Step |
Hyp |
Ref |
Expression |
1 |
|
gg-dvfsumle.m |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
gg-dvfsumle.a |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
3 |
|
gg-dvfsumle.v |
|- ( ( ph /\ x e. ( M (,) N ) ) -> B e. V ) |
4 |
|
gg-dvfsumle.b |
|- ( ph -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
5 |
|
gg-dvfsumle.c |
|- ( x = M -> A = C ) |
6 |
|
gg-dvfsumle.d |
|- ( x = N -> A = D ) |
7 |
|
gg-dvfsumle.x |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. RR ) |
8 |
|
gg-dvfsumle.l |
|- ( ( ph /\ ( k e. ( M ..^ N ) /\ x e. ( k (,) ( k + 1 ) ) ) ) -> X <_ B ) |
9 |
|
fzofi |
|- ( M ..^ N ) e. Fin |
10 |
9
|
a1i |
|- ( ph -> ( M ..^ N ) e. Fin ) |
11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
12 |
1 11
|
syl |
|- ( ph -> M e. ZZ ) |
13 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
14 |
1 13
|
syl |
|- ( ph -> N e. ZZ ) |
15 |
|
fzval2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
16 |
12 14 15
|
syl2anc |
|- ( ph -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) ) |
17 |
|
inss1 |
|- ( ( M [,] N ) i^i ZZ ) C_ ( M [,] N ) |
18 |
16 17
|
eqsstrdi |
|- ( ph -> ( M ... N ) C_ ( M [,] N ) ) |
19 |
18
|
sselda |
|- ( ( ph /\ y e. ( M ... N ) ) -> y e. ( M [,] N ) ) |
20 |
|
cncff |
|- ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
21 |
2 20
|
syl |
|- ( ph -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
22 |
|
eqid |
|- ( x e. ( M [,] N ) |-> A ) = ( x e. ( M [,] N ) |-> A ) |
23 |
22
|
fmpt |
|- ( A. x e. ( M [,] N ) A e. RR <-> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
24 |
21 23
|
sylibr |
|- ( ph -> A. x e. ( M [,] N ) A e. RR ) |
25 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ A |
26 |
25
|
nfel1 |
|- F/ x [_ y / x ]_ A e. RR |
27 |
|
csbeq1a |
|- ( x = y -> A = [_ y / x ]_ A ) |
28 |
27
|
eleq1d |
|- ( x = y -> ( A e. RR <-> [_ y / x ]_ A e. RR ) ) |
29 |
26 28
|
rspc |
|- ( y e. ( M [,] N ) -> ( A. x e. ( M [,] N ) A e. RR -> [_ y / x ]_ A e. RR ) ) |
30 |
24 29
|
mpan9 |
|- ( ( ph /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) |
31 |
19 30
|
syldan |
|- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. RR ) |
32 |
31
|
ralrimiva |
|- ( ph -> A. y e. ( M ... N ) [_ y / x ]_ A e. RR ) |
33 |
|
fzofzp1 |
|- ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) |
34 |
|
csbeq1 |
|- ( y = ( k + 1 ) -> [_ y / x ]_ A = [_ ( k + 1 ) / x ]_ A ) |
35 |
34
|
eleq1d |
|- ( y = ( k + 1 ) -> ( [_ y / x ]_ A e. RR <-> [_ ( k + 1 ) / x ]_ A e. RR ) ) |
36 |
35
|
rspccva |
|- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ ( k + 1 ) e. ( M ... N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) |
37 |
32 33 36
|
syl2an |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ ( k + 1 ) / x ]_ A e. RR ) |
38 |
|
elfzofz |
|- ( k e. ( M ..^ N ) -> k e. ( M ... N ) ) |
39 |
|
csbeq1 |
|- ( y = k -> [_ y / x ]_ A = [_ k / x ]_ A ) |
40 |
39
|
eleq1d |
|- ( y = k -> ( [_ y / x ]_ A e. RR <-> [_ k / x ]_ A e. RR ) ) |
41 |
40
|
rspccva |
|- ( ( A. y e. ( M ... N ) [_ y / x ]_ A e. RR /\ k e. ( M ... N ) ) -> [_ k / x ]_ A e. RR ) |
42 |
32 38 41
|
syl2an |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> [_ k / x ]_ A e. RR ) |
43 |
37 42
|
resubcld |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) e. RR ) |
44 |
|
elfzoelz |
|- ( k e. ( M ..^ N ) -> k e. ZZ ) |
45 |
44
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ZZ ) |
46 |
45
|
zred |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR ) |
47 |
46
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. CC ) |
48 |
|
ax-1cn |
|- 1 e. CC |
49 |
|
pncan2 |
|- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - k ) = 1 ) |
50 |
47 48 49
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( k + 1 ) - k ) = 1 ) |
