Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ∪ ( topGen ‘ 𝐵 ) = ∪ ( topGen ‘ 𝐵 ) |
2 |
1
|
iscmp |
⊢ ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ) ) |
3 |
2
|
simprbi |
⊢ ( ( topGen ‘ 𝐵 ) ∈ Comp → ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ) |
4 |
|
unitg |
⊢ ( 𝐵 ∈ TopBases → ∪ ( topGen ‘ 𝐵 ) = ∪ 𝐵 ) |
5 |
|
eqtr3 |
⊢ ( ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝐵 ∧ 𝑋 = ∪ 𝐵 ) → ∪ ( topGen ‘ 𝐵 ) = 𝑋 ) |
6 |
4 5
|
sylan |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ∪ ( topGen ‘ 𝐵 ) = 𝑋 ) |
7 |
6
|
eqeq1d |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦 ) ) |
8 |
6
|
eqeq1d |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧 ) ) |
9 |
8
|
rexbidv |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
10 |
7 9
|
imbi12d |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ↔ ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
11 |
10
|
ralbidv |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
12 |
|
bastg |
⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
14 |
13
|
sspwd |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ 𝐵 ) ) |
15 |
|
ssralv |
⊢ ( 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
17 |
11 16
|
sylbid |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
18 |
3 17
|
syl5 |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
19 |
|
elpwi |
⊢ ( 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) → 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) |
20 |
|
simprr |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 = ∪ 𝑢 ) |
21 |
|
simprl |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) |
22 |
21
|
sselda |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ 𝑡 ∈ 𝑢 ) → 𝑡 ∈ ( topGen ‘ 𝐵 ) ) |
23 |
22
|
adantrr |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑡 ∈ ( topGen ‘ 𝐵 ) ) |
24 |
|
simprr |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡 ) ) → 𝑦 ∈ 𝑡 ) |
25 |
|
tg2 |
⊢ ( ( 𝑡 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦 ∈ 𝑡 ) → ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) |
26 |
23 24 25
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑡 ∈ 𝑢 ∧ 𝑦 ∈ 𝑡 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) |
27 |
26
|
expr |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ 𝑡 ∈ 𝑢 ) → ( 𝑦 ∈ 𝑡 → ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) ) |
28 |
27
|
reximdva |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∃ 𝑡 ∈ 𝑢 𝑦 ∈ 𝑡 → ∃ 𝑡 ∈ 𝑢 ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) ) |
29 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝑢 ↔ ∃ 𝑡 ∈ 𝑢 𝑦 ∈ 𝑡 ) |
30 |
|
elunirab |
⊢ ( 𝑦 ∈ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ↔ ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) |
31 |
|
r19.42v |
⊢ ( ∃ 𝑡 ∈ 𝑢 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ↔ ( 𝑦 ∈ 𝑤 ∧ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) |
32 |
31
|
rexbii |
⊢ ( ∃ 𝑤 ∈ 𝐵 ∃ 𝑡 ∈ 𝑢 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ↔ ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) |
33 |
|
rexcom |
⊢ ( ∃ 𝑤 ∈ 𝐵 ∃ 𝑡 ∈ 𝑢 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ↔ ∃ 𝑡 ∈ 𝑢 ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) |
34 |
30 32 33
|
3bitr2i |
⊢ ( 𝑦 ∈ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ↔ ∃ 𝑡 ∈ 𝑢 ∃ 𝑤 ∈ 𝐵 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑡 ) ) |
35 |
28 29 34
|
3imtr4g |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( 𝑦 ∈ ∪ 𝑢 → 𝑦 ∈ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) ) |
36 |
35
|
ssrdv |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ∪ 𝑢 ⊆ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
37 |
20 36
|
eqsstrd |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 ⊆ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
38 |
|
ssrab2 |
⊢ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝐵 |
39 |
38
|
unissi |
⊢ ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ ∪ 𝐵 |
40 |
|
simplr |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 = ∪ 𝐵 ) |
41 |
39 40
|
sseqtrrid |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝑋 ) |
42 |
37 41
|
eqssd |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
43 |
|
elpw2g |
⊢ ( 𝐵 ∈ TopBases → ( { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 ↔ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝐵 ) ) |
44 |
43
|
ad2antrr |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 ↔ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ⊆ 𝐵 ) ) |
45 |
38 44
|
mpbiri |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 ) |
46 |
|
unieq |
⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∪ 𝑦 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
47 |
46
|
eqeq2d |
⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( 𝑋 = ∪ 𝑦 ↔ 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) ) |
48 |
|
pweq |
⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → 𝒫 𝑦 = 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
49 |
48
|
ineq1d |
⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( 𝒫 𝑦 ∩ Fin ) = ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ) |
50 |
49
|
rexeqdv |
⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
51 |
47 50
|
imbi12d |
⊢ ( 𝑦 = { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ( ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ↔ ( 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
52 |
51
|
rspcv |
⊢ ( { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∈ 𝒫 𝐵 → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
53 |
45 52
|
syl |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |
54 |
42 53
|
mpid |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) |
55 |
|
elfpw |
⊢ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ↔ ( 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∧ 𝑧 ∈ Fin ) ) |
56 |
55
|
simprbi |
⊢ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) → 𝑧 ∈ Fin ) |
