Step |
Hyp |
Ref |
Expression |
1 |
|
4nn0 |
|- 4 e. NN0 |
2 |
|
bpolyval |
|- ( ( 4 e. NN0 /\ X e. CC ) -> ( 4 BernPoly X ) = ( ( X ^ 4 ) - sum_ k e. ( 0 ... ( 4 - 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) ) ) |
3 |
1 2
|
mpan |
|- ( X e. CC -> ( 4 BernPoly X ) = ( ( X ^ 4 ) - sum_ k e. ( 0 ... ( 4 - 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) ) ) |
4 |
|
4m1e3 |
|- ( 4 - 1 ) = 3 |
5 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
6 |
4 5
|
eqtri |
|- ( 4 - 1 ) = ( 2 + 1 ) |
7 |
6
|
oveq2i |
|- ( 0 ... ( 4 - 1 ) ) = ( 0 ... ( 2 + 1 ) ) |
8 |
7
|
sumeq1i |
|- sum_ k e. ( 0 ... ( 4 - 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = sum_ k e. ( 0 ... ( 2 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) |
9 |
|
2eluzge0 |
|- 2 e. ( ZZ>= ` 0 ) |
10 |
9
|
a1i |
|- ( X e. CC -> 2 e. ( ZZ>= ` 0 ) ) |
11 |
|
elfzelz |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> k e. ZZ ) |
12 |
|
bccl |
|- ( ( 4 e. NN0 /\ k e. ZZ ) -> ( 4 _C k ) e. NN0 ) |
13 |
1 11 12
|
sylancr |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> ( 4 _C k ) e. NN0 ) |
14 |
13
|
nn0cnd |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> ( 4 _C k ) e. CC ) |
15 |
14
|
adantl |
|- ( ( X e. CC /\ k e. ( 0 ... ( 2 + 1 ) ) ) -> ( 4 _C k ) e. CC ) |
16 |
|
elfznn0 |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> k e. NN0 ) |
17 |
|
bpolycl |
|- ( ( k e. NN0 /\ X e. CC ) -> ( k BernPoly X ) e. CC ) |
18 |
16 17
|
sylan |
|- ( ( k e. ( 0 ... ( 2 + 1 ) ) /\ X e. CC ) -> ( k BernPoly X ) e. CC ) |
19 |
18
|
ancoms |
|- ( ( X e. CC /\ k e. ( 0 ... ( 2 + 1 ) ) ) -> ( k BernPoly X ) e. CC ) |
20 |
|
4re |
|- 4 e. RR |
21 |
20
|
a1i |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> 4 e. RR ) |
22 |
11
|
zred |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> k e. RR ) |
23 |
21 22
|
resubcld |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> ( 4 - k ) e. RR ) |
24 |
|
peano2re |
|- ( ( 4 - k ) e. RR -> ( ( 4 - k ) + 1 ) e. RR ) |
25 |
23 24
|
syl |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> ( ( 4 - k ) + 1 ) e. RR ) |
26 |
25
|
recnd |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> ( ( 4 - k ) + 1 ) e. CC ) |
27 |
26
|
adantl |
|- ( ( X e. CC /\ k e. ( 0 ... ( 2 + 1 ) ) ) -> ( ( 4 - k ) + 1 ) e. CC ) |
28 |
|
1red |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> 1 e. RR ) |
29 |
5
|
oveq2i |
|- ( 0 ... 3 ) = ( 0 ... ( 2 + 1 ) ) |
30 |
29
|
eleq2i |
|- ( k e. ( 0 ... 3 ) <-> k e. ( 0 ... ( 2 + 1 ) ) ) |
31 |
|
elfzelz |
|- ( k e. ( 0 ... 3 ) -> k e. ZZ ) |
32 |
31
|
zred |
|- ( k e. ( 0 ... 3 ) -> k e. RR ) |
33 |
|
3re |
|- 3 e. RR |
34 |
33
|
a1i |
|- ( k e. ( 0 ... 3 ) -> 3 e. RR ) |
35 |
20
|
a1i |
|- ( k e. ( 0 ... 3 ) -> 4 e. RR ) |
36 |
|
elfzle2 |
|- ( k e. ( 0 ... 3 ) -> k <_ 3 ) |
37 |
|
3lt4 |
|- 3 < 4 |
38 |
37
|
a1i |
|- ( k e. ( 0 ... 3 ) -> 3 < 4 ) |
39 |
32 34 35 36 38
|
lelttrd |
|- ( k e. ( 0 ... 3 ) -> k < 4 ) |
40 |
30 39
|
sylbir |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> k < 4 ) |
41 |
22 21
|
posdifd |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> ( k < 4 <-> 0 < ( 4 - k ) ) ) |
42 |
40 41
|
mpbid |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> 0 < ( 4 - k ) ) |
43 |
|
0lt1 |
|- 0 < 1 |
44 |
43
|
a1i |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> 0 < 1 ) |
45 |
23 28 42 44
|
addgt0d |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> 0 < ( ( 4 - k ) + 1 ) ) |
46 |
45
|
gt0ne0d |
|- ( k e. ( 0 ... ( 2 + 1 ) ) -> ( ( 4 - k ) + 1 ) =/= 0 ) |
47 |
46
|
adantl |
|- ( ( X e. CC /\ k e. ( 0 ... ( 2 + 1 ) ) ) -> ( ( 4 - k ) + 1 ) =/= 0 ) |
48 |
19 27 47
|
divcld |
|- ( ( X e. CC /\ k e. ( 0 ... ( 2 + 1 ) ) ) -> ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) e. CC ) |
49 |
15 48
|
mulcld |
|- ( ( X e. CC /\ k e. ( 0 ... ( 2 + 1 ) ) ) -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) e. CC ) |
50 |
5
|
eqeq2i |
|- ( k = 3 <-> k = ( 2 + 1 ) ) |
51 |
|
oveq2 |
|- ( k = 3 -> ( 4 _C k ) = ( 4 _C 3 ) ) |
52 |
|
4bc3eq4 |
|- ( 4 _C 3 ) = 4 |
53 |
51 52
|
eqtrdi |
|- ( k = 3 -> ( 4 _C k ) = 4 ) |
54 |
|
oveq1 |
|- ( k = 3 -> ( k BernPoly X ) = ( 3 BernPoly X ) ) |