51 |
50
|
oveq2d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( X x. 1 ) ) |
52 |
7
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X e. CC ) |
53 |
|
peano2re |
|- ( k e. RR -> ( k + 1 ) e. RR ) |
54 |
46 53
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR ) |
55 |
54
|
recnd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. CC ) |
56 |
52 55 47
|
subdid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. ( ( k + 1 ) - k ) ) = ( ( X x. ( k + 1 ) ) - ( X x. k ) ) ) |
57 |
52
|
mulridd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( X x. 1 ) = X ) |
58 |
51 56 57
|
3eqtr3d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) = X ) |
59 |
52
|
adantr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> X e. CC ) |
60 |
46 54
|
iccssred |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ RR ) |
61 |
|
ax-resscn |
|- RR C_ CC |
62 |
60 61
|
sstrdi |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ CC ) |
63 |
62
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> y e. CC ) |
64 |
|
ovmul |
|- ( ( X e. CC /\ y e. CC ) -> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( X x. y ) ) |
65 |
59 63 64
|
syl2anc |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( X x. y ) ) |
66 |
65
|
eqeq2d |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k [,] ( k + 1 ) ) ) -> ( z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) <-> z = ( X x. y ) ) ) |
67 |
66
|
pm5.32da |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) <-> ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X x. y ) ) ) ) |
68 |
67
|
opabbidv |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } = { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X x. y ) ) } ) |
69 |
|
df-mpt |
|- ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) = { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X x. y ) ) } |
70 |
68 69
|
eqtr4di |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } = ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) ) |
71 |
|
df-mpt |
|- ( y e. ( k [,] ( k + 1 ) ) |-> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) = { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } |
72 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
73 |
72
|
mpomulcn |
|- ( u e. CC , v e. CC |-> ( u x. v ) ) e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
74 |
61
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> RR C_ CC ) |
75 |
|
cncfmptc |
|- ( ( X e. RR /\ ( k [,] ( k + 1 ) ) C_ CC /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
76 |
7 62 74 75
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> X ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
77 |
|
cncfmptid |
|- ( ( ( k [,] ( k + 1 ) ) C_ RR /\ RR C_ CC ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
78 |
60 61 77
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> y ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
79 |
|
simpl |
|- ( ( X e. RR /\ y e. RR ) -> X e. RR ) |
80 |
79
|
recnd |
|- ( ( X e. RR /\ y e. RR ) -> X e. CC ) |
81 |
|
simpr |
|- ( ( X e. RR /\ y e. RR ) -> y e. RR ) |
82 |
81
|
recnd |
|- ( ( X e. RR /\ y e. RR ) -> y e. CC ) |
83 |
64
|
eqcomd |
|- ( ( X e. CC /\ y e. CC ) -> ( X x. y ) = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) |
84 |
80 82 83
|
syl2anc |
|- ( ( X e. RR /\ y e. RR ) -> ( X x. y ) = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) |
85 |
|
remulcl |
|- ( ( X e. RR /\ y e. RR ) -> ( X x. y ) e. RR ) |
86 |
84 85
|
eqeltrrd |
|- ( ( X e. RR /\ y e. RR ) -> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) e. RR ) |
87 |
72 73 76 78 61 86
|
cncfmpt2ss |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
88 |
71 87
|
