑐 ∘ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 49 |
40 48
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 50 |
40
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑑 = ( 𝑐 ∘ 𝑇 ) ) |
| 51 |
50
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑎 ) = ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) ) |
| 52 |
|
f1ofun |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → Fun 𝑇 ) |
| 53 |
17 52
|
syl |
⊢ ( 𝜑 → Fun 𝑇 ) |
| 54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → Fun 𝑇 ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) ) |
| 56 |
|
f1odm |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → dom 𝑇 = ( 0 ..^ 𝑆 ) ) |
| 57 |
17 56
|
syl |
⊢ ( 𝜑 → dom 𝑇 = ( 0 ..^ 𝑆 ) ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → dom 𝑇 = ( 0 ..^ 𝑆 ) ) |
| 59 |
55 58
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ dom 𝑇 ) |
| 60 |
|
fvco |
⊢ ( ( Fun 𝑇 ∧ 𝑎 ∈ dom 𝑇 ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 61 |
54 59 60
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 62 |
61
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 63 |
51 62
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑎 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 64 |
63
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 65 |
|
fveq2 |
⊢ ( 𝑏 = ( 𝑇 ‘ 𝑎 ) → ( 𝑐 ‘ 𝑏 ) = ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 66 |
|
fzofi |
⊢ ( 0 ..^ 𝑆 ) ∈ Fin |
| 67 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
| 68 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
| 69 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑇 ‘ 𝑎 ) = ( 𝑇 ‘ 𝑎 ) ) |
| 70 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → 𝐴 ⊆ ℕ ) |
| 71 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝐴 ⊆ ℕ ) |
| 72 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑀 ∈ ℤ ) |
| 73 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑆 ∈ ℕ0 ) |
| 74 |
23
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
| 75 |
71 72 73 74
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
| 76 |
75
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑏 ) ∈ 𝐴 ) |
| 77 |
70 76
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑏 ) ∈ ℕ ) |
| 78 |
77
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑐 ‘ 𝑏 ) ∈ ℂ ) |
| 79 |
65 67 68 69 78
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ ( 𝑇 ‘ 𝑎 ) ) ) |
| 81 |
71 72 73 74
|
reprsum |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = 𝑀 ) |
| 82 |
81
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑏 ) = 𝑀 ) |
| 83 |
64 80 82
|
3eqtr2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) |
| 84 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 𝑎 ) = ( 𝑑 ‘ 𝑎 ) ) |
| 85 |
84
|
sumeq2sdv |
⊢ ( 𝑐 = 𝑑 → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) ) |
| 86 |
85
|
eqeq1d |
⊢ ( 𝑐 = 𝑑 → ( Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ↔ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) |
| 87 |
86
|
elrab |
⊢ ( 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ↔ ( 𝑑 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑎 ) = 𝑀 ) ) |
| 88 |
49 83 87
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 89 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 90 |
88 89
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
| 91 |
40
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑑 ‘ 0 ) = ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) ) |
| 92 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → Fun 𝑇 ) |
| 93 |
16 57
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ dom 𝑇 ) |
| 94 |
93
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → 0 ∈ dom 𝑇 ) |
| 95 |
|
fvco |
⊢ ( ( Fun 𝑇 ∧ 0 ∈ dom 𝑇 ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) = ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) ) |
| 96 |
92 94 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) = ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) ) |
| 97 |
11 4 16 7
|
pmtridfv2 |
⊢ ( 𝜑 → ( 𝑇 ‘ 0 ) = 𝑋 ) |
| 98 |
97
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑇 ‘ 0 ) = 𝑋 ) |
| 99 |
98
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) = ( 𝑐 ‘ 𝑋 ) ) |
| 100 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ 𝑃 ) |
| 101 |
100 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ) |
| 102 |
|
rabid |
⊢ ( 𝑐 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ↔ ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 103 |
101 102
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → ( 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 104 |
103
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) → ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) |
| 105 |
104
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ) |
| 106 |
99 105
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( 𝑐 ‘ ( 𝑇 ‘ 0 ) ) ∈ 𝐵 ) |
| 107 |
96 106
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( ( 𝑐 ∘ 𝑇 ) ‘ 0 ) ∈ 𝐵 ) |
| 108 |
91 107
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) |
| 109 |
90 108