55 |
|
oveq2 |
|- ( k = 3 -> ( 4 - k ) = ( 4 - 3 ) ) |
56 |
55
|
oveq1d |
|- ( k = 3 -> ( ( 4 - k ) + 1 ) = ( ( 4 - 3 ) + 1 ) ) |
57 |
|
4cn |
|- 4 e. CC |
58 |
|
3cn |
|- 3 e. CC |
59 |
|
ax-1cn |
|- 1 e. CC |
60 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
61 |
57 58 59 60
|
subaddrii |
|- ( 4 - 3 ) = 1 |
62 |
61
|
oveq1i |
|- ( ( 4 - 3 ) + 1 ) = ( 1 + 1 ) |
63 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
64 |
62 63
|
eqtr4i |
|- ( ( 4 - 3 ) + 1 ) = 2 |
65 |
56 64
|
eqtrdi |
|- ( k = 3 -> ( ( 4 - k ) + 1 ) = 2 ) |
66 |
54 65
|
oveq12d |
|- ( k = 3 -> ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) = ( ( 3 BernPoly X ) / 2 ) ) |
67 |
53 66
|
oveq12d |
|- ( k = 3 -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 4 x. ( ( 3 BernPoly X ) / 2 ) ) ) |
68 |
50 67
|
sylbir |
|- ( k = ( 2 + 1 ) -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 4 x. ( ( 3 BernPoly X ) / 2 ) ) ) |
69 |
10 49 68
|
fsump1 |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 2 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... 2 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) + ( 4 x. ( ( 3 BernPoly X ) / 2 ) ) ) ) |
70 |
63
|
oveq2i |
|- ( 0 ... 2 ) = ( 0 ... ( 1 + 1 ) ) |
71 |
70
|
sumeq1i |
|- sum_ k e. ( 0 ... 2 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = sum_ k e. ( 0 ... ( 1 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) |
72 |
|
1eluzge0 |
|- 1 e. ( ZZ>= ` 0 ) |
73 |
72
|
a1i |
|- ( X e. CC -> 1 e. ( ZZ>= ` 0 ) ) |
74 |
|
fzssp1 |
|- ( 0 ... ( 1 + 1 ) ) C_ ( 0 ... ( ( 1 + 1 ) + 1 ) ) |
75 |
63
|
oveq1i |
|- ( 2 + 1 ) = ( ( 1 + 1 ) + 1 ) |
76 |
75
|
oveq2i |
|- ( 0 ... ( 2 + 1 ) ) = ( 0 ... ( ( 1 + 1 ) + 1 ) ) |
77 |
74 76
|
sseqtrri |
|- ( 0 ... ( 1 + 1 ) ) C_ ( 0 ... ( 2 + 1 ) ) |
78 |
77
|
sseli |
|- ( k e. ( 0 ... ( 1 + 1 ) ) -> k e. ( 0 ... ( 2 + 1 ) ) ) |
79 |
78 49
|
sylan2 |
|- ( ( X e. CC /\ k e. ( 0 ... ( 1 + 1 ) ) ) -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) e. CC ) |
80 |
63
|
eqeq2i |
|- ( k = 2 <-> k = ( 1 + 1 ) ) |
81 |
|
oveq2 |
|- ( k = 2 -> ( 4 _C k ) = ( 4 _C 2 ) ) |
82 |
|
4bc2eq6 |
|- ( 4 _C 2 ) = 6 |
83 |
81 82
|
eqtrdi |
|- ( k = 2 -> ( 4 _C k ) = 6 ) |
84 |
|
oveq1 |
|- ( k = 2 -> ( k BernPoly X ) = ( 2 BernPoly X ) ) |
85 |
|
oveq2 |
|- ( k = 2 -> ( 4 - k ) = ( 4 - 2 ) ) |
86 |
85
|
oveq1d |
|- ( k = 2 -> ( ( 4 - k ) + 1 ) = ( ( 4 - 2 ) + 1 ) ) |
87 |
|
2cn |
|- 2 e. CC |
88 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
89 |
57 87 87 88
|
subaddrii |
|- ( 4 - 2 ) = 2 |
90 |
89
|
oveq1i |
|- ( ( 4 - 2 ) + 1 ) = ( 2 + 1 ) |
91 |
90 5
|
eqtr4i |
|- ( ( 4 - 2 ) + 1 ) = 3 |
92 |
86 91
|
eqtrdi |
|- ( k = 2 -> ( ( 4 - k ) + 1 ) = 3 ) |
93 |
84 92
|
oveq12d |
|- ( k = 2 -> ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) = ( ( 2 BernPoly X ) / 3 ) ) |
94 |
83 93
|
oveq12d |
|- ( k = 2 -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 6 x. ( ( 2 BernPoly X ) / 3 ) ) ) |
95 |
80 94
|
sylbir |
|- ( k = ( 1 + 1 ) -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 6 x. ( ( 2 BernPoly X ) / 3 ) ) ) |
96 |
73 79 95
|
fsump1 |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 1 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... 1 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) + ( 6 x. ( ( 2 BernPoly X ) / 3 ) ) ) ) |
97 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
98 |
97
|
oveq2i |
|- ( 0 ... ( 0 + 1 ) ) = ( 0 ... 1 ) |
99 |
98
|
sumeq1i |
|- sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = sum_ k e. ( 0 ... 1 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) |
100 |
|
0nn0 |
|- 0 e. NN0 |
101 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
102 |
100 101
|
eleqtri |
|- 0 e. ( ZZ>= ` 0 ) |
103 |
102
|
a1i |
|- ( X e. CC -> 0 e. ( ZZ>= ` 0 ) ) |
104 |
|
3nn |
|- 3 e. NN |
105 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
106 |
104 105
|
eleqtri |
|- 3 e. ( ZZ>= ` 1 ) |
107 |
|
fzss2 |
|- ( 3 e. ( ZZ>= ` 1 ) -> ( 0 ... 1 ) C_ ( 0 ... 3 ) ) |
108 |
106 107
|
ax-mp |
|- ( 0 ... 1 ) C_ ( 0 ... 3 ) |
109 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
110 |
109
|
oveq2i |
|- ( 0 ... ( 2 + 1 ) ) = ( 0 ... 3 ) |
