| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscmet3.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | iscmet3.2 |  |-  J = ( MetOpen ` D ) | 
						
							| 3 |  | iscmet3.3 |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | iscmet3.4 |  |-  ( ph -> D e. ( Met ` X ) ) | 
						
							| 5 |  | iscmet3.6 |  |-  ( ph -> F : Z --> X ) | 
						
							| 6 |  | iscmet3.9 |  |-  ( ph -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 7 |  | iscmet3.10 |  |-  ( ph -> A. k e. Z A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) | 
						
							| 8 |  | iscmet3.7 |  |-  ( ph -> G e. ( Fil ` X ) ) | 
						
							| 9 |  | iscmet3.8 |  |-  ( ph -> S : ZZ --> G ) | 
						
							| 10 |  | iscmet3.5 |  |-  ( ph -> F e. dom ( ~~>t ` J ) ) | 
						
							| 11 |  | eldmg |  |-  ( F e. dom ( ~~>t ` J ) -> ( F e. dom ( ~~>t ` J ) <-> E. x F ( ~~>t ` J ) x ) ) | 
						
							| 12 | 11 | ibi |  |-  ( F e. dom ( ~~>t ` J ) -> E. x F ( ~~>t ` J ) x ) | 
						
							| 13 | 10 12 | syl |  |-  ( ph -> E. x F ( ~~>t ` J ) x ) | 
						
							| 14 |  | metxmet |  |-  ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) | 
						
							| 15 | 4 14 | syl |  |-  ( ph -> D e. ( *Met ` X ) ) | 
						
							| 16 | 2 | mopntopon |  |-  ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> J e. ( TopOn ` X ) ) | 
						
							| 18 |  | lmcl |  |-  ( ( J e. ( TopOn ` X ) /\ F ( ~~>t ` J ) x ) -> x e. X ) | 
						
							| 19 | 17 18 | sylan |  |-  ( ( ph /\ F ( ~~>t ` J ) x ) -> x e. X ) | 
						
							| 20 | 15 | adantr |  |-  ( ( ph /\ F ( ~~>t ` J ) x ) -> D e. ( *Met ` X ) ) | 
						
							| 21 | 2 | mopni2 |  |-  ( ( D e. ( *Met ` X ) /\ y e. J /\ x e. y ) -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) | 
						
							| 22 | 21 | 3expia |  |-  ( ( D e. ( *Met ` X ) /\ y e. J ) -> ( x e. y -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) ) | 
						
							| 23 | 20 22 | sylan |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( x e. y -> E. r e. RR+ ( x ( ball ` D ) r ) C_ y ) ) | 
						
							| 24 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> G e. ( Fil ` X ) ) | 
						
							| 25 | 3 | ad2antrr |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> M e. ZZ ) | 
						
							| 26 |  | rphalfcl |  |-  ( r e. RR+ -> ( r / 2 ) e. RR+ ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( r / 2 ) e. RR+ ) | 
						
							| 28 | 1 | iscmet3lem3 |  |-  ( ( M e. ZZ /\ ( r / 2 ) e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) ) | 
						
							| 29 | 25 27 28 | syl2anc |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) ) | 
						
							| 30 | 20 | adantr |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> D e. ( *Met ` X ) ) | 
						
							| 31 | 19 | adantr |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> x e. X ) | 
						
							| 32 |  | blcntr |  |-  ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / 2 ) e. RR+ ) -> x e. ( x ( ball ` D ) ( r / 2 ) ) ) | 
						
							| 33 | 30 31 27 32 | syl3anc |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> x e. ( x ( ball ` D ) ( r / 2 ) ) ) | 
						
							| 34 |  | simplr |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> F ( ~~>t ` J ) x ) | 
						
							| 35 | 27 | rpxrd |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( r / 2 ) e. RR* ) | 
						
							| 36 | 2 | blopn |  |-  ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / 2 ) e. RR* ) -> ( x ( ball ` D ) ( r / 2 ) ) e. J ) | 
						
							| 37 | 30 31 35 36 | syl3anc |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) ( r / 2 ) ) e. J ) | 
						
							| 38 | 1 33 25 34 37 | lmcvg |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) | 
						
							| 39 | 1 | rexanuz2 |  |-  ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) <-> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 40 | 1 | r19.2uz |  |-  ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> E. k e. Z ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 41 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> G e. ( Fil ` X ) ) | 
						
							| 42 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> S : ZZ --> G ) | 
						
							| 43 |  | eluzelz |  |-  ( k e. ( ZZ>= ` M ) -> k e. ZZ ) | 
						
							| 44 | 43 1 | eleq2s |  |-  ( k e. Z -> k e. ZZ ) | 
						
							| 45 | 44 | ad2antrl |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> k e. ZZ ) | 
						
							| 46 |  | ffvelcdm |  |-  ( ( S : ZZ --> G /\ k e. ZZ ) -> ( S ` k ) e. G ) | 
						
							| 47 | 42 45 46 | syl2anc |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) e. G ) | 
						
