Step |
Hyp |
Ref |
Expression |
1 |
|
xpsds.t |
β’ π = ( π
Γs π ) |
2 |
|
xpsds.x |
β’ π = ( Base β π
) |
3 |
|
xpsds.y |
β’ π = ( Base β π ) |
4 |
|
xpsds.1 |
β’ ( π β π
β π ) |
5 |
|
xpsds.2 |
β’ ( π β π β π ) |
6 |
|
xpsds.p |
β’ π = ( dist β π ) |
7 |
|
xpsds.m |
β’ π = ( ( dist β π
) βΎ ( π Γ π ) ) |
8 |
|
xpsds.n |
β’ π = ( ( dist β π ) βΎ ( π Γ π ) ) |
9 |
|
xpsds.3 |
β’ ( π β π β ( βMet β π ) ) |
10 |
|
xpsds.4 |
β’ ( π β π β ( βMet β π ) ) |
11 |
|
xpsds.a |
β’ ( π β π΄ β π ) |
12 |
|
xpsds.b |
β’ ( π β π΅ β π ) |
13 |
|
xpsds.c |
β’ ( π β πΆ β π ) |
14 |
|
xpsds.d |
β’ ( π β π· β π ) |
15 |
|
eqid |
β’ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) = ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) |
16 |
|
eqid |
β’ ( Scalar β π
) = ( Scalar β π
) |
17 |
|
eqid |
β’ ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) = ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) |
18 |
1 2 3 4 5 15 16 17
|
xpsval |
β’ ( π β π = ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) βs ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) ) |
19 |
1 2 3 4 5 15 16 17
|
xpsrnbas |
β’ ( π β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) = ( Base β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) ) |
20 |
15
|
xpsff1o2 |
β’ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( π Γ π ) β1-1-ontoβ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) |
21 |
|
f1ocnv |
β’ ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( π Γ π ) β1-1-ontoβ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β1-1-ontoβ ( π Γ π ) ) |
22 |
20 21
|
mp1i |
β’ ( π β β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β1-1-ontoβ ( π Γ π ) ) |
23 |
|
ovexd |
β’ ( π β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) β V ) |
24 |
|
eqid |
β’ ( ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) βΎ ( ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) Γ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) = ( ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) βΎ ( ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) Γ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10
|
xpsxmetlem |
β’ ( π β ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) β ( βMet β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) |
26 |
|
ssid |
β’ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) |
27 |
|
xmetres2 |
β’ ( ( ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) β ( βMet β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) β§ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) β ( ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) βΎ ( ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) Γ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) β ( βMet β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) |
28 |
25 26 27
|
sylancl |
β’ ( π β ( ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) βΎ ( ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) Γ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) β ( βMet β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) |
29 |
|
df-ov |
β’ ( π΄ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) π΅ ) = ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ π΄ , π΅ β© ) |
30 |
15
|
xpsfval |
β’ ( ( π΄ β π β§ π΅ β π ) β ( π΄ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) π΅ ) = { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) |
31 |
11 12 30
|
syl2anc |
β’ ( π β ( π΄ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) π΅ ) = { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) |
32 |
29 31
|
eqtr3id |
β’ ( π β ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ π΄ , π΅ β© ) = { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) |
33 |
11 12
|
opelxpd |
β’ ( π β β¨ π΄ , π΅ β© β ( π Γ π ) ) |
34 |
|
f1of |
β’ ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( π Γ π ) β1-1-ontoβ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( π Γ π ) βΆ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) |
35 |
20 34
|
ax-mp |
β’ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( π Γ π ) βΆ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) |
36 |
35
|
ffvelcdmi |
β’ ( β¨ π΄ , π΅ β© β ( π Γ π ) β ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ π΄ , π΅ β© ) β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) |
37 |
33 36
|
syl |
β’ ( π β ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ π΄ , π΅ β© ) β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) |
38 |
32 37
|
eqeltrrd |
β’ ( π β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) |
39 |
|
df-ov |