111 |
108 98 110
|
3sstr4i |
|- ( 0 ... ( 0 + 1 ) ) C_ ( 0 ... ( 2 + 1 ) ) |
112 |
111
|
sseli |
|- ( k e. ( 0 ... ( 0 + 1 ) ) -> k e. ( 0 ... ( 2 + 1 ) ) ) |
113 |
112 49
|
sylan2 |
|- ( ( X e. CC /\ k e. ( 0 ... ( 0 + 1 ) ) ) -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) e. CC ) |
114 |
97
|
eqeq2i |
|- ( k = ( 0 + 1 ) <-> k = 1 ) |
115 |
|
oveq2 |
|- ( k = 1 -> ( 4 _C k ) = ( 4 _C 1 ) ) |
116 |
|
bcn1 |
|- ( 4 e. NN0 -> ( 4 _C 1 ) = 4 ) |
117 |
1 116
|
ax-mp |
|- ( 4 _C 1 ) = 4 |
118 |
115 117
|
eqtrdi |
|- ( k = 1 -> ( 4 _C k ) = 4 ) |
119 |
|
oveq1 |
|- ( k = 1 -> ( k BernPoly X ) = ( 1 BernPoly X ) ) |
120 |
|
oveq2 |
|- ( k = 1 -> ( 4 - k ) = ( 4 - 1 ) ) |
121 |
120
|
oveq1d |
|- ( k = 1 -> ( ( 4 - k ) + 1 ) = ( ( 4 - 1 ) + 1 ) ) |
122 |
4
|
oveq1i |
|- ( ( 4 - 1 ) + 1 ) = ( 3 + 1 ) |
123 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
124 |
122 123
|
eqtr4i |
|- ( ( 4 - 1 ) + 1 ) = 4 |
125 |
121 124
|
eqtrdi |
|- ( k = 1 -> ( ( 4 - k ) + 1 ) = 4 ) |
126 |
119 125
|
oveq12d |
|- ( k = 1 -> ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) = ( ( 1 BernPoly X ) / 4 ) ) |
127 |
118 126
|
oveq12d |
|- ( k = 1 -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 4 x. ( ( 1 BernPoly X ) / 4 ) ) ) |
128 |
114 127
|
sylbi |
|- ( k = ( 0 + 1 ) -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 4 x. ( ( 1 BernPoly X ) / 4 ) ) ) |
129 |
103 113 128
|
fsump1 |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( sum_ k e. ( 0 ... 0 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) + ( 4 x. ( ( 1 BernPoly X ) / 4 ) ) ) ) |
130 |
|
0z |
|- 0 e. ZZ |
131 |
59
|
a1i |
|- ( X e. CC -> 1 e. CC ) |
132 |
|
bpolycl |
|- ( ( 0 e. NN0 /\ X e. CC ) -> ( 0 BernPoly X ) e. CC ) |
133 |
100 132
|
mpan |
|- ( X e. CC -> ( 0 BernPoly X ) e. CC ) |
134 |
|
5cn |
|- 5 e. CC |
135 |
134
|
a1i |
|- ( X e. CC -> 5 e. CC ) |
136 |
|
0re |
|- 0 e. RR |
137 |
|
5pos |
|- 0 < 5 |
138 |
136 137
|
gtneii |
|- 5 =/= 0 |
139 |
138
|
a1i |
|- ( X e. CC -> 5 =/= 0 ) |
140 |
133 135 139
|
divcld |
|- ( X e. CC -> ( ( 0 BernPoly X ) / 5 ) e. CC ) |
141 |
131 140
|
mulcld |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 5 ) ) e. CC ) |
142 |
|
oveq2 |
|- ( k = 0 -> ( 4 _C k ) = ( 4 _C 0 ) ) |
143 |
|
bcn0 |
|- ( 4 e. NN0 -> ( 4 _C 0 ) = 1 ) |
144 |
1 143
|
ax-mp |
|- ( 4 _C 0 ) = 1 |
145 |
142 144
|
eqtrdi |
|- ( k = 0 -> ( 4 _C k ) = 1 ) |
146 |
|
oveq1 |
|- ( k = 0 -> ( k BernPoly X ) = ( 0 BernPoly X ) ) |
147 |
|
oveq2 |
|- ( k = 0 -> ( 4 - k ) = ( 4 - 0 ) ) |
148 |
147
|
oveq1d |
|- ( k = 0 -> ( ( 4 - k ) + 1 ) = ( ( 4 - 0 ) + 1 ) ) |
149 |
57
|
subid1i |
|- ( 4 - 0 ) = 4 |
150 |
149
|
oveq1i |
|- ( ( 4 - 0 ) + 1 ) = ( 4 + 1 ) |
151 |
|
4p1e5 |
|- ( 4 + 1 ) = 5 |
152 |
150 151
|
eqtri |
|- ( ( 4 - 0 ) + 1 ) = 5 |
153 |
148 152
|
eqtrdi |
|- ( k = 0 -> ( ( 4 - k ) + 1 ) = 5 ) |
154 |
146 153
|
oveq12d |
|- ( k = 0 -> ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) = ( ( 0 BernPoly X ) / 5 ) ) |
155 |
145 154
|
oveq12d |
|- ( k = 0 -> ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 5 ) ) ) |
156 |
155
|
fsum1 |
|- ( ( 0 e. ZZ /\ ( 1 x. ( ( 0 BernPoly X ) / 5 ) ) e. CC ) -> sum_ k e. ( 0 ... 0 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 5 ) ) ) |
157 |
130 141 156
|
sylancr |
|- ( X e. CC -> sum_ k e. ( 0 ... 0 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 1 x. ( ( 0 BernPoly X ) / 5 ) ) ) |
158 |
|
bpoly0 |
|- ( X e. CC -> ( 0 BernPoly X ) = 1 ) |
159 |
158
|
oveq1d |
|- ( X e. CC -> ( ( 0 BernPoly X ) / 5 ) = ( 1 / 5 ) ) |
160 |
159
|
oveq2d |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 5 ) ) = ( 1 x. ( 1 / 5 ) ) ) |
161 |
134 138
|
reccli |
|- ( 1 / 5 ) e. CC |
162 |
161
|
mulid2i |
|- ( 1 x. ( 1 / 5 ) ) = ( 1 / 5 ) |
163 |
160 162
|
eqtrdi |
|- ( X e. CC -> ( 1 x. ( ( 0 BernPoly X ) / 5 ) ) = ( 1 / 5 ) ) |
164 |
157 163
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... 0 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( 1 / 5 ) ) |
165 |
|
1nn0 |
|- 1 e. NN0 |
166 |
|
bpolycl |
|- ( ( 1 e. NN0 /\ X e. CC ) -> ( 1 BernPoly X ) e. CC ) |
167 |
165 166
|
mpan |
|- ( X e. CC -> ( 1 BernPoly X ) e. CC ) |
