Metamath Proof Explorer


Theorem xpsdsval

Description: Value of the metric in a binary structure product. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses xpsds.t ⊒ 𝑇 = ( 𝑅 Γ—s 𝑆 )
xpsds.x ⊒ 𝑋 = ( Base β€˜ 𝑅 )
xpsds.y ⊒ π‘Œ = ( Base β€˜ 𝑆 )
xpsds.1 ⊒ ( πœ‘ β†’ 𝑅 ∈ 𝑉 )
xpsds.2 ⊒ ( πœ‘ β†’ 𝑆 ∈ π‘Š )
xpsds.p ⊒ 𝑃 = ( dist β€˜ 𝑇 )
xpsds.m ⊒ 𝑀 = ( ( dist β€˜ 𝑅 ) β†Ύ ( 𝑋 Γ— 𝑋 ) )
xpsds.n ⊒ 𝑁 = ( ( dist β€˜ 𝑆 ) β†Ύ ( π‘Œ Γ— π‘Œ ) )
xpsds.3 ⊒ ( πœ‘ β†’ 𝑀 ∈ ( ∞Met β€˜ 𝑋 ) )
xpsds.4 ⊒ ( πœ‘ β†’ 𝑁 ∈ ( ∞Met β€˜ π‘Œ ) )
xpsds.a ⊒ ( πœ‘ β†’ 𝐴 ∈ 𝑋 )
xpsds.b ⊒ ( πœ‘ β†’ 𝐡 ∈ π‘Œ )
xpsds.c ⊒ ( πœ‘ β†’ 𝐢 ∈ 𝑋 )
xpsds.d ⊒ ( πœ‘ β†’ 𝐷 ∈ π‘Œ )
Assertion xpsdsval ( πœ‘ β†’ ( ⟨ 𝐴 , 𝐡 ⟩ 𝑃 ⟨ 𝐢 , 𝐷 ⟩ ) = sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 xpsds.t ⊒ 𝑇 = ( 𝑅 Γ—s 𝑆 )
2 xpsds.x ⊒ 𝑋 = ( Base β€˜ 𝑅 )
3 xpsds.y ⊒ π‘Œ = ( Base β€˜ 𝑆 )
4 xpsds.1 ⊒ ( πœ‘ β†’ 𝑅 ∈ 𝑉 )
5 xpsds.2 ⊒ ( πœ‘ β†’ 𝑆 ∈ π‘Š )
6 xpsds.p ⊒ 𝑃 = ( dist β€˜ 𝑇 )
7 xpsds.m ⊒ 𝑀 = ( ( dist β€˜ 𝑅 ) β†Ύ ( 𝑋 Γ— 𝑋 ) )
8 xpsds.n ⊒ 𝑁 = ( ( dist β€˜ 𝑆 ) β†Ύ ( π‘Œ Γ— π‘Œ ) )
9 xpsds.3 ⊒ ( πœ‘ β†’ 𝑀 ∈ ( ∞Met β€˜ 𝑋 ) )
10 xpsds.4 ⊒ ( πœ‘ β†’ 𝑁 ∈ ( ∞Met β€˜ π‘Œ ) )
11 xpsds.a ⊒ ( πœ‘ β†’ 𝐴 ∈ 𝑋 )
12 xpsds.b ⊒ ( πœ‘ β†’ 𝐡 ∈ π‘Œ )
13 xpsds.c ⊒ ( πœ‘ β†’ 𝐢 ∈ 𝑋 )
14 xpsds.d ⊒ ( πœ‘ β†’ 𝐷 ∈ π‘Œ )
15 eqid ⊒ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } )
16 eqid ⊒ ( Scalar β€˜ 𝑅 ) = ( Scalar β€˜ 𝑅 )
17 eqid ⊒ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) = ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } )
18 1 2 3 4 5 15 16 17 xpsval ⊒ ( πœ‘ β†’ 𝑇 = ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€œs ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
19 1 2 3 4 5 15 16 17 xpsrnbas ⊒ ( πœ‘ β†’ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( Base β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
20 15 xpsff1o2 ⊒ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( 𝑋 Γ— π‘Œ ) –1-1-ontoβ†’ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } )
21 f1ocnv ⊒ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( 𝑋 Γ— π‘Œ ) –1-1-ontoβ†’ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β†’ β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –1-1-ontoβ†’ ( 𝑋 Γ— π‘Œ ) )
22 20 21 mp1i ⊒ ( πœ‘ β†’ β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –1-1-ontoβ†’ ( 𝑋 Γ— π‘Œ ) )
23 ovexd ⊒ ( πœ‘ β†’ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ∈ V )
24 eqid ⊒ ( ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) β†Ύ ( ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) Γ— ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) ) = ( ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) β†Ύ ( ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) Γ— ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) )
25 1 2 3 4 5 6 7 8 9 10 xpsxmetlem ⊒ ( πœ‘ β†’ ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) ∈ ( ∞Met β€˜ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) )
26 ssid ⊒ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) βŠ† ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } )
27 xmetres2 ⊒ ( ( ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) ∈ ( ∞Met β€˜ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) ∧ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) βŠ† ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) β†’ ( ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) β†Ύ ( ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) Γ— ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) ) ∈ ( ∞Met β€˜ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) )
28 25 26 27 sylancl ⊒ ( πœ‘ β†’ ( ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) β†Ύ ( ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) Γ— ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) ) ∈ ( ∞Met β€˜ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) )
29 df-ov ⊒ ( 𝐴 ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) 𝐡 ) = ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐴 , 𝐡 ⟩ )
30 15 xpsfval ⊒ ( ( 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ π‘Œ ) β†’ ( 𝐴 ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) 𝐡 ) = { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } )
31 11 12 30 syl2anc ⊒ ( πœ‘ β†’ ( 𝐴 ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) 𝐡 ) = { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } )
32 29 31 eqtr3id ⊒ ( πœ‘ β†’ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐴 , 𝐡 ⟩ ) = { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } )
33 11 12 opelxpd ⊒ ( πœ‘ β†’ ⟨ 𝐴 , 𝐡 ⟩ ∈ ( 𝑋 Γ— π‘Œ ) )
34 f1of ⊒ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( 𝑋 Γ— π‘Œ ) –1-1-ontoβ†’ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β†’ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( 𝑋 Γ— π‘Œ ) ⟢ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) )
35 20 34 ax-mp ⊒ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( 𝑋 Γ— π‘Œ ) ⟢ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } )
36 35 ffvelcdmi ⊒ ( ⟨ 𝐴 , 𝐡 ⟩ ∈ ( 𝑋 Γ— π‘Œ ) β†’ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐴 , 𝐡 ⟩ ) ∈ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) )
37 33 36 syl ⊒ ( πœ‘ β†’ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐴 , 𝐡 ⟩ ) ∈ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) )
38 32 37 eqeltrrd ⊒ ( πœ‘ β†’ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ∈ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) )
39 df-ov ⊒ ( 𝐢 ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) 𝐷 ) = ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐢 , 𝐷 ⟩ )
40 15 xpsfval ⊒ ( ( 𝐢 ∈ 𝑋 ∧ 𝐷 ∈ π‘Œ ) β†’ ( 𝐢 ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) 𝐷 ) = { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } )
41 13 14 40 syl2anc ⊒ ( πœ‘ β†’ ( 𝐢 ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) 𝐷 ) = { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } )
42 39 41 eqtr3id ⊒ ( πœ‘ β†’ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐢 , 𝐷 ⟩ ) = { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } )
43 13 14 opelxpd ⊒ ( πœ‘ β†’ ⟨ 𝐢 , 𝐷 ⟩ ∈ ( 𝑋 Γ— π‘Œ ) )
44 35 ffvelcdmi ⊒ ( ⟨ 𝐢 , 𝐷 ⟩ ∈ ( 𝑋 Γ— π‘Œ ) β†’ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐢 , 𝐷 ⟩ ) ∈ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) )
45 43 44 syl ⊒ ( πœ‘ β†’ ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐢 , 𝐷 ⟩ ) ∈ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) )
46 42 45 eqeltrrd ⊒ ( πœ‘ β†’ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ∈ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) )