β’ ( πΆ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) π· ) = ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ πΆ , π· β© ) |
40 |
15
|
xpsfval |
β’ ( ( πΆ β π β§ π· β π ) β ( πΆ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) π· ) = { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) |
41 |
13 14 40
|
syl2anc |
β’ ( π β ( πΆ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) π· ) = { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) |
42 |
39 41
|
eqtr3id |
β’ ( π β ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ πΆ , π· β© ) = { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) |
43 |
13 14
|
opelxpd |
β’ ( π β β¨ πΆ , π· β© β ( π Γ π ) ) |
44 |
35
|
ffvelcdmi |
β’ ( β¨ πΆ , π· β© β ( π Γ π ) β ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ πΆ , π· β© ) β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) |
45 |
43 44
|
syl |
β’ ( π β ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ πΆ , π· β© ) β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) |
46 |
42 45
|
eqeltrrd |
β’ ( π β { β¨ β
, πΆ β© , β¨ 1o , π· β© } β ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) |
47 |
18 19 22 23 24 6 28 38 46
|
imasdsf1o |
β’ ( π β ( ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) π ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) ) = ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ( ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) βΎ ( ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) Γ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) ) |
48 |
38 46
|
ovresd |
β’ ( π β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ( ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) βΎ ( ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) Γ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) ) ) { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) = ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) ) |
49 |
47 48
|
eqtrd |
β’ ( π β ( ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) π ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) ) = ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) ) |
50 |
|
f1ocnvfv |
β’ ( ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( π Γ π ) β1-1-ontoβ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β§ β¨ π΄ , π΅ β© β ( π Γ π ) ) β ( ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ π΄ , π΅ β© ) = { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) = β¨ π΄ , π΅ β© ) ) |
51 |
20 33 50
|
sylancr |
β’ ( π β ( ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ π΄ , π΅ β© ) = { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) = β¨ π΄ , π΅ β© ) ) |
52 |
32 51
|
mpd |
β’ ( π β ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) = β¨ π΄ , π΅ β© ) |
53 |
|
f1ocnvfv |
β’ ( ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) : ( π Γ π ) β1-1-ontoβ ran ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β§ β¨ πΆ , π· β© β ( π Γ π ) ) β ( ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ πΆ , π· β© ) = { β¨ β
, πΆ β© , β¨ 1o , π· β© } β ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) = β¨ πΆ , π· β© ) ) |
54 |
20 43 53
|
sylancr |
β’ ( π β ( ( ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β β¨ πΆ , π· β© ) = { β¨ β
, πΆ β© , β¨ 1o , π· β© } β ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) = β¨ πΆ , π· β© ) ) |
55 |
42 54
|
mpd |
β’ ( π β ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) = β¨ πΆ , π· β© ) |
56 |
52 55
|
oveq12d |
β’ ( π β ( ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ) π ( β‘ ( π₯ β π , π¦ β π β¦ { β¨ β
, π₯ β© , β¨ 1o , π¦ β© } ) β { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) ) = ( β¨ π΄ , π΅ β© π β¨ πΆ , π· β© ) ) |
57 |
|
eqid |
β’ ( Base β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) = ( Base β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) |
58 |
|
fvexd |
β’ ( π β ( Scalar β π
) β V ) |
59 |
|
2on |
β’ 2o β On |
60 |
59
|
a1i |
β’ ( π β 2o β On ) |
61 |
|
fnpr2o |
β’ ( ( π
β π β§ π β π ) β { β¨ β
, π
β© , β¨ 1o , π β© } Fn 2o ) |
62 |
4 5 61
|
syl2anc |
β’ ( π β { β¨ β
, π
β© , β¨ 1o , π β© } Fn 2o ) |
63 |
38 19
|
eleqtrd |
β’ ( π β { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β ( Base β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) ) |
64 |
46 19
|
eleqtrd |
β’ ( π β { β¨ β
, πΆ β© , β¨ 1o , π· β© } β ( Base β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) ) |
65 |
|
eqid |
β’ ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) = ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) |
66 |
17 57 58 60 62 63 64 65
|
prdsdsval |