168 |
|
nn0cn |
|- ( 4 e. NN0 -> 4 e. CC ) |
169 |
1 168
|
mp1i |
|- ( X e. CC -> 4 e. CC ) |
170 |
|
4ne0 |
|- 4 =/= 0 |
171 |
170
|
a1i |
|- ( X e. CC -> 4 =/= 0 ) |
172 |
167 169 171
|
divcan2d |
|- ( X e. CC -> ( 4 x. ( ( 1 BernPoly X ) / 4 ) ) = ( 1 BernPoly X ) ) |
173 |
|
bpoly1 |
|- ( X e. CC -> ( 1 BernPoly X ) = ( X - ( 1 / 2 ) ) ) |
174 |
172 173
|
eqtrd |
|- ( X e. CC -> ( 4 x. ( ( 1 BernPoly X ) / 4 ) ) = ( X - ( 1 / 2 ) ) ) |
175 |
164 174
|
oveq12d |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 0 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) + ( 4 x. ( ( 1 BernPoly X ) / 4 ) ) ) = ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) ) |
176 |
129 175
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 0 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) ) |
177 |
99 176
|
eqtr3id |
|- ( X e. CC -> sum_ k e. ( 0 ... 1 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) ) |
178 |
|
6cn |
|- 6 e. CC |
179 |
178
|
a1i |
|- ( X e. CC -> 6 e. CC ) |
180 |
|
2nn0 |
|- 2 e. NN0 |
181 |
|
bpolycl |
|- ( ( 2 e. NN0 /\ X e. CC ) -> ( 2 BernPoly X ) e. CC ) |
182 |
180 181
|
mpan |
|- ( X e. CC -> ( 2 BernPoly X ) e. CC ) |
183 |
58
|
a1i |
|- ( X e. CC -> 3 e. CC ) |
184 |
|
3ne0 |
|- 3 =/= 0 |
185 |
184
|
a1i |
|- ( X e. CC -> 3 =/= 0 ) |
186 |
179 182 183 185
|
div12d |
|- ( X e. CC -> ( 6 x. ( ( 2 BernPoly X ) / 3 ) ) = ( ( 2 BernPoly X ) x. ( 6 / 3 ) ) ) |
187 |
|
3t2e6 |
|- ( 3 x. 2 ) = 6 |
188 |
178 58 87 184
|
divmuli |
|- ( ( 6 / 3 ) = 2 <-> ( 3 x. 2 ) = 6 ) |
189 |
187 188
|
mpbir |
|- ( 6 / 3 ) = 2 |
190 |
189
|
oveq2i |
|- ( ( 2 BernPoly X ) x. ( 6 / 3 ) ) = ( ( 2 BernPoly X ) x. 2 ) |
191 |
87
|
a1i |
|- ( X e. CC -> 2 e. CC ) |
192 |
182 191
|
mulcomd |
|- ( X e. CC -> ( ( 2 BernPoly X ) x. 2 ) = ( 2 x. ( 2 BernPoly X ) ) ) |
193 |
|
bpoly2 |
|- ( X e. CC -> ( 2 BernPoly X ) = ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) |
194 |
193
|
oveq2d |
|- ( X e. CC -> ( 2 x. ( 2 BernPoly X ) ) = ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) |
195 |
192 194
|
eqtrd |
|- ( X e. CC -> ( ( 2 BernPoly X ) x. 2 ) = ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) |
196 |
190 195
|
eqtrid |
|- ( X e. CC -> ( ( 2 BernPoly X ) x. ( 6 / 3 ) ) = ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) |
197 |
186 196
|
eqtrd |
|- ( X e. CC -> ( 6 x. ( ( 2 BernPoly X ) / 3 ) ) = ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) |
198 |
177 197
|
oveq12d |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 1 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) + ( 6 x. ( ( 2 BernPoly X ) / 3 ) ) ) = ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) |
199 |
96 198
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 1 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) |
200 |
71 199
|
eqtrid |
|- ( X e. CC -> sum_ k e. ( 0 ... 2 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) |
201 |
|
3nn0 |
|- 3 e. NN0 |
202 |
|
bpolycl |
|- ( ( 3 e. NN0 /\ X e. CC ) -> ( 3 BernPoly X ) e. CC ) |
203 |
201 202
|
mpan |
|- ( X e. CC -> ( 3 BernPoly X ) e. CC ) |
204 |
|
2ne0 |
|- 2 =/= 0 |
205 |
204
|
a1i |
|- ( X e. CC -> 2 =/= 0 ) |
206 |
169 203 191 205
|
div12d |
|- ( X e. CC -> ( 4 x. ( ( 3 BernPoly X ) / 2 ) ) = ( ( 3 BernPoly X ) x. ( 4 / 2 ) ) ) |
207 |
|
4d2e2 |
|- ( 4 / 2 ) = 2 |
208 |
207
|
oveq2i |
|- ( ( 3 BernPoly X ) x. ( 4 / 2 ) ) = ( ( 3 BernPoly X ) x. 2 ) |
209 |
203 191
|
mulcomd |
|- ( X e. CC -> ( ( 3 BernPoly X ) x. 2 ) = ( 2 x. ( 3 BernPoly X ) ) ) |
210 |
|
bpoly3 |
|- ( X e. CC -> ( 3 BernPoly X ) = ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) |
211 |
210
|
oveq2d |
|- ( X e. CC -> ( 2 x. ( 3 BernPoly X ) ) = ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) |
212 |
209 211
|
eqtrd |
|- ( X e. CC -> ( ( 3 BernPoly X ) x. 2 ) = ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) |
213 |
208 212
|
eqtrid |
|- ( X e. CC -> ( ( 3 BernPoly X ) x. ( 4 / 2 ) ) = ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) |
214 |
206 213
|
eqtrd |
|- ( X e. CC -> ( 4 x. ( ( 3 BernPoly X ) / 2 ) ) = ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) |
215 |
200 214
