Metamath Proof Explorer


Theorem tgcmp

Description: A topology generated by a basis is compact iff open covers drawn from the basis have finite subcovers. (See also alexsub , which further specializes to subbases, assuming the ultrafilter lemma.) (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion tgcmp ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )

Proof

Step Hyp Ref Expression
1 eqid ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝐵 )
2 1 iscmp ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑧 ) ) )
3 2 simprbi ( ( topGen ‘ 𝐵 ) ∈ Comp → ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑧 ) )
4 unitg ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) = 𝐵 )
5 eqtr3 ( ( ( topGen ‘ 𝐵 ) = 𝐵𝑋 = 𝐵 ) → ( topGen ‘ 𝐵 ) = 𝑋 )
6 4 5 sylan ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( topGen ‘ 𝐵 ) = 𝑋 )
7 6 eqeq1d ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) = 𝑦𝑋 = 𝑦 ) )
8 6 eqeq1d ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) = 𝑧𝑋 = 𝑧 ) )
9 8 rexbidv ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) )
10 7 9 imbi12d ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( ( topGen ‘ 𝐵 ) = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑧 ) ↔ ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
11 10 ralbidv ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑧 ) ↔ ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
12 bastg ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
13 12 adantr ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) )
14 13 sspwd ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ 𝐵 ) )
15 ssralv ( 𝒫 𝐵 ⊆ 𝒫 ( topGen ‘ 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
16 14 15 syl ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
17 11 16 sylbid ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑧 ) → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
18 3 17 syl5 ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp → ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )
19 elpwi ( 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) → 𝑢 ⊆ ( topGen ‘ 𝐵 ) )
20 simprr ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → 𝑋 = 𝑢 )
21 simprl ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → 𝑢 ⊆ ( topGen ‘ 𝐵 ) )
22 21 sselda ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ 𝑡𝑢 ) → 𝑡 ∈ ( topGen ‘ 𝐵 ) )
23 22 adantrr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑡𝑢𝑦𝑡 ) ) → 𝑡 ∈ ( topGen ‘ 𝐵 ) )
24 simprr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑡𝑢𝑦𝑡 ) ) → 𝑦𝑡 )
25 tg2 ( ( 𝑡 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑦𝑡 ) → ∃ 𝑤𝐵 ( 𝑦𝑤𝑤𝑡 ) )
26 23 24 25 syl2anc ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑡𝑢𝑦𝑡 ) ) → ∃ 𝑤𝐵 ( 𝑦𝑤𝑤𝑡 ) )
27 26 expr ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ 𝑡𝑢 ) → ( 𝑦𝑡 → ∃ 𝑤𝐵 ( 𝑦𝑤𝑤𝑡 ) ) )
28 27 reximdva ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → ( ∃ 𝑡𝑢 𝑦𝑡 → ∃ 𝑡𝑢𝑤𝐵 ( 𝑦𝑤𝑤𝑡 ) ) )
29 eluni2 ( 𝑦 𝑢 ↔ ∃ 𝑡𝑢 𝑦𝑡 )
30 elunirab ( 𝑦 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ↔ ∃ 𝑤𝐵 ( 𝑦𝑤 ∧ ∃ 𝑡𝑢 𝑤𝑡 ) )
31 r19.42v ( ∃ 𝑡𝑢 ( 𝑦𝑤𝑤𝑡 ) ↔ ( 𝑦𝑤 ∧ ∃ 𝑡𝑢 𝑤𝑡 ) )
32 31 rexbii ( ∃ 𝑤𝐵𝑡𝑢 ( 𝑦𝑤𝑤𝑡 ) ↔ ∃ 𝑤𝐵 ( 𝑦𝑤 ∧ ∃ 𝑡𝑢 𝑤𝑡 ) )
33 rexcom ( ∃ 𝑤𝐵𝑡𝑢 ( 𝑦𝑤𝑤𝑡 ) ↔ ∃ 𝑡𝑢𝑤𝐵 ( 𝑦𝑤𝑤𝑡 ) )
34 30 32 33 3bitr2i ( 𝑦 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ↔ ∃ 𝑡𝑢𝑤𝐵 ( 𝑦𝑤𝑤𝑡 ) )
35 28 29 34 3imtr4g ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → ( 𝑦 𝑢𝑦 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ) )
36 35 ssrdv ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → 𝑢 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } )
37 20 36 eqsstrd ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → 𝑋 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } )
38 ssrab2 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ⊆ 𝐵
39 38 unissi { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ⊆ 𝐵
40 simplr ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → 𝑋 = 𝐵 )