β’ ( π β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) = sup ( ( ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) βͺ { 0 } ) , β* , < ) ) |
67 |
|
df2o3 |
β’ 2o = { β
, 1o } |
68 |
67
|
rexeqi |
β’ ( β π β 2o π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) β β π β { β
, 1o } π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) |
69 |
|
0ex |
β’ β
β V |
70 |
|
1oex |
β’ 1o β V |
71 |
|
2fveq3 |
β’ ( π = β
β ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) = ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ) |
72 |
|
fveq2 |
β’ ( π = β
β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) = ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ) |
73 |
|
fveq2 |
β’ ( π = β
β ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) = ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) |
74 |
71 72 73
|
oveq123d |
β’ ( π = β
β ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) ) |
75 |
74
|
eqeq2d |
β’ ( π = β
β ( π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) β π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) ) ) |
76 |
|
2fveq3 |
β’ ( π = 1o β ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) = ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ) |
77 |
|
fveq2 |
β’ ( π = 1o β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) = ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ) |
78 |
|
fveq2 |
β’ ( π = 1o β ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) = ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) |
79 |
76 77 78
|
oveq123d |
β’ ( π = 1o β ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) ) |
80 |
79
|
eqeq2d |
β’ ( π = 1o β ( π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) β π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) ) ) |
81 |
69 70 75 80
|
rexpr |
β’ ( β π β { β
, 1o } π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) β ( π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) β¨ π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) ) ) |
82 |
68 81
|
bitri |
β’ ( β π β 2o π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) β ( π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) β¨ π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) ) ) |
83 |
|
fvpr0o |
β’ ( π
β π β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) = π
) |
84 |
4 83
|
syl |
β’ ( π β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) = π
) |
85 |
84
|
fveq2d |
β’ ( π β ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) = ( dist β π
) ) |
86 |
|
fvpr0o |
β’ ( π΄ β π β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) = π΄ ) |
87 |
11 86
|
syl |
β’ ( π β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) = π΄ ) |
88 |
|
fvpr0o |
β’ ( πΆ β π β ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) = πΆ ) |
89 |
13 88
|
syl |
β’ ( π β ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) = πΆ ) |
90 |
85 87 89
|
oveq123d |
β’ ( π β ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) = ( π΄ ( dist β π
) πΆ ) ) |
91 |
7
|
oveqi |
β’ ( π΄ π πΆ ) = ( π΄ ( ( dist β π
) βΎ ( π Γ π ) ) πΆ ) |
92 |
11 13
|
ovresd |
β’ ( π β ( π΄ ( ( dist β π
) βΎ ( π Γ π ) ) πΆ ) = ( π΄ ( dist β π
) πΆ ) ) |
93 |
91 92
|
eqtrid |
β’ ( π β ( π΄ π πΆ ) = ( π΄ ( dist β π
) πΆ ) ) |
94 |
90 93
|
eqtr4d |
β’ ( π β ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) = ( π΄ π πΆ ) ) |
95 |
94
|
eqeq2d |
β’ ( π β ( π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) β π₯ = ( π΄ π πΆ ) ) ) |
96 |
|
fvpr1o |
β’ ( π β π β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) = π ) |
97 |
5 96
|
syl |
β’ ( π β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) = π ) |
98 |
97
|
fveq2d |
β’ ( π β ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) = ( dist β π ) ) |
99 |
|
fvpr1o |
β’ ( π΅ β π β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) = π΅ ) |
100 |
12 99
|
syl |
β’ ( π β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) = π΅ ) |
101 |
|
fvpr1o |
β’ ( π· β π β ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) = π· ) |
102 |
14 101
|
syl |
β’ ( π β ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) = π· ) |
103 |
98 100 102
|
oveq123d |
β’ ( π β ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) = ( π΅ ( dist β π ) π· ) ) |
104 |
8
|
oveqi |
β’ ( π΅ π π· ) = ( π΅ ( ( dist β π ) βΎ ( π Γ π ) ) π· ) |
105 |
12 14
|
ovresd |
β’ ( π β ( π΅ ( ( dist β π ) βΎ ( π Γ π ) ) π· ) = ( π΅ ( dist β π ) π· ) ) |
106 |
104 105
|
eqtrid |
β’ ( π β ( π΅ π π· ) = ( π΅ ( dist β π ) π· ) ) |
107 |
103 106
|
eqtr4d |
β’ ( π β ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) = ( π΅ π π· ) ) |
108 |
107
|
eqeq2d |
β’ ( π β ( π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) β π₯ = ( π΅ π π· ) ) ) |