|
oveq12d |
|- ( X e. CC -> ( sum_ k e. ( 0 ... 2 ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) + ( 4 x. ( ( 3 BernPoly X ) / 2 ) ) ) = ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) ) |
216 |
69 215
|
eqtrd |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 2 + 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) ) |
217 |
8 216
|
eqtrid |
|- ( X e. CC -> sum_ k e. ( 0 ... ( 4 - 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) = ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) ) |
218 |
217
|
oveq2d |
|- ( X e. CC -> ( ( X ^ 4 ) - sum_ k e. ( 0 ... ( 4 - 1 ) ) ( ( 4 _C k ) x. ( ( k BernPoly X ) / ( ( 4 - k ) + 1 ) ) ) ) = ( ( X ^ 4 ) - ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) ) ) |
219 |
|
expcl |
|- ( ( X e. CC /\ 4 e. NN0 ) -> ( X ^ 4 ) e. CC ) |
220 |
1 219
|
mpan2 |
|- ( X e. CC -> ( X ^ 4 ) e. CC ) |
221 |
|
expcl |
|- ( ( X e. CC /\ 3 e. NN0 ) -> ( X ^ 3 ) e. CC ) |
222 |
201 221
|
mpan2 |
|- ( X e. CC -> ( X ^ 3 ) e. CC ) |
223 |
191 222
|
mulcld |
|- ( X e. CC -> ( 2 x. ( X ^ 3 ) ) e. CC ) |
224 |
|
sqcl |
|- ( X e. CC -> ( X ^ 2 ) e. CC ) |
225 |
201 100
|
deccl |
|- ; 3 0 e. NN0 |
226 |
225
|
nn0cni |
|- ; 3 0 e. CC |
227 |
|
dfdec10 |
|- ; 3 0 = ( ( ; 1 0 x. 3 ) + 0 ) |
228 |
|
10re |
|- ; 1 0 e. RR |
229 |
228
|
recni |
|- ; 1 0 e. CC |
230 |
229 58
|
mulcli |
|- ( ; 1 0 x. 3 ) e. CC |
231 |
230
|
addid1i |
|- ( ( ; 1 0 x. 3 ) + 0 ) = ( ; 1 0 x. 3 ) |
232 |
227 231
|
eqtri |
|- ; 3 0 = ( ; 1 0 x. 3 ) |
233 |
|
10pos |
|- 0 < ; 1 0 |
234 |
136 233
|
gtneii |
|- ; 1 0 =/= 0 |
235 |
229 58 234 184
|
mulne0i |
|- ( ; 1 0 x. 3 ) =/= 0 |
236 |
232 235
|
eqnetri |
|- ; 3 0 =/= 0 |
237 |
226 236
|
reccli |
|- ( 1 / ; 3 0 ) e. CC |
238 |
237
|
a1i |
|- ( X e. CC -> ( 1 / ; 3 0 ) e. CC ) |
239 |
224 238
|
subcld |
|- ( X e. CC -> ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) e. CC ) |
240 |
220 223 239
|
subsubd |
|- ( X e. CC -> ( ( X ^ 4 ) - ( ( 2 x. ( X ^ 3 ) ) - ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) ) = ( ( ( X ^ 4 ) - ( 2 x. ( X ^ 3 ) ) ) + ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) ) |
241 |
161
|
a1i |
|- ( X e. CC -> ( 1 / 5 ) e. CC ) |
242 |
|
id |
|- ( X e. CC -> X e. CC ) |
243 |
87 204
|
reccli |
|- ( 1 / 2 ) e. CC |
244 |
243
|
a1i |
|- ( X e. CC -> ( 1 / 2 ) e. CC ) |
245 |
242 244
|
subcld |
|- ( X e. CC -> ( X - ( 1 / 2 ) ) e. CC ) |
246 |
241 245
|
addcld |
|- ( X e. CC -> ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) e. CC ) |
247 |
224 242
|
subcld |
|- ( X e. CC -> ( ( X ^ 2 ) - X ) e. CC ) |
248 |
|
6pos |
|- 0 < 6 |
249 |
136 248
|
gtneii |
|- 6 =/= 0 |
250 |
178 249
|
reccli |
|- ( 1 / 6 ) e. CC |
251 |
250
|
a1i |
|- ( X e. CC -> ( 1 / 6 ) e. CC ) |
252 |
247 251
|
addcld |
|- ( X e. CC -> ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) e. CC ) |
253 |
191 252
|
mulcld |
|- ( X e. CC -> ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) e. CC ) |
254 |
246 253
|
addcld |
|- ( X e. CC -> ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) e. CC ) |
255 |
58 87 204
|
divcli |
|- ( 3 / 2 ) e. CC |
256 |
255
|
a1i |
|- ( X e. CC -> ( 3 / 2 ) e. CC ) |
257 |
256 224
|
mulcld |
|- ( X e. CC -> ( ( 3 / 2 ) x. ( X ^ 2 ) ) e. CC ) |
258 |
222 257
|
subcld |
|- ( X e. CC -> ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) e. CC ) |
259 |
244 242
|
mulcld |
|- ( X e. CC -> ( ( 1 / 2 ) x. X ) e. CC ) |
260 |
258 259
|
addcld |
|- ( X e. CC -> ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) e. CC ) |
261 |
191 260
|
mulcld |
|- ( X e. CC -> ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) e. CC ) |
262 |
254 261
|
addcomd |
|- ( X e. CC -> ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) = ( ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) |
263 |
191 258 259
|
adddid |
|- ( X e. CC -> ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) = ( ( 2 x. ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + ( 2 x. ( ( 1 / 2 ) x. X ) ) ) ) |
264 |
191 222 257
|
subdid |
|- ( X e. CC -> ( 2 x. ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) = ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) ) |