47 18 19 22 23 24 6 28 38 46 imasdsf1o ⊒ ( πœ‘ β†’ ( ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ) 𝑃 ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) ) = ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ( ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) β†Ύ ( ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) Γ— ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) ) { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) )
48 38 46 ovresd ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ( ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) β†Ύ ( ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) Γ— ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) ) { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) = ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) )
49 47 48 eqtrd ⊒ ( πœ‘ β†’ ( ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ) 𝑃 ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) ) = ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) )
50 f1ocnvfv ⊒ ( ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( 𝑋 Γ— π‘Œ ) –1-1-ontoβ†’ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ∧ ⟨ 𝐴 , 𝐡 ⟩ ∈ ( 𝑋 Γ— π‘Œ ) ) β†’ ( ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐴 , 𝐡 ⟩ ) = { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β†’ ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ) = ⟨ 𝐴 , 𝐡 ⟩ ) )
51 20 33 50 sylancr ⊒ ( πœ‘ β†’ ( ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐴 , 𝐡 ⟩ ) = { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β†’ ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ) = ⟨ 𝐴 , 𝐡 ⟩ ) )
52 32 51 mpd ⊒ ( πœ‘ β†’ ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ) = ⟨ 𝐴 , 𝐡 ⟩ )
53 f1ocnvfv ⊒ ( ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( 𝑋 Γ— π‘Œ ) –1-1-ontoβ†’ ran ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ∧ ⟨ 𝐢 , 𝐷 ⟩ ∈ ( 𝑋 Γ— π‘Œ ) ) β†’ ( ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐢 , 𝐷 ⟩ ) = { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β†’ ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) = ⟨ 𝐢 , 𝐷 ⟩ ) )
54 20 43 53 sylancr ⊒ ( πœ‘ β†’ ( ( ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ ⟨ 𝐢 , 𝐷 ⟩ ) = { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β†’ ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) = ⟨ 𝐢 , 𝐷 ⟩ ) )
55 42 54 mpd ⊒ ( πœ‘ β†’ ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) = ⟨ 𝐢 , 𝐷 ⟩ )
56 52 55 oveq12d ⊒ ( πœ‘ β†’ ( ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ) 𝑃 ( β—‘ ( π‘₯ ∈ 𝑋 , 𝑦 ∈ π‘Œ ↦ { ⟨ βˆ… , π‘₯ ⟩ , ⟨ 1o , 𝑦 ⟩ } ) β€˜ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) ) = ( ⟨ 𝐴 , 𝐡 ⟩ 𝑃 ⟨ 𝐢 , 𝐷 ⟩ ) )
57 eqid ⊒ ( Base β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) = ( Base β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) )
58 fvexd ⊒ ( πœ‘ β†’ ( Scalar β€˜ 𝑅 ) ∈ V )
59 2on ⊒ 2o ∈ On
60 59 a1i ⊒ ( πœ‘ β†’ 2o ∈ On )
61 fnpr2o ⊒ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ π‘Š ) β†’ { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } Fn 2o )
62 4 5 61 syl2anc ⊒ ( πœ‘ β†’ { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } Fn 2o )