							| 48 |  | rpxr |  |-  ( r e. RR+ -> r e. RR* ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> r e. RR* ) | 
						
							| 50 |  | blssm |  |-  ( ( D e. ( *Met ` X ) /\ x e. X /\ r e. RR* ) -> ( x ( ball ` D ) r ) C_ X ) | 
						
							| 51 | 30 31 49 50 | syl3anc |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) r ) C_ X ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( x ( ball ` D ) r ) C_ X ) | 
						
							| 53 | 44 | adantl |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> k e. ZZ ) | 
						
							| 54 |  | 1rp |  |-  1 e. RR+ | 
						
							| 55 |  | rphalfcl |  |-  ( 1 e. RR+ -> ( 1 / 2 ) e. RR+ ) | 
						
							| 56 | 54 55 | ax-mp |  |-  ( 1 / 2 ) e. RR+ | 
						
							| 57 |  | rpexpcl |  |-  ( ( ( 1 / 2 ) e. RR+ /\ k e. ZZ ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 58 | 56 57 | mpan |  |-  ( k e. ZZ -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 59 | 53 58 | syl |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 60 | 59 | rpred |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR ) | 
						
							| 61 | 27 | adantr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR+ ) | 
						
							| 62 | 61 | rpred |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR ) | 
						
							| 63 |  | ltle |  |-  ( ( ( ( 1 / 2 ) ^ k ) e. RR /\ ( r / 2 ) e. RR ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) ) | 
						
							| 64 | 60 62 63 | syl2anc |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) ) | 
						
							| 65 |  | fveq2 |  |-  ( n = k -> ( S ` n ) = ( S ` k ) ) | 
						
							| 66 | 65 | eleq2d |  |-  ( n = k -> ( ( F ` k ) e. ( S ` n ) <-> ( F ` k ) e. ( S ` k ) ) ) | 
						
							| 67 | 7 | r19.21bi |  |-  ( ( ph /\ k e. Z ) -> A. n e. ( M ... k ) ( F ` k ) e. ( S ` n ) ) | 
						
							| 68 |  | eluzfz2 |  |-  ( k e. ( ZZ>= ` M ) -> k e. ( M ... k ) ) | 
						
							| 69 | 68 1 | eleq2s |  |-  ( k e. Z -> k e. ( M ... k ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ph /\ k e. Z ) -> k e. ( M ... k ) ) | 
						
							| 71 | 66 67 70 | rspcdva |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( S ` k ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( F ` k ) e. ( S ` k ) ) | 
						
							| 73 |  | simpr |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. ( S ` k ) ) | 
						
							| 74 | 6 | ad2antrr |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 75 | 44 | ad2antlr |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> k e. ZZ ) | 
						
							| 76 |  | rsp |  |-  ( A. k e. ZZ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) -> ( k e. ZZ -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 77 | 74 75 76 | sylc |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 78 |  | oveq1 |  |-  ( u = ( F ` k ) -> ( u D v ) = ( ( F ` k ) D v ) ) | 
						
							| 79 | 78 | breq1d |  |-  ( u = ( F ` k ) -> ( ( u D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 80 |  | oveq2 |  |-  ( v = y -> ( ( F ` k ) D v ) = ( ( F ` k ) D y ) ) | 
						
							| 81 | 80 | breq1d |  |-  ( v = y -> ( ( ( F ` k ) D v ) < ( ( 1 / 2 ) ^ k ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 82 | 79 81 | rspc2va |  |-  ( ( ( ( F ` k ) e. ( S ` k ) /\ y e. ( S ` k ) ) /\ A. u e. ( S ` k ) A. v e. ( S ` k ) ( u D v ) < ( ( 1 / 2 ) ^ k ) ) -> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 83 | 72 73 77 82 | syl21anc |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) | 
						
							| 84 | 15 | ad2antrr |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> D e. ( *Met ` X ) ) | 
						
							| 85 | 44 58 | syl |  |-  ( k e. Z -> ( ( 1 / 2 ) ^ k ) e. RR+ ) | 
						
							| 86 | 85 | rpxrd |  |-  ( k e. Z -> ( ( 1 / 2 ) ^ k ) e. RR* ) | 
						
							| 87 | 86 | ad2antlr |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( ( 1 / 2 ) ^ k ) e. RR* ) | 
						
							| 88 | 5 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. X ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( F ` k ) e. X ) | 
						
							| 90 | 8 | adantr |  |-  ( ( ph /\ k e. Z ) -> G e. ( Fil ` X ) ) | 
						
							| 91 | 9 44 46 | syl2an |  |-  ( ( ph /\ k e. Z ) -> ( S ` k ) e. G ) | 
						
							| 92 |  | filelss |  |-  ( ( G e. ( Fil ` X ) /\ ( S ` k ) e. G ) -> ( S ` k ) C_ X ) | 
						