57 |
56
|
ad2antrl |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → 𝑧 ∈ Fin ) |
58 |
55
|
simplbi |
⊢ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) → 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
59 |
58
|
ad2antrl |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ) |
60 |
|
ssrab |
⊢ ( 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ↔ ( 𝑧 ⊆ 𝐵 ∧ ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) ) |
61 |
60
|
simprbi |
⊢ ( 𝑧 ⊆ { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } → ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) |
62 |
59 61
|
syl |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) |
63 |
|
sseq2 |
⊢ ( 𝑡 = ( 𝑓 ‘ 𝑤 ) → ( 𝑤 ⊆ 𝑡 ↔ 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
64 |
63
|
ac6sfi |
⊢ ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤 ∈ 𝑧 ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 ) → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
65 |
57 62 64
|
syl2anc |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → ∃ 𝑓 ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) |
66 |
|
frn |
⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → ran 𝑓 ⊆ 𝑢 ) |
67 |
66
|
ad2antrl |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ran 𝑓 ⊆ 𝑢 ) |
68 |
|
ffn |
⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → 𝑓 Fn 𝑧 ) |
69 |
|
dffn4 |
⊢ ( 𝑓 Fn 𝑧 ↔ 𝑓 : 𝑧 –onto→ ran 𝑓 ) |
70 |
68 69
|
sylib |
⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → 𝑓 : 𝑧 –onto→ ran 𝑓 ) |
71 |
70
|
adantr |
⊢ ( ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) → 𝑓 : 𝑧 –onto→ ran 𝑓 ) |
72 |
|
fofi |
⊢ ( ( 𝑧 ∈ Fin ∧ 𝑓 : 𝑧 –onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin ) |
73 |
57 71 72
|
syl2an |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ran 𝑓 ∈ Fin ) |
74 |
|
elfpw |
⊢ ( ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ran 𝑓 ⊆ 𝑢 ∧ ran 𝑓 ∈ Fin ) ) |
75 |
67 73 74
|
sylanbrc |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
76 |
|
simplrr |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 = ∪ 𝑧 ) |
77 |
|
uniiun |
⊢ ∪ 𝑧 = ∪ 𝑤 ∈ 𝑧 𝑤 |
78 |
|
ss2iun |
⊢ ( ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) → ∪ 𝑤 ∈ 𝑧 𝑤 ⊆ ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) ) |
79 |
77 78
|
eqsstrid |
⊢ ( ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) ) |
80 |
79
|
ad2antll |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑧 ⊆ ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) ) |
81 |
|
fniunfv |
⊢ ( 𝑓 Fn 𝑧 → ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) = ∪ ran 𝑓 ) |
82 |
68 81
|
syl |
⊢ ( 𝑓 : 𝑧 ⟶ 𝑢 → ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) = ∪ ran 𝑓 ) |
83 |
82
|
ad2antrl |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑤 ∈ 𝑧 ( 𝑓 ‘ 𝑤 ) = ∪ ran 𝑓 ) |
84 |
80 83
|
sseqtrd |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ 𝑧 ⊆ ∪ ran 𝑓 ) |
85 |
76 84
|
eqsstrd |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 ⊆ ∪ ran 𝑓 ) |
86 |
67
|
unissd |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 ⊆ ∪ 𝑢 ) |
87 |
20
|
ad2antrr |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 = ∪ 𝑢 ) |
88 |
86 87
|
sseqtrrd |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∪ ran 𝑓 ⊆ 𝑋 ) |
89 |
85 88
|
eqssd |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → 𝑋 = ∪ ran 𝑓 ) |
90 |
|
unieq |
⊢ ( 𝑣 = ran 𝑓 → ∪ 𝑣 = ∪ ran 𝑓 ) |
91 |
90
|
rspceeqv |
⊢ ( ( ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑋 = ∪ ran 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) |
92 |
75 89 91
|
syl2anc |
⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) ∧ ( 𝑓 : 𝑧 ⟶ 𝑢 ∧ ∀ 𝑤 ∈ 𝑧 𝑤 ⊆ ( 𝑓 ‘ 𝑤 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) |
93 |
65 92
|
exlimddv |
⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) ∧ 𝑋 = ∪ 𝑧 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) |
94 |
93
|
rexlimdvaa |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 { 𝑤 ∈ 𝐵 ∣ ∃ 𝑡 ∈ 𝑢 𝑤 ⊆ 𝑡 } ∩ Fin ) 𝑋 = ∪ 𝑧 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) |
95 |
54 94
|
syld |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = ∪ 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) |
96 |
95
|
expr |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) → ( 𝑋 = ∪ 𝑢 → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
97 |
96
|
com23 |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
98 |
19 97
|
sylan2 |
⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) ∧ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
99 |
98
|
ralrimdva |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
100 |
|
tgcl |
⊢ ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top ) |
101 |
100
|
adantr |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( topGen ‘ 𝐵 ) ∈ Top ) |
102 |
1
|
iscmp |
⊢ ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ) ) |
103 |
102
|
baib |
⊢ ( ( topGen ‘ 𝐵 ) ∈ Top → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ) ) |
104 |
101 103
|
syl |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ) ) |
105 |
6
|
eqeq1d |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 ↔ 𝑋 = ∪ 𝑢 ) ) |
106 |
6
|
eqeq1d |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ↔ 𝑋 = ∪ 𝑣 ) ) |
107 |
106
|
rexbidv |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) |
108 |
105 107
|
imbi12d |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ↔ ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
109 |
108
|
ralbidv |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ∪ ( topGen ‘ 𝐵 ) = ∪ 𝑣 ) ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
110 |
104 109
|
bitrd |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = ∪ 𝑣 ) ) ) |
111 |
99 110
|
sylibrd |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) → ( topGen ‘ 𝐵 ) ∈ Comp ) ) |
112 |
18 111
|
impbid |
⊢ ( ( 𝐵 ∈ TopBases ∧ 𝑋 = ∪ 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = ∪ 𝑧 ) ) ) |