eqeltrrid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> { <. y , z >. | ( y e. ( k [,] ( k + 1 ) ) /\ z = ( X ( u e. CC , v e. CC |-> ( u x. v ) ) y ) ) } e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
89 |
70 88
|
eqeltrrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> ( X x. y ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
90 |
|
reelprrecn |
|- RR e. { RR , CC } |
91 |
90
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> RR e. { RR , CC } ) |
92 |
12
|
zred |
|- ( ph -> M e. RR ) |
93 |
92
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR ) |
94 |
93
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M e. RR* ) |
95 |
|
elfzole1 |
|- ( k e. ( M ..^ N ) -> M <_ k ) |
96 |
95
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> M <_ k ) |
97 |
|
iooss1 |
|- ( ( M e. RR* /\ M <_ k ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
98 |
94 96 97
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) ( k + 1 ) ) ) |
99 |
14
|
zred |
|- ( ph -> N e. RR ) |
100 |
99
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR ) |
101 |
100
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> N e. RR* ) |
102 |
33
|
adantl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( M ... N ) ) |
103 |
|
elfzle2 |
|- ( ( k + 1 ) e. ( M ... N ) -> ( k + 1 ) <_ N ) |
104 |
102 103
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) <_ N ) |
105 |
|
iooss2 |
|- ( ( N e. RR* /\ ( k + 1 ) <_ N ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
106 |
101 104 105
|
syl2anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
107 |
98 106
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ ( M (,) N ) ) |
108 |
|
ioossicc |
|- ( M (,) N ) C_ ( M [,] N ) |
109 |
92 99
|
iccssred |
|- ( ph -> ( M [,] N ) C_ RR ) |
110 |
109
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ RR ) |
111 |
110 61
|
sstrdi |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M [,] N ) C_ CC ) |
112 |
108 111
|
sstrid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( M (,) N ) C_ CC ) |
113 |
107 112
|
sstrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ CC ) |
114 |
113
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> y e. CC ) |
115 |
|
1cnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> 1 e. CC ) |
116 |
74
|
sselda |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> y e. CC ) |
117 |
|
1cnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. RR ) -> 1 e. CC ) |
118 |
91
|
dvmptid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. RR |-> y ) ) = ( y e. RR |-> 1 ) ) |
119 |
|
ioossre |
|- ( k (,) ( k + 1 ) ) C_ RR |
120 |
119
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) C_ RR ) |
121 |
72
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
122 |
|
iooretop |
|- ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) |
123 |
122
|
a1i |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k (,) ( k + 1 ) ) e. ( topGen ` ran (,) ) ) |
124 |
91 116 117 118 120 121 72 123
|
dvmptres |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> y ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> 1 ) ) |
125 |
91 114 115 124 52
|
dvmptcmul |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) ) |
126 |
57
|
mpteq2dv |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. 1 ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) |
127 |
125 126
|
eqtrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> ( X x. y ) ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> X ) ) |
128 |
|
nfcv |
|- F/_ y A |
129 |
128 25 27
|
cbvmpt |
|- ( x e. ( k [,] ( k + 1 ) ) |-> A ) = ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) |
130 |
|
iccss |
|- ( ( ( M e. RR /\ N e. RR ) /\ ( M <_ k /\ ( k + 1 ) <_ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
131 |