265 |
87 204
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
266 |
265
|
oveq1i |
|- ( ( 2 x. ( 1 / 2 ) ) x. X ) = ( 1 x. X ) |
267 |
191 244 242
|
mulassd |
|- ( X e. CC -> ( ( 2 x. ( 1 / 2 ) ) x. X ) = ( 2 x. ( ( 1 / 2 ) x. X ) ) ) |
268 |
|
mulid2 |
|- ( X e. CC -> ( 1 x. X ) = X ) |
269 |
266 267 268
|
3eqtr3a |
|- ( X e. CC -> ( 2 x. ( ( 1 / 2 ) x. X ) ) = X ) |
270 |
264 269
|
oveq12d |
|- ( X e. CC -> ( ( 2 x. ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + ( 2 x. ( ( 1 / 2 ) x. X ) ) ) = ( ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + X ) ) |
271 |
263 270
|
eqtrd |
|- ( X e. CC -> ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) = ( ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + X ) ) |
272 |
271
|
oveq1d |
|- ( X e. CC -> ( ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) = ( ( ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + X ) + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) |
273 |
191 257
|
mulcld |
|- ( X e. CC -> ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) e. CC ) |
274 |
223 273
|
subcld |
|- ( X e. CC -> ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) e. CC ) |
275 |
274 242 254
|
addassd |
|- ( X e. CC -> ( ( ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + X ) + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) = ( ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) ) |
276 |
242 254
|
addcld |
|- ( X e. CC -> ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) e. CC ) |
277 |
223 273 276
|
subsubd |
|- ( X e. CC -> ( ( 2 x. ( X ^ 3 ) ) - ( ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) - ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) ) = ( ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) ) |
278 |
191 256 224
|
mulassd |
|- ( X e. CC -> ( ( 2 x. ( 3 / 2 ) ) x. ( X ^ 2 ) ) = ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) |
279 |
58 87 204
|
divcan2i |
|- ( 2 x. ( 3 / 2 ) ) = 3 |
280 |
279
|
oveq1i |
|- ( ( 2 x. ( 3 / 2 ) ) x. ( X ^ 2 ) ) = ( 3 x. ( X ^ 2 ) ) |
281 |
278 280
|
eqtr3di |
|- ( X e. CC -> ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) = ( 3 x. ( X ^ 2 ) ) ) |
282 |
281
|
oveq1d |
|- ( X e. CC -> ( ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) - ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) = ( ( 3 x. ( X ^ 2 ) ) - ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) ) |
283 |
242 246 253
|
add12d |
|- ( X e. CC -> ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) = ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( X + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) |
284 |
191 247 251
|
adddid |
|- ( X e. CC -> ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) = ( ( 2 x. ( ( X ^ 2 ) - X ) ) + ( 2 x. ( 1 / 6 ) ) ) ) |
285 |
191 224 242
|
subdid |
|- ( X e. CC -> ( 2 x. ( ( X ^ 2 ) - X ) ) = ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) ) |
286 |
187
|
oveq2i |
|- ( 2 / ( 3 x. 2 ) ) = ( 2 / 6 ) |
287 |
58 184
|
reccli |
|- ( 1 / 3 ) e. CC |
288 |
58 87 287
|
mul32i |
|- ( ( 3 x. 2 ) x. ( 1 / 3 ) ) = ( ( 3 x. ( 1 / 3 ) ) x. 2 ) |
289 |
58 184
|
recidi |
|- ( 3 x. ( 1 / 3 ) ) = 1 |
290 |
289
|
oveq1i |
|- ( ( 3 x. ( 1 / 3 ) ) x. 2 ) = ( 1 x. 2 ) |
291 |
87
|
mulid2i |
|- ( 1 x. 2 ) = 2 |
292 |
290 291
|
eqtri |
|- ( ( 3 x. ( 1 / 3 ) ) x. 2 ) = 2 |
293 |
288 292
|
eqtri |
|- ( ( 3 x. 2 ) x. ( 1 / 3 ) ) = 2 |
294 |
187 178
|
eqeltri |
|- ( 3 x. 2 ) e. CC |
295 |
187 249
|
eqnetri |
|- ( 3 x. 2 ) =/= 0 |
296 |
87 294 287 295
|
divmuli |
|- ( ( 2 / ( 3 x. 2 ) ) = ( 1 / 3 ) <-> ( ( 3 x. 2 ) x. ( 1 / 3 ) ) = 2 ) |
297 |
293 296
|
mpbir |
|- ( 2 / ( 3 x. 2 ) ) = ( 1 / 3 ) |
298 |
87 178 249
|
divreci |
|- ( 2 / 6 ) = ( 2 x. ( 1 / 6 ) ) |
299 |
286 297 298
|
3eqtr3ri |
|- ( 2 x. ( 1 / 6 ) ) = ( 1 / 3 ) |
300 |
299
|
a1i |
|- ( X e. CC -> ( 2 x. ( 1 / 6 ) ) = ( 1 / 3 ) ) |
301 |
285 300
|
oveq12d |
|- ( X e. CC -> ( ( 2 x. ( ( X ^ 2 ) - X ) ) + ( 2 x. ( 1 / 6 ) ) ) = ( ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) + ( 1 / 3 ) ) ) |
302 |
284 301
|
eqtrd |
|- ( X e. CC -> ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) = ( ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) + ( 1 / 3 ) ) ) |