41 39 40 sseqtrrid ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ⊆ 𝑋 )
42 37 41 eqssd ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → 𝑋 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } )
43 elpw2g ( 𝐵 ∈ TopBases → ( { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∈ 𝒫 𝐵 ↔ { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ⊆ 𝐵 ) )
44 43 ad2antrr ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → ( { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∈ 𝒫 𝐵 ↔ { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ⊆ 𝐵 ) )
45 38 44 mpbiri ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∈ 𝒫 𝐵 )
46 unieq ( 𝑦 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → 𝑦 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } )
47 46 eqeq2d ( 𝑦 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ( 𝑋 = 𝑦𝑋 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ) )
48 pweq ( 𝑦 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → 𝒫 𝑦 = 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } )
49 48 ineq1d ( 𝑦 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ( 𝒫 𝑦 ∩ Fin ) = ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) )
50 49 rexeqdv ( 𝑦 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) 𝑋 = 𝑧 ) )
51 47 50 imbi12d ( 𝑦 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ( ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ↔ ( 𝑋 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) 𝑋 = 𝑧 ) ) )
52 51 rspcv ( { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∈ 𝒫 𝐵 → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ( 𝑋 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) 𝑋 = 𝑧 ) ) )
53 45 52 syl ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ( 𝑋 = { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ∃ 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) 𝑋 = 𝑧 ) ) )
54 42 53 mpid ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ∃ 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) 𝑋 = 𝑧 ) )
55 elfpw ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ↔ ( 𝑧 ⊆ { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∧ 𝑧 ∈ Fin ) )
56 55 simprbi ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) → 𝑧 ∈ Fin )
57 56 ad2antrl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) → 𝑧 ∈ Fin )
58 55 simplbi ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) → 𝑧 ⊆ { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } )
59 58 ad2antrl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) → 𝑧 ⊆ { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } )
60 ssrab ( 𝑧 ⊆ { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ↔ ( 𝑧𝐵 ∧ ∀ 𝑤𝑧𝑡𝑢 𝑤𝑡 ) )
61 60 simprbi ( 𝑧 ⊆ { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } → ∀ 𝑤𝑧𝑡𝑢 𝑤𝑡 )
62 59 61 syl ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) → ∀ 𝑤𝑧𝑡𝑢 𝑤𝑡 )
63 sseq2 ( 𝑡 = ( 𝑓𝑤 ) → ( 𝑤𝑡𝑤 ⊆ ( 𝑓𝑤 ) ) )
64 63 ac6sfi ( ( 𝑧 ∈ Fin ∧ ∀ 𝑤𝑧𝑡𝑢 𝑤𝑡 ) → ∃ 𝑓 ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) )
65 57 62 64 syl2anc ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) → ∃ 𝑓 ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) )
66 frn ( 𝑓 : 𝑧𝑢 → ran 𝑓𝑢 )
67 66 ad2antrl ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → ran 𝑓𝑢 )
68 ffn ( 𝑓 : 𝑧𝑢𝑓 Fn 𝑧 )
69 dffn4 ( 𝑓 Fn 𝑧𝑓 : 𝑧onto→ ran 𝑓 )
70 68 69 sylib ( 𝑓 : 𝑧𝑢𝑓 : 𝑧onto→ ran 𝑓 )
71 70 adantr ( ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) → 𝑓 : 𝑧onto→ ran 𝑓 )
72 fofi ( ( 𝑧 ∈ Fin ∧ 𝑓 : 𝑧onto→ ran 𝑓 ) → ran 𝑓 ∈ Fin )
73 57 71 72 syl2an ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → ran 𝑓 ∈ Fin )
74 elfpw ( ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ↔ ( ran 𝑓𝑢 ∧ ran 𝑓 ∈ Fin ) )
75 67 73 74 sylanbrc ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) )
76 simplrr ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → 𝑋 = 𝑧 )
77 uniiun 𝑧 = 𝑤𝑧 𝑤