63 38 19 eleqtrd ⊒ ( πœ‘ β†’ { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ∈ ( Base β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
64 46 19 eleqtrd ⊒ ( πœ‘ β†’ { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ∈ ( Base β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) )
65 eqid ⊒ ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) = ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) )
66 17 57 58 60 62 63 64 65 prdsdsval ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) = sup ( ( ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) βˆͺ { 0 } ) , ℝ* , < ) )
67 df2o3 ⊒ 2o = { βˆ… , 1o }
68 67 rexeqi ⊒ ( βˆƒ π‘˜ ∈ 2o π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ↔ βˆƒ π‘˜ ∈ { βˆ… , 1o } π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) )
69 0ex ⊒ βˆ… ∈ V
70 1oex ⊒ 1o ∈ V
71 2fveq3 ⊒ ( π‘˜ = βˆ… β†’ ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) = ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) )
72 fveq2 ⊒ ( π‘˜ = βˆ… β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) = ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) )
73 fveq2 ⊒ ( π‘˜ = βˆ… β†’ ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) = ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) )
74 71 72 73 oveq123d ⊒ ( π‘˜ = βˆ… β†’ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) )
75 74 eqeq2d ⊒ ( π‘˜ = βˆ… β†’ ( π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ↔ π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) ) )
76 2fveq3 ⊒ ( π‘˜ = 1o β†’ ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) = ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) )
77 fveq2 ⊒ ( π‘˜ = 1o β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) = ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) )
78 fveq2 ⊒ ( π‘˜ = 1o β†’ ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) = ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) )
79 76 77 78 oveq123d ⊒ ( π‘˜ = 1o β†’ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) )
80 79 eqeq2d ⊒ ( π‘˜ = 1o β†’ ( π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ↔ π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) ) )
81 69 70 75 80 rexpr ⊒ ( βˆƒ π‘˜ ∈ { βˆ… , 1o } π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ↔ ( π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) ∨ π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) ) )
82 68 81 bitri ⊒ ( βˆƒ π‘˜ ∈ 2o π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ↔ ( π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) ∨ π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) ) )
83 fvpr0o ⊒ ( 𝑅 ∈ 𝑉 β†’ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) = 𝑅 )
84 4 83 syl ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) = 𝑅 )
85 84 fveq2d ⊒ ( πœ‘ β†’ ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) = ( dist β€˜ 𝑅 ) )
86 fvpr0o ⊒ ( 𝐴 ∈ 𝑋 β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) = 𝐴 )
87 11 86 syl ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) = 𝐴 )
88 fvpr0o ⊒ ( 𝐢 ∈ 𝑋 β†’ ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) = 𝐢 )
89 13 88 syl ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) = 𝐢 )
90 85 87 89 oveq123d ⊒ ( πœ‘ β†’ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) = ( 𝐴 ( dist β€˜ 𝑅 ) 𝐢 ) )