303 |
302
|
oveq2d |
|- ( X e. CC -> ( X + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) = ( X + ( ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) + ( 1 / 3 ) ) ) ) |
304 |
191 224
|
mulcld |
|- ( X e. CC -> ( 2 x. ( X ^ 2 ) ) e. CC ) |
305 |
191 242
|
mulcld |
|- ( X e. CC -> ( 2 x. X ) e. CC ) |
306 |
304 305
|
subcld |
|- ( X e. CC -> ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) e. CC ) |
307 |
287
|
a1i |
|- ( X e. CC -> ( 1 / 3 ) e. CC ) |
308 |
242 306 307
|
addassd |
|- ( X e. CC -> ( ( X + ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) ) + ( 1 / 3 ) ) = ( X + ( ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) + ( 1 / 3 ) ) ) ) |
309 |
242 304 305
|
addsub12d |
|- ( X e. CC -> ( X + ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) ) = ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) ) |
310 |
309
|
oveq1d |
|- ( X e. CC -> ( ( X + ( ( 2 x. ( X ^ 2 ) ) - ( 2 x. X ) ) ) + ( 1 / 3 ) ) = ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) |
311 |
303 308 310
|
3eqtr2d |
|- ( X e. CC -> ( X + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) = ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) |
312 |
311
|
oveq2d |
|- ( X e. CC -> ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( X + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) = ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) ) |
313 |
283 312
|
eqtrd |
|- ( X e. CC -> ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) = ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) ) |
314 |
313
|
oveq2d |
|- ( X e. CC -> ( ( 3 x. ( X ^ 2 ) ) - ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) = ( ( 3 x. ( X ^ 2 ) ) - ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) ) ) |
315 |
242 305
|
subcld |
|- ( X e. CC -> ( X - ( 2 x. X ) ) e. CC ) |
316 |
304 315
|
addcld |
|- ( X e. CC -> ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) e. CC ) |
317 |
241 245 316 307
|
add4d |
|- ( X e. CC -> ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) = ( ( ( 1 / 5 ) + ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) |
318 |
241 304 315
|
add12d |
|- ( X e. CC -> ( ( 1 / 5 ) + ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) ) = ( ( 2 x. ( X ^ 2 ) ) + ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) ) ) |
319 |
318
|
oveq1d |
|- ( X e. CC -> ( ( ( 1 / 5 ) + ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) = ( ( ( 2 x. ( X ^ 2 ) ) + ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) |
320 |
241 315
|
addcld |
|- ( X e. CC -> ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) e. CC ) |
321 |
245 307
|
addcld |
|- ( X e. CC -> ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) e. CC ) |
322 |
304 320 321
|
addassd |
|- ( X e. CC -> ( ( ( 2 x. ( X ^ 2 ) ) + ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) = ( ( 2 x. ( X ^ 2 ) ) + ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) ) |
323 |
317 319 322
|
3eqtrd |
|- ( X e. CC -> ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) = ( ( 2 x. ( X ^ 2 ) ) + ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) ) |
324 |
323
|
oveq2d |
|- ( X e. CC -> ( ( 3 x. ( X ^ 2 ) ) - ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) ) = ( ( 3 x. ( X ^ 2 ) ) - ( ( 2 x. ( X ^ 2 ) ) + ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) ) ) |
325 |
183 224
|
mulcld |
|- ( X e. CC -> ( 3 x. ( X ^ 2 ) ) e. CC ) |
326 |
320 321
|
addcld |
|- ( X e. CC -> ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) e. CC ) |
327 |
325 304 326
|
subsub4d |
|- ( X e. CC -> ( ( ( 3 x. ( X ^ 2 ) ) - ( 2 x. ( X ^ 2 ) ) ) - ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) = ( ( 3 x. ( X ^ 2 ) ) - ( ( 2 x. ( X ^ 2 ) ) + ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) ) ) |
328 |
58 87 59 109
|
subaddrii |
|- ( 3 - 2 ) = 1 |
329 |
328
|
oveq1i |
|- ( ( 3 - 2 ) x. ( X ^ 2 ) ) = ( 1 x. ( X ^ 2 ) ) |
330 |
183 191 224
|
subdird |
|- ( X e. CC -> ( ( 3 - 2 ) x. ( X ^ 2 ) ) = ( ( 3 x. ( X ^ 2 ) ) - ( 2 x. ( X ^ 2 ) ) ) ) |
331 |
224
|
mulid2d |
|- ( X e. CC -> ( 1 x. ( X ^ 2 ) ) = ( X ^ 2 ) ) |
332 |