93 100 96 104 130
|
syl22anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k [,] ( k + 1 ) ) C_ ( M [,] N ) ) |
132 |
131
|
resmptd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) = ( x e. ( k [,] ( k + 1 ) ) |-> A ) ) |
133 |
2
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) ) |
134 |
|
rescncf |
|- ( ( k [,] ( k + 1 ) ) C_ ( M [,] N ) -> ( ( x e. ( M [,] N ) |-> A ) e. ( ( M [,] N ) -cn-> RR ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) ) |
135 |
131 133 134
|
sylc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( x e. ( M [,] N ) |-> A ) |` ( k [,] ( k + 1 ) ) ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
136 |
132 135
|
eqeltrrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( k [,] ( k + 1 ) ) |-> A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
137 |
129 136
|
eqeltrrid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( y e. ( k [,] ( k + 1 ) ) |-> [_ y / x ]_ A ) e. ( ( k [,] ( k + 1 ) ) -cn-> RR ) ) |
138 |
21
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M [,] N ) |-> A ) : ( M [,] N ) --> RR ) |
139 |
138 23
|
sylibr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M [,] N ) A e. RR ) |
140 |
108
|
sseli |
|- ( y e. ( M (,) N ) -> y e. ( M [,] N ) ) |
141 |
29
|
impcom |
|- ( ( A. x e. ( M [,] N ) A e. RR /\ y e. ( M [,] N ) ) -> [_ y / x ]_ A e. RR ) |
142 |
139 140 141
|
syl2an |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. RR ) |
143 |
142
|
recnd |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ A e. CC ) |
144 |
108
|
sseli |
|- ( x e. ( M (,) N ) -> x e. ( M [,] N ) ) |
145 |
21
|
fvmptelcdm |
|- ( ( ph /\ x e. ( M [,] N ) ) -> A e. RR ) |
146 |
145
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M [,] N ) ) -> A e. RR ) |
147 |
144 146
|
sylan2 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> A e. RR ) |
148 |
147
|
fmpttd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR ) |
149 |
|
ioossre |
|- ( M (,) N ) C_ RR |
150 |
|
dvfre |
|- ( ( ( x e. ( M (,) N ) |-> A ) : ( M (,) N ) --> RR /\ ( M (,) N ) C_ RR ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
151 |
148 149 150
|
sylancl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR ) |
152 |
4
|
adantr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( x e. ( M (,) N ) |-> B ) ) |
153 |
152
|
dmeqd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = dom ( x e. ( M (,) N ) |-> B ) ) |
154 |
3
|
adantlr |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( M (,) N ) ) -> B e. V ) |
155 |
154
|
ralrimiva |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. V ) |
156 |
|
dmmptg |
|- ( A. x e. ( M (,) N ) B e. V -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
157 |
155 156
|
syl |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( x e. ( M (,) N ) |-> B ) = ( M (,) N ) ) |
158 |
153 157
|
eqtrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( M (,) N ) ) |
159 |
152 158
|
feq12d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( RR _D ( x e. ( M (,) N ) |-> A ) ) : dom ( RR _D ( x e. ( M (,) N ) |-> A ) ) --> RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) ) |
160 |
151 159
|
mpbid |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
161 |
|
eqid |
|- ( x e. ( M (,) N ) |-> B ) = ( x e. ( M (,) N ) |-> B ) |
162 |
161
|
fmpt |
|- ( A. x e. ( M (,) N ) B e. RR <-> ( x e. ( M (,) N ) |-> B ) : ( M (,) N ) --> RR ) |
163 |
160 162
|
sylibr |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( M (,) N ) B e. RR ) |
164 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
165 |
164
|
nfel1 |
|- F/ x [_ y / x ]_ B e. RR |
166 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
167 |
166
|
eleq1d |
|- ( x = y -> ( B e. RR <-> [_ y / x ]_ B e. RR ) ) |
168 |
165 167
|