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝑃 ) ∧ 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
| 110 |
109
|
r19.29an |
⊢ ( ( 𝜑 ∧ ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ) → ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
| 111 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝐴 ⊆ ℕ ) |
| 112 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑀 ∈ ℤ ) |
| 113 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑆 ∈ ℕ0 ) |
| 114 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
| 115 |
111 112 113 114
|
reprf |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
| 116 |
|
f1ocnv |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
| 117 |
|
f1of |
⊢ ( ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) |
| 118 |
17 116 117
|
3syl |
⊢ ( 𝜑 → ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) |
| 119 |
118
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) |
| 120 |
|
fco |
⊢ ( ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ∧ ◡ 𝑇 : ( 0 ..^ 𝑆 ) ⟶ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
| 121 |
115 119 120
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
| 122 |
|
elmapg |
⊢ ( ( 𝐴 ∈ V ∧ ( 0 ..^ 𝑆 ) ∈ V ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
| 123 |
14 11 122
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↔ ( 𝑑 ∘ ◡ 𝑇 ) : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) ) |
| 125 |
121 124
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 126 |
125
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ) |
| 127 |
|
f1ofun |
⊢ ( ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → Fun ◡ 𝑇 ) |
| 128 |
17 116 127
|
3syl |
⊢ ( 𝜑 → Fun ◡ 𝑇 ) |
| 129 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → Fun ◡ 𝑇 ) |
| 130 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ ( 0 ..^ 𝑆 ) ) |
| 131 |
|
f1odm |
⊢ ( ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → dom ◡ 𝑇 = ( 0 ..^ 𝑆 ) ) |
| 132 |
17 116 131
|
3syl |
⊢ ( 𝜑 → dom ◡ 𝑇 = ( 0 ..^ 𝑆 ) ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → dom ◡ 𝑇 = ( 0 ..^ 𝑆 ) ) |
| 134 |
130 133
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ dom ◡ 𝑇 ) |
| 135 |
134
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → 𝑎 ∈ dom ◡ 𝑇 ) |
| 136 |
|
fvco |
⊢ ( ( Fun ◡ 𝑇 ∧ 𝑎 ∈ dom ◡ 𝑇 ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
| 137 |
129 135 136
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
| 138 |
137
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
| 139 |
|
fveq2 |
⊢ ( 𝑏 = ( ◡ 𝑇 ‘ 𝑎 ) → ( 𝑑 ‘ 𝑏 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
| 140 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ( 0 ..^ 𝑆 ) ∈ Fin ) |
| 141 |
17 116
|
syl |
⊢ ( 𝜑 → ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
| 142 |
141
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → ◡ 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ) |
| 143 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑎 ∈ ( 0 ..^ 𝑆 ) ) → ( ◡ 𝑇 ‘ 𝑎 ) = ( ◡ 𝑇 ‘ 𝑎 ) ) |
| 144 |
111
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → 𝐴 ⊆ ℕ ) |
| 145 |
115
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑏 ) ∈ 𝐴 ) |
| 146 |
144 145
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑏 ) ∈ ℕ ) |
| 147 |
146
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ 𝑏 ∈ ( 0 ..^ 𝑆 ) ) → ( 𝑑 ‘ 𝑏 ) ∈ ℂ ) |
| 148 |
139 140 142 143 147
|
fsumf1o |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑏 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑎 ) ) ) |
| 149 |
111 112 113 114
|
reprsum |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑏 ∈ ( 0 ..^ 𝑆 ) ( 𝑑 ‘ 𝑏 ) = 𝑀 ) |
| 150 |
138 148 149
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) |
| 151 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) |
| 152 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( 𝑐 ‘ 𝑎 ) = ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) ) |
| 153 |
152
|
sumeq2sdv |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) ) |
| 154 |
153
|
eqeq1d |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 ↔ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) ) |
| 155 |
154
|
elrab |
⊢ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ↔ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∧ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑎 ) = 𝑀 ) ) |
| 156 |
126 151 155
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 157 |
25
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) = { 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ∣ Σ 𝑎 ∈ ( 0 ..^ 𝑆 ) ( 𝑐 ‘ 𝑎 ) = 𝑀 } ) |
| 158 |
156 157
|
eleqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) |
| 159 |
128
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → Fun ◡ 𝑇 ) |
| 160 |
4 132
|
eleqtrrd |
⊢ ( 𝜑 → 𝑋 ∈ dom ◡ 𝑇 ) |
| 161 |
160
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → 𝑋 ∈ dom ◡ 𝑇 ) |
| 162 |
|
fvco |
⊢ ( ( Fun ◡ 𝑇 ∧ 𝑋 ∈ dom ◡ 𝑇 ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) ) |
| 163 |
159 161 162