329 330 331
|
3eqtr3a |
|- ( X e. CC -> ( ( 3 x. ( X ^ 2 ) ) - ( 2 x. ( X ^ 2 ) ) ) = ( X ^ 2 ) ) |
333 |
241 305 242
|
subsubd |
|- ( X e. CC -> ( ( 1 / 5 ) - ( ( 2 x. X ) - X ) ) = ( ( ( 1 / 5 ) - ( 2 x. X ) ) + X ) ) |
334 |
|
2txmxeqx |
|- ( X e. CC -> ( ( 2 x. X ) - X ) = X ) |
335 |
334
|
oveq2d |
|- ( X e. CC -> ( ( 1 / 5 ) - ( ( 2 x. X ) - X ) ) = ( ( 1 / 5 ) - X ) ) |
336 |
241 305 242
|
subadd23d |
|- ( X e. CC -> ( ( ( 1 / 5 ) - ( 2 x. X ) ) + X ) = ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) ) |
337 |
333 335 336
|
3eqtr3d |
|- ( X e. CC -> ( ( 1 / 5 ) - X ) = ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) ) |
338 |
242 244 307
|
subsubd |
|- ( X e. CC -> ( X - ( ( 1 / 2 ) - ( 1 / 3 ) ) ) = ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) |
339 |
337 338
|
oveq12d |
|- ( X e. CC -> ( ( ( 1 / 5 ) - X ) + ( X - ( ( 1 / 2 ) - ( 1 / 3 ) ) ) ) = ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) |
340 |
243 287
|
subcli |
|- ( ( 1 / 2 ) - ( 1 / 3 ) ) e. CC |
341 |
340
|
a1i |
|- ( X e. CC -> ( ( 1 / 2 ) - ( 1 / 3 ) ) e. CC ) |
342 |
241 242 341
|
npncand |
|- ( X e. CC -> ( ( ( 1 / 5 ) - X ) + ( X - ( ( 1 / 2 ) - ( 1 / 3 ) ) ) ) = ( ( 1 / 5 ) - ( ( 1 / 2 ) - ( 1 / 3 ) ) ) ) |
343 |
|
halfthird |
|- ( ( 1 / 2 ) - ( 1 / 3 ) ) = ( 1 / 6 ) |
344 |
343
|
oveq2i |
|- ( ( 1 / 5 ) - ( ( 1 / 2 ) - ( 1 / 3 ) ) ) = ( ( 1 / 5 ) - ( 1 / 6 ) ) |
345 |
|
5recm6rec |
|- ( ( 1 / 5 ) - ( 1 / 6 ) ) = ( 1 / ; 3 0 ) |
346 |
344 345
|
eqtri |
|- ( ( 1 / 5 ) - ( ( 1 / 2 ) - ( 1 / 3 ) ) ) = ( 1 / ; 3 0 ) |
347 |
342 346
|
eqtrdi |
|- ( X e. CC -> ( ( ( 1 / 5 ) - X ) + ( X - ( ( 1 / 2 ) - ( 1 / 3 ) ) ) ) = ( 1 / ; 3 0 ) ) |
348 |
339 347
|
eqtr3d |
|- ( X e. CC -> ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) = ( 1 / ; 3 0 ) ) |
349 |
332 348
|
oveq12d |
|- ( X e. CC -> ( ( ( 3 x. ( X ^ 2 ) ) - ( 2 x. ( X ^ 2 ) ) ) - ( ( ( 1 / 5 ) + ( X - ( 2 x. X ) ) ) + ( ( X - ( 1 / 2 ) ) + ( 1 / 3 ) ) ) ) = ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) |
350 |
324 327 349
|
3eqtr2d |
|- ( X e. CC -> ( ( 3 x. ( X ^ 2 ) ) - ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( ( ( 2 x. ( X ^ 2 ) ) + ( X - ( 2 x. X ) ) ) + ( 1 / 3 ) ) ) ) = ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) |
351 |
282 314 350
|
3eqtrd |
|- ( X e. CC -> ( ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) - ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) = ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) |
352 |
351
|
oveq2d |
|- ( X e. CC -> ( ( 2 x. ( X ^ 3 ) ) - ( ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) - ( X + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) ) ) = ( ( 2 x. ( X ^ 3 ) ) - ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) ) |
353 |
275 277 352
|
3eqtr2d |
|- ( X e. CC -> ( ( ( ( 2 x. ( X ^ 3 ) ) - ( 2 x. ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) ) + X ) + ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) ) = ( ( 2 x. ( X ^ 3 ) ) - ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) ) |
354 |
262 272 353
|
3eqtrd |
|- ( X e. CC -> ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) = ( ( 2 x. ( X ^ 3 ) ) - ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) ) |
355 |
354
|
oveq2d |
|- ( X e. CC -> ( ( X ^ 4 ) - ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) ) = ( ( X ^ 4 ) - ( ( 2 x. ( X ^ 3 ) ) - ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) ) ) |
356 |
220 223
|
subcld |
|- ( X e. CC -> ( ( X ^ 4 ) - ( 2 x. ( X ^ 3 ) ) ) e. CC ) |
357 |
356 224 238
|
addsubassd |
|- ( X e. CC -> ( ( ( ( X ^ 4 ) - ( 2 x. ( X ^ 3 ) ) ) + ( X ^ 2 ) ) - ( 1 / ; 3 0 ) ) = ( ( ( X ^ 4 ) - ( 2 x. ( X ^ 3 ) ) ) + ( ( X ^ 2 ) - ( 1 / ; 3 0 ) ) ) ) |
358 |
240 355 357
|
3eqtr4d |
|- ( X e. CC -> ( ( X ^ 4 ) - ( ( ( ( 1 / 5 ) + ( X - ( 1 / 2 ) ) ) + ( 2 x. ( ( ( X ^ 2 ) - X ) + ( 1 / 6 ) ) ) ) + ( 2 x. ( ( ( X ^ 3 ) - ( ( 3 / 2 ) x. ( X ^ 2 ) ) ) + ( ( 1 / 2 ) x. X ) ) ) ) ) = ( ( ( ( X ^ 4 ) - ( 2 x. ( X ^ 3 ) ) ) + ( X ^ 2 ) ) - ( 1 / ; 3 0 ) ) ) |
359 |
3 218 358
|
3eqtrd |
|- ( X e. CC -> ( 4 BernPoly X ) = ( ( ( ( X ^ 4 ) - ( 2 x. ( X ^ 3 ) ) ) + ( X ^ 2 ) ) - ( 1 / ; 3 0 ) ) ) |