78 ss2iun ( ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) → 𝑤𝑧 𝑤 𝑤𝑧 ( 𝑓𝑤 ) )
79 77 78 eqsstrid ( ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) → 𝑧 𝑤𝑧 ( 𝑓𝑤 ) )
80 79 ad2antll ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → 𝑧 𝑤𝑧 ( 𝑓𝑤 ) )
81 fniunfv ( 𝑓 Fn 𝑧 𝑤𝑧 ( 𝑓𝑤 ) = ran 𝑓 )
82 68 81 syl ( 𝑓 : 𝑧𝑢 𝑤𝑧 ( 𝑓𝑤 ) = ran 𝑓 )
83 82 ad2antrl ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → 𝑤𝑧 ( 𝑓𝑤 ) = ran 𝑓 )
84 80 83 sseqtrd ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → 𝑧 ran 𝑓 )
85 76 84 eqsstrd ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → 𝑋 ran 𝑓 )
86 67 unissd ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → ran 𝑓 𝑢 )
87 20 ad2antrr ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → 𝑋 = 𝑢 )
88 86 87 sseqtrrd ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → ran 𝑓𝑋 )
89 85 88 eqssd ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → 𝑋 = ran 𝑓 )
90 unieq ( 𝑣 = ran 𝑓 𝑣 = ran 𝑓 )
91 90 rspceeqv ( ( ran 𝑓 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ 𝑋 = ran 𝑓 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 )
92 75 89 91 syl2anc ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) ∧ ( 𝑓 : 𝑧𝑢 ∧ ∀ 𝑤𝑧 𝑤 ⊆ ( 𝑓𝑤 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 )
93 65 92 exlimddv ( ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) ∧ ( 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) ∧ 𝑋 = 𝑧 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 )
94 93 rexlimdvaa ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → ( ∃ 𝑧 ∈ ( 𝒫 { 𝑤𝐵 ∣ ∃ 𝑡𝑢 𝑤𝑡 } ∩ Fin ) 𝑋 = 𝑧 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) )
95 54 94 syld ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ ( 𝑢 ⊆ ( topGen ‘ 𝐵 ) ∧ 𝑋 = 𝑢 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) )
96 95 expr ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) → ( 𝑋 = 𝑢 → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) ) )
97 96 com23 ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ 𝑢 ⊆ ( topGen ‘ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ( 𝑋 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) ) )
98 19 97 sylan2 ( ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) ∧ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ( 𝑋 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) ) )
99 98 ralrimdva ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) ) )
100 tgcl ( 𝐵 ∈ TopBases → ( topGen ‘ 𝐵 ) ∈ Top )
101 100 adantr ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( topGen ‘ 𝐵 ) ∈ Top )
102 1 iscmp ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ( ( topGen ‘ 𝐵 ) ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑣 ) ) )
103 102 baib ( ( topGen ‘ 𝐵 ) ∈ Top → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑣 ) ) )
104 101 103 syl ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑣 ) ) )
105 6 eqeq1d ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) = 𝑢𝑋 = 𝑢 ) )
106 6 eqeq1d ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) = 𝑣𝑋 = 𝑣 ) )
107 106 rexbidv ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) )
108 105 107 imbi12d ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( ( topGen ‘ 𝐵 ) = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑣 ) ↔ ( 𝑋 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) ) )
109 108 ralbidv ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( ( topGen ‘ 𝐵 ) = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( topGen ‘ 𝐵 ) = 𝑣 ) ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) ) )
110 104 109 bitrd ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 ( topGen ‘ 𝐵 ) ( 𝑋 = 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) 𝑋 = 𝑣 ) ) )
111 99 110 sylibrd ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) → ( topGen ‘ 𝐵 ) ∈ Comp ) )
112 18 111 impbid ( ( 𝐵 ∈ TopBases ∧ 𝑋 = 𝐵 ) → ( ( topGen ‘ 𝐵 ) ∈ Comp ↔ ∀ 𝑦 ∈ 𝒫 𝐵 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝑋 = 𝑧 ) ) )