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) = ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) ) |
| 164 |
|
f1ocnvfv |
⊢ ( ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ∧ 0 ∈ ( 0 ..^ 𝑆 ) ) → ( ( 𝑇 ‘ 0 ) = 𝑋 → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) ) |
| 165 |
164
|
imp |
⊢ ( ( ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) ∧ 0 ∈ ( 0 ..^ 𝑆 ) ) ∧ ( 𝑇 ‘ 0 ) = 𝑋 ) → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) |
| 166 |
17 16 97 165
|
syl21anc |
⊢ ( 𝜑 → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) |
| 167 |
166
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( ◡ 𝑇 ‘ 𝑋 ) = 0 ) |
| 168 |
167
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) = ( 𝑑 ‘ 0 ) ) |
| 169 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) |
| 170 |
168 169
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ¬ ( 𝑑 ‘ ( ◡ 𝑇 ‘ 𝑋 ) ) ∈ 𝐵 ) |
| 171 |
163 170
|
eqneltrd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ¬ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 172 |
|
fveq1 |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( 𝑐 ‘ 𝑋 ) = ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ) |
| 173 |
172
|
eleq1d |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ↔ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 174 |
173
|
notbid |
⊢ ( 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) → ( ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 ↔ ¬ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 175 |
174
|
elrab |
⊢ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ↔ ( ( 𝑑 ∘ ◡ 𝑇 ) ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( ( 𝑑 ∘ ◡ 𝑇 ) ‘ 𝑋 ) ∈ 𝐵 ) ) |
| 176 |
158 171 175
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 𝑋 ) ∈ 𝐵 } ) |
| 177 |
176 6
|
eleqtrrdi |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ 𝑃 ) |
| 178 |
177
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( 𝑑 ∘ ◡ 𝑇 ) ∈ 𝑃 ) |
| 179 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ∧ 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) → 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) |
| 180 |
179
|
coeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ∧ 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) → ( 𝑐 ∘ 𝑇 ) = ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) |
| 181 |
180
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ∧ 𝑐 = ( 𝑑 ∘ ◡ 𝑇 ) ) → ( 𝑑 = ( 𝑐 ∘ 𝑇 ) ↔ 𝑑 = ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) ) |
| 182 |
|
f1ococnv1 |
⊢ ( 𝑇 : ( 0 ..^ 𝑆 ) –1-1-onto→ ( 0 ..^ 𝑆 ) → ( ◡ 𝑇 ∘ 𝑇 ) = ( I ↾ ( 0 ..^ 𝑆 ) ) ) |
| 183 |
17 182
|
syl |
⊢ ( 𝜑 → ( ◡ 𝑇 ∘ 𝑇 ) = ( I ↾ ( 0 ..^ 𝑆 ) ) ) |
| 184 |
183
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( ◡ 𝑇 ∘ 𝑇 ) = ( I ↾ ( 0 ..^ 𝑆 ) ) ) |
| 185 |
184
|
coeq2d |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( 𝑑 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) = ( 𝑑 ∘ ( I ↾ ( 0 ..^ 𝑆 ) ) ) ) |
| 186 |
115
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 ) |
| 187 |
|
fcoi1 |
⊢ ( 𝑑 : ( 0 ..^ 𝑆 ) ⟶ 𝐴 → ( 𝑑 ∘ ( I ↾ ( 0 ..^ 𝑆 ) ) ) = 𝑑 ) |
| 188 |
186 187
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ( 𝑑 ∘ ( I ↾ ( 0 ..^ 𝑆 ) ) ) = 𝑑 ) |
| 189 |
185 188
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → 𝑑 = ( 𝑑 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) ) |
| 190 |
|
coass |
⊢ ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) = ( 𝑑 ∘ ( ◡ 𝑇 ∘ 𝑇 ) ) |
| 191 |
189 190
|
eqtr4di |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → 𝑑 = ( ( 𝑑 ∘ ◡ 𝑇 ) ∘ 𝑇 ) ) |
| 192 |
178 181 191
|
rspcedvd |
⊢ ( ( 𝜑 ∧ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) → ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ) |
| 193 |
110 192
|
impbida |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝑃 𝑑 = ( 𝑐 ∘ 𝑇 ) ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ) |
| 194 |
39 193
|
bitrd |
⊢ ( 𝜑 → ( 𝑑 ∈ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) ) |
| 195 |
|
fveq1 |
⊢ ( 𝑐 = 𝑑 → ( 𝑐 ‘ 0 ) = ( 𝑑 ‘ 0 ) ) |
| 196 |
195
|
eleq1d |
⊢ ( 𝑐 = 𝑑 → ( ( 𝑐 ‘ 0 ) ∈ 𝐵 ↔ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
| 197 |
196
|
notbid |
⊢ ( 𝑐 = 𝑑 → ( ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 ↔ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
| 198 |
197
|
elrab |
⊢ ( 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } ↔ ( 𝑑 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∧ ¬ ( 𝑑 ‘ 0 ) ∈ 𝐵 ) ) |
| 199 |
194 198
|
bitr4di |
⊢ ( 𝜑 → ( 𝑑 ∈ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ 𝑑 ∈ { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } ) ) |
| 200 |
199
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) = { 𝑐 ∈ ( 𝐴 ( repr ‘ 𝑆 ) 𝑀 ) ∣ ¬ ( 𝑐 ‘ 0 ) ∈ 𝐵 } ) |
| 201 |
200 5
|
eqtr4di |
⊢ ( 𝜑 → ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) = 𝑂 ) |
| 202 |
35 36 201
|
f1oeq123d |
⊢ ( 𝜑 → ( ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) ↾ 𝑃 ) : 𝑃 –1-1-onto→ ( ( 𝑐 ∈ ( 𝐴 ↑m ( 0 ..^ 𝑆 ) ) ↦ ( 𝑐 ∘ 𝑇 ) ) “ 𝑃 ) ↔ 𝐹 : 𝑃 –1-1-onto→ 𝑂 ) ) |
| 203 |
32 202
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝑃 –1-1-onto→ 𝑂 ) |