91 7 oveqi ⊒ ( 𝐴 𝑀 𝐢 ) = ( 𝐴 ( ( dist β€˜ 𝑅 ) β†Ύ ( 𝑋 Γ— 𝑋 ) ) 𝐢 )
92 11 13 ovresd ⊒ ( πœ‘ β†’ ( 𝐴 ( ( dist β€˜ 𝑅 ) β†Ύ ( 𝑋 Γ— 𝑋 ) ) 𝐢 ) = ( 𝐴 ( dist β€˜ 𝑅 ) 𝐢 ) )
93 91 92 eqtrid ⊒ ( πœ‘ β†’ ( 𝐴 𝑀 𝐢 ) = ( 𝐴 ( dist β€˜ 𝑅 ) 𝐢 ) )
94 90 93 eqtr4d ⊒ ( πœ‘ β†’ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) = ( 𝐴 𝑀 𝐢 ) )
95 94 eqeq2d ⊒ ( πœ‘ β†’ ( π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) ↔ π‘₯ = ( 𝐴 𝑀 𝐢 ) ) )
96 fvpr1o ⊒ ( 𝑆 ∈ π‘Š β†’ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) = 𝑆 )
97 5 96 syl ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) = 𝑆 )
98 97 fveq2d ⊒ ( πœ‘ β†’ ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) = ( dist β€˜ 𝑆 ) )
99 fvpr1o ⊒ ( 𝐡 ∈ π‘Œ β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) = 𝐡 )
100 12 99 syl ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) = 𝐡 )
101 fvpr1o ⊒ ( 𝐷 ∈ π‘Œ β†’ ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) = 𝐷 )
102 14 101 syl ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) = 𝐷 )
103 98 100 102 oveq123d ⊒ ( πœ‘ β†’ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) = ( 𝐡 ( dist β€˜ 𝑆 ) 𝐷 ) )
104 8 oveqi ⊒ ( 𝐡 𝑁 𝐷 ) = ( 𝐡 ( ( dist β€˜ 𝑆 ) β†Ύ ( π‘Œ Γ— π‘Œ ) ) 𝐷 )
105 12 14 ovresd ⊒ ( πœ‘ β†’ ( 𝐡 ( ( dist β€˜ 𝑆 ) β†Ύ ( π‘Œ Γ— π‘Œ ) ) 𝐷 ) = ( 𝐡 ( dist β€˜ 𝑆 ) 𝐷 ) )
106 104 105 eqtrid ⊒ ( πœ‘ β†’ ( 𝐡 𝑁 𝐷 ) = ( 𝐡 ( dist β€˜ 𝑆 ) 𝐷 ) )
107 103 106 eqtr4d ⊒ ( πœ‘ β†’ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) = ( 𝐡 𝑁 𝐷 ) )
108 107 eqeq2d ⊒ ( πœ‘ β†’ ( π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) ↔ π‘₯ = ( 𝐡 𝑁 𝐷 ) ) )
109 95 108 orbi12d ⊒ ( πœ‘ β†’ ( ( π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ βˆ… ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ βˆ… ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ βˆ… ) ) ∨ π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ 1o ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ 1o ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ 1o ) ) ) ↔ ( π‘₯ = ( 𝐴 𝑀 𝐢 ) ∨ π‘₯ = ( 𝐡 𝑁 𝐷 ) ) ) )
110 82 109 bitrid ⊒ ( πœ‘ β†’ ( βˆƒ π‘˜ ∈ 2o π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ↔ ( π‘₯ = ( 𝐴 𝑀 𝐢 ) ∨ π‘₯ = ( 𝐡 𝑁 𝐷 ) ) ) )
111 eqid ⊒ ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) = ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) )
112 111 elrnmpt ⊒ ( π‘₯ ∈ V β†’ ( π‘₯ ∈ ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) ↔ βˆƒ π‘˜ ∈ 2o π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) )
113 112 elv ⊒ ( π‘₯ ∈ ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) ↔ βˆƒ π‘˜ ∈ 2o π‘₯ = ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) )
114 vex ⊒ π‘₯ ∈ V
115 114 elpr ⊒ ( π‘₯ ∈ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } ↔ ( π‘₯ = ( 𝐴 𝑀 𝐢 ) ∨ π‘₯ = ( 𝐡 𝑁 𝐷 ) ) )
116 110 113 115 3bitr4g ⊒ ( πœ‘ β†’ ( π‘₯ ∈ ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) ↔ π‘₯ ∈ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } ) )
117 116 eqrdv ⊒ ( πœ‘ β†’ ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) = { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } )
118 117 uneq1d ⊒ ( πœ‘ β†’ ( ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) βˆͺ { 0 } ) = ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } βˆͺ { 0 } ) )