109 |
95 108
|
orbi12d |
β’ ( π β ( ( π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β β
) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β β
) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β β
) ) β¨ π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β 1o ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β 1o ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β 1o ) ) ) β ( π₯ = ( π΄ π πΆ ) β¨ π₯ = ( π΅ π π· ) ) ) ) |
110 |
82 109
|
bitrid |
β’ ( π β ( β π β 2o π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) β ( π₯ = ( π΄ π πΆ ) β¨ π₯ = ( π΅ π π· ) ) ) ) |
111 |
|
eqid |
β’ ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) = ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) |
112 |
111
|
elrnmpt |
β’ ( π₯ β V β ( π₯ β ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) β β π β 2o π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) ) |
113 |
112
|
elv |
β’ ( π₯ β ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) β β π β 2o π₯ = ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) |
114 |
|
vex |
β’ π₯ β V |
115 |
114
|
elpr |
β’ ( π₯ β { ( π΄ π πΆ ) , ( π΅ π π· ) } β ( π₯ = ( π΄ π πΆ ) β¨ π₯ = ( π΅ π π· ) ) ) |
116 |
110 113 115
|
3bitr4g |
β’ ( π β ( π₯ β ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) β π₯ β { ( π΄ π πΆ ) , ( π΅ π π· ) } ) ) |
117 |
116
|
eqrdv |
β’ ( π β ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) = { ( π΄ π πΆ ) , ( π΅ π π· ) } ) |
118 |
117
|
uneq1d |
β’ ( π β ( ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) βͺ { 0 } ) = ( { ( π΄ π πΆ ) , ( π΅ π π· ) } βͺ { 0 } ) ) |
119 |
|
uncom |
β’ ( { ( π΄ π πΆ ) , ( π΅ π π· ) } βͺ { 0 } ) = ( { 0 } βͺ { ( π΄ π πΆ ) , ( π΅ π π· ) } ) |
120 |
118 119
|
eqtrdi |
β’ ( π β ( ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) βͺ { 0 } ) = ( { 0 } βͺ { ( π΄ π πΆ ) , ( π΅ π π· ) } ) ) |
121 |
120
|
supeq1d |
β’ ( π β sup ( ( ran ( π β 2o β¦ ( ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } β π ) ( dist β ( { β¨ β
, π
β© , β¨ 1o , π β© } β π ) ) ( { β¨ β
, πΆ β© , β¨ 1o , π· β© } β π ) ) ) βͺ { 0 } ) , β* , < ) = sup ( ( { 0 } βͺ { ( π΄ π πΆ ) , ( π΅ π π· ) } ) , β* , < ) ) |
122 |
|
0xr |
β’ 0 β β* |
123 |
122
|
a1i |
β’ ( π β 0 β β* ) |
124 |
123
|
snssd |
β’ ( π β { 0 } β β* ) |
125 |
|
xmetcl |
β’ ( ( π β ( βMet β π ) β§ π΄ β π β§ πΆ β π ) β ( π΄ π πΆ ) β β* ) |
126 |
9 11 13 125
|
syl3anc |
β’ ( π β ( π΄ π πΆ ) β β* ) |
127 |
|
xmetcl |
β’ ( ( π β ( βMet β π ) β§ π΅ β π β§ π· β π ) β ( π΅ π π· ) β β* ) |
128 |
10 12 14 127
|
syl3anc |
β’ ( π β ( π΅ π π· ) β β* ) |
129 |
126 128
|
prssd |
β’ ( π β { ( π΄ π πΆ ) , ( π΅ π π· ) } β β* ) |
130 |
|
xrltso |
β’ < Or β* |
131 |
|
supsn |
β’ ( ( < Or β* β§ 0 β β* ) β sup ( { 0 } , β* , < ) = 0 ) |
132 |
130 122 131
|
mp2an |
β’ sup ( { 0 } , β* , < ) = 0 |
133 |
|
supxrcl |
β’ ( { ( π΄ π πΆ ) , ( π΅ π π· ) } β β* β sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) β β* ) |
134 |
129 133
|
syl |
β’ ( π β sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) β β* ) |
135 |
|
xmetge0 |
β’ ( ( π β ( βMet β π ) β§ π΄ β π β§ πΆ β π ) β 0 β€ ( π΄ π πΆ ) ) |
136 |
9 11 13 135
|
syl3anc |
β’ ( π β 0 β€ ( π΄ π πΆ ) ) |
137 |
|
ovex |
β’ ( π΄ π πΆ ) β V |
138 |
137
|
prid1 |
β’ ( π΄ π πΆ ) β { ( π΄ π πΆ ) , ( π΅ π π· ) } |
139 |
|
supxrub |
β’ ( ( { ( π΄ π πΆ ) , ( π΅ π π· ) } β β* β§ ( π΄ π πΆ ) β { ( π΄ π πΆ ) , ( π΅ π π· ) } ) β ( π΄ π πΆ ) β€ sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |
140 |
129 138 139
|
sylancl |
β’ ( π β ( π΄ π πΆ ) β€ sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |
141 |
123 126 134 136 140
|
xrletrd |
β’ ( π β 0 β€ sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |
142 |
132 141
|
eqbrtrid |
β’ ( π β sup ( { 0 } , β* , < ) β€ sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |
143 |
|
supxrun |
β’ ( ( { 0 } β β* β§ { ( π΄ π πΆ ) , ( π΅ π π· ) } β β* β§ sup ( { 0 } , β* , < ) β€ sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) β sup ( ( { 0 } βͺ { ( π΄ π πΆ ) , ( π΅ π π· ) } ) , β* , < ) = sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |
144 |
124 129 142 143
|
syl3anc |
β’ ( π β sup ( ( { 0 } βͺ { ( π΄ π πΆ ) , ( π΅ π π· ) } ) , β* , < ) = sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |
145 |
66 121 144
|
3eqtrd |
β’ ( π β ( { β¨ β
, π΄ β© , β¨ 1o , π΅ β© } ( dist β ( ( Scalar β π
) Xs { β¨ β
, π
β© , β¨ 1o , π β© } ) ) { β¨ β
, πΆ β© , β¨ 1o , π· β© } ) = sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |
146 |
49 56 145
|
3eqtr3d |
β’ ( π β ( β¨ π΄ , π΅ β© π β¨ πΆ , π· β© ) = sup ( { ( π΄ π πΆ ) , ( π΅ π π· ) } , β* , < ) ) |