rspc |
|- ( y e. ( M (,) N ) -> ( A. x e. ( M (,) N ) B e. RR -> [_ y / x ]_ B e. RR ) ) |
169 |
163 168
|
mpan9 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( M (,) N ) ) -> [_ y / x ]_ B e. RR ) |
170 |
128 25 27
|
cbvmpt |
|- ( x e. ( M (,) N ) |-> A ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) |
171 |
170
|
oveq2i |
|- ( RR _D ( x e. ( M (,) N ) |-> A ) ) = ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) |
172 |
|
nfcv |
|- F/_ y B |
173 |
172 164 166
|
cbvmpt |
|- ( x e. ( M (,) N ) |-> B ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) |
174 |
152 171 173
|
3eqtr3g |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( M (,) N ) |-> [_ y / x ]_ A ) ) = ( y e. ( M (,) N ) |-> [_ y / x ]_ B ) ) |
175 |
91 143 169 174 107 121 72 123
|
dvmptres |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( RR _D ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ A ) ) = ( y e. ( k (,) ( k + 1 ) ) |-> [_ y / x ]_ B ) ) |
176 |
8
|
anassrs |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ x e. ( k (,) ( k + 1 ) ) ) -> X <_ B ) |
177 |
176
|
ralrimiva |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> A. x e. ( k (,) ( k + 1 ) ) X <_ B ) |
178 |
|
nfcv |
|- F/_ x X |
179 |
|
nfcv |
|- F/_ x <_ |
180 |
178 179 164
|
nfbr |
|- F/ x X <_ [_ y / x ]_ B |
181 |
166
|
breq2d |
|- ( x = y -> ( X <_ B <-> X <_ [_ y / x ]_ B ) ) |
182 |
180 181
|
rspc |
|- ( y e. ( k (,) ( k + 1 ) ) -> ( A. x e. ( k (,) ( k + 1 ) ) X <_ B -> X <_ [_ y / x ]_ B ) ) |
183 |
177 182
|
mpan9 |
|- ( ( ( ph /\ k e. ( M ..^ N ) ) /\ y e. ( k (,) ( k + 1 ) ) ) -> X <_ [_ y / x ]_ B ) |
184 |
46
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. RR* ) |
185 |
54
|
rexrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. RR* ) |
186 |
46
|
lep1d |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k <_ ( k + 1 ) ) |
187 |
|
lbicc2 |
|- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
188 |
184 185 186 187
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> k e. ( k [,] ( k + 1 ) ) ) |
189 |
|
ubicc2 |
|- ( ( k e. RR* /\ ( k + 1 ) e. RR* /\ k <_ ( k + 1 ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
190 |
184 185 186 189
|
syl3anc |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( k + 1 ) e. ( k [,] ( k + 1 ) ) ) |
191 |
|
oveq2 |
|- ( y = k -> ( X x. y ) = ( X x. k ) ) |
192 |
|
oveq2 |
|- ( y = ( k + 1 ) -> ( X x. y ) = ( X x. ( k + 1 ) ) ) |
193 |
46 54 89 127 137 175 183 188 190 186 191 39 192 34
|
dvle |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> ( ( X x. ( k + 1 ) ) - ( X x. k ) ) <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
194 |
58 193
|
eqbrtrrd |
|- ( ( ph /\ k e. ( M ..^ N ) ) -> X <_ ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
195 |
10 7 43 194
|
fsumle |
|- ( ph -> sum_ k e. ( M ..^ N ) X <_ sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) ) |
196 |
|
vex |
|- y e. _V |
197 |
196
|
a1i |
|- ( y = M -> y e. _V ) |
198 |
|
eqeq2 |
|- ( y = M -> ( x = y <-> x = M ) ) |
199 |
198
|
biimpa |
|- ( ( y = M /\ x = y ) -> x = M ) |
200 |
199 5
|
syl |
|- ( ( y = M /\ x = y ) -> A = C ) |
201 |
197 200
|
csbied |
|- ( y = M -> [_ y / x ]_ A = C ) |
202 |
196
|
a1i |
|- ( y = N -> y e. _V ) |
203 |
|
eqeq2 |
|- ( y = N -> ( x = y <-> x = N ) ) |
204 |
203
|
biimpa |
|- ( ( y = N /\ x = y ) -> x = N ) |
205 |
204 6
|
syl |
|- ( ( y = N /\ x = y ) -> A = D ) |
206 |
202 205
|
csbied |
|- ( y = N -> [_ y / x ]_ A = D ) |
207 |
31
|
recnd |
|- ( ( ph /\ y e. ( M ... N ) ) -> [_ y / x ]_ A e. CC ) |
208 |
39 34 201 206 1 207
|
telfsumo2 |
|- ( ph -> sum_ k e. ( M ..^ N ) ( [_ ( k + 1 ) / x ]_ A - [_ k / x ]_ A ) = ( D - C ) ) |
209 |
195 208
|
breqtrd |
|- ( ph -> sum_ k e. ( M ..^ N ) X <_ ( D - C ) ) |