119 uncom ⊒ ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } βˆͺ { 0 } ) = ( { 0 } βˆͺ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } )
120 118 119 eqtrdi ⊒ ( πœ‘ β†’ ( ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) βˆͺ { 0 } ) = ( { 0 } βˆͺ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } ) )
121 120 supeq1d ⊒ ( πœ‘ β†’ sup ( ( ran ( π‘˜ ∈ 2o ↦ ( ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } β€˜ π‘˜ ) ( dist β€˜ ( { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } β€˜ π‘˜ ) ) ( { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } β€˜ π‘˜ ) ) ) βˆͺ { 0 } ) , ℝ* , < ) = sup ( ( { 0 } βˆͺ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } ) , ℝ* , < ) )
122 0xr ⊒ 0 ∈ ℝ*
123 122 a1i ⊒ ( πœ‘ β†’ 0 ∈ ℝ* )
124 123 snssd ⊒ ( πœ‘ β†’ { 0 } βŠ† ℝ* )
125 xmetcl ⊒ ( ( 𝑀 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ) β†’ ( 𝐴 𝑀 𝐢 ) ∈ ℝ* )
126 9 11 13 125 syl3anc ⊒ ( πœ‘ β†’ ( 𝐴 𝑀 𝐢 ) ∈ ℝ* )
127 xmetcl ⊒ ( ( 𝑁 ∈ ( ∞Met β€˜ π‘Œ ) ∧ 𝐡 ∈ π‘Œ ∧ 𝐷 ∈ π‘Œ ) β†’ ( 𝐡 𝑁 𝐷 ) ∈ ℝ* )
128 10 12 14 127 syl3anc ⊒ ( πœ‘ β†’ ( 𝐡 𝑁 𝐷 ) ∈ ℝ* )
129 126 128 prssd ⊒ ( πœ‘ β†’ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } βŠ† ℝ* )
130 xrltso ⊒ < Or ℝ*
131 supsn ⊒ ( ( < Or ℝ* ∧ 0 ∈ ℝ* ) β†’ sup ( { 0 } , ℝ* , < ) = 0 )
132 130 122 131 mp2an ⊒ sup ( { 0 } , ℝ* , < ) = 0
133 supxrcl ⊒ ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } βŠ† ℝ* β†’ sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) ∈ ℝ* )
134 129 133 syl ⊒ ( πœ‘ β†’ sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) ∈ ℝ* )
135 xmetge0 ⊒ ( ( 𝑀 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐢 ∈ 𝑋 ) β†’ 0 ≀ ( 𝐴 𝑀 𝐢 ) )
136 9 11 13 135 syl3anc ⊒ ( πœ‘ β†’ 0 ≀ ( 𝐴 𝑀 𝐢 ) )
137 ovex ⊒ ( 𝐴 𝑀 𝐢 ) ∈ V
138 137 prid1 ⊒ ( 𝐴 𝑀 𝐢 ) ∈ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) }
139 supxrub ⊒ ( ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } βŠ† ℝ* ∧ ( 𝐴 𝑀 𝐢 ) ∈ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } ) β†’ ( 𝐴 𝑀 𝐢 ) ≀ sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )
140 129 138 139 sylancl ⊒ ( πœ‘ β†’ ( 𝐴 𝑀 𝐢 ) ≀ sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )
141 123 126 134 136 140 xrletrd ⊒ ( πœ‘ β†’ 0 ≀ sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )
142 132 141 eqbrtrid ⊒ ( πœ‘ β†’ sup ( { 0 } , ℝ* , < ) ≀ sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )
143 supxrun ⊒ ( ( { 0 } βŠ† ℝ* ∧ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } βŠ† ℝ* ∧ sup ( { 0 } , ℝ* , < ) ≀ sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) ) β†’ sup ( ( { 0 } βˆͺ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } ) , ℝ* , < ) = sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )
144 124 129 142 143 syl3anc ⊒ ( πœ‘ β†’ sup ( ( { 0 } βˆͺ { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } ) , ℝ* , < ) = sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )
145 66 121 144 3eqtrd ⊒ ( πœ‘ β†’ ( { ⟨ βˆ… , 𝐴 ⟩ , ⟨ 1o , 𝐡 ⟩ } ( dist β€˜ ( ( Scalar β€˜ 𝑅 ) Xs { ⟨ βˆ… , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) { ⟨ βˆ… , 𝐢 ⟩ , ⟨ 1o , 𝐷 ⟩ } ) = sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )
146 49 56 145 3eqtr3d ⊒ ( πœ‘ β†’ ( ⟨ 𝐴 , 𝐡 ⟩ 𝑃 ⟨ 𝐢 , 𝐷 ⟩ ) = sup ( { ( 𝐴 𝑀 𝐢 ) , ( 𝐡 𝑁 𝐷 ) } , ℝ* , < ) )