							| 93 | 90 91 92 | syl2anc |  |-  ( ( ph /\ k e. Z ) -> ( S ` k ) C_ X ) | 
						
							| 94 | 93 | sselda |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. X ) | 
						
							| 95 |  | elbl2 |  |-  ( ( ( D e. ( *Met ` X ) /\ ( ( 1 / 2 ) ^ k ) e. RR* ) /\ ( ( F ` k ) e. X /\ y e. X ) ) -> ( y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 96 | 84 87 89 94 95 | syl22anc |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> ( y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) <-> ( ( F ` k ) D y ) < ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 97 | 83 96 | mpbird |  |-  ( ( ( ph /\ k e. Z ) /\ y e. ( S ` k ) ) -> y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 98 | 97 | ex |  |-  ( ( ph /\ k e. Z ) -> ( y e. ( S ` k ) -> y e. ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) ) | 
						
							| 99 | 98 | ssrdv |  |-  ( ( ph /\ k e. Z ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 100 | 99 | ad4ant14 |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) ) | 
						
							| 101 | 30 | adantr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> D e. ( *Met ` X ) ) | 
						
							| 102 | 5 | ad2antrr |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> F : Z --> X ) | 
						
							| 103 | 102 | ffvelcdmda |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( F ` k ) e. X ) | 
						
							| 104 | 59 | rpxrd |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( 1 / 2 ) ^ k ) e. RR* ) | 
						
							| 105 | 35 | adantr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( r / 2 ) e. RR* ) | 
						
							| 106 |  | ssbl |  |-  ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( ( ( 1 / 2 ) ^ k ) e. RR* /\ ( r / 2 ) e. RR* ) /\ ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) | 
						
							| 107 | 106 | 3expia |  |-  ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( ( ( 1 / 2 ) ^ k ) e. RR* /\ ( r / 2 ) e. RR* ) ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 108 | 101 103 104 105 107 | syl22anc |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 109 |  | sstr |  |-  ( ( ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) /\ ( ( F ` k ) ( ball ` D ) ( ( 1 / 2 ) ^ k ) ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) | 
						
							| 110 | 100 108 109 | syl6an |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) <_ ( r / 2 ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 111 | 64 110 | syld |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 112 | 111 | adantrd |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 113 | 112 | impr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) C_ ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) | 
						
							| 114 | 31 | adantr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> x e. X ) | 
						
							| 115 |  | blcom |  |-  ( ( ( D e. ( *Met ` X ) /\ ( r / 2 ) e. RR* ) /\ ( x e. X /\ ( F ` k ) e. X ) ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) <-> x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 116 | 101 105 114 103 115 | syl22anc |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) <-> x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) | 
						
							| 117 |  | rpre |  |-  ( r e. RR+ -> r e. RR ) | 
						
							| 118 | 117 | ad2antlr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> r e. RR ) | 
						
							| 119 |  | blhalf |  |-  ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ ( r e. RR /\ x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) | 
						
							| 120 | 119 | expr |  |-  ( ( ( D e. ( *Met ` X ) /\ ( F ` k ) e. X ) /\ r e. RR ) -> ( x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) | 
						
							| 121 | 101 103 118 120 | syl21anc |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( x e. ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) | 
						
							| 122 | 116 121 | sylbid |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) | 
						
							| 123 | 122 | adantld |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ k e. Z ) -> ( ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) ) | 
						
							| 124 | 123 | impr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( ( F ` k ) ( ball ` D ) ( r / 2 ) ) C_ ( x ( ball ` D ) r ) ) | 
						
							| 125 | 113 124 | sstrd |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( S ` k ) C_ ( x ( ball ` D ) r ) ) | 
						
							| 126 |  | filss |  |-  ( ( G e. ( Fil ` X ) /\ ( ( S ` k ) e. G /\ ( x ( ball ` D ) r ) C_ X /\ ( S ` k ) C_ ( x ( ball ` D ) r ) ) ) -> ( x ( ball ` D ) r ) e. G ) | 
						
							| 127 | 41 47 52 125 126 | syl13anc |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) /\ ( k e. Z /\ ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) ) ) -> ( x ( ball ` D ) r ) e. G ) | 
						
							| 128 | 127 | rexlimdvaa |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( E. k e. Z ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) | 
						
							| 129 | 40 128 | syl5 |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) | 
						
							| 130 | 39 129 | biimtrrid |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( 1 / 2 ) ^ k ) < ( r / 2 ) /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( F ` k ) e. ( x ( ball ` D ) ( r / 2 ) ) ) -> ( x ( ball ` D ) r ) e. G ) ) | 
						
							| 131 | 29 38 130 | mp2and |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ r e. RR+ ) -> ( x ( ball ` D ) r ) e. G ) | 
						
							| 132 | 131 | ad2ant2r |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> ( x ( ball ` D ) r ) e. G ) | 
						
							| 133 | 17 | adantr |  |-  ( ( ph /\ F ( ~~>t ` J ) x ) -> J e. ( TopOn ` X ) ) | 
						
							| 134 |  | toponss |  |-  ( ( J e. ( TopOn ` X ) /\ y e. J ) -> y C_ X ) | 
						
							| 135 | 133 134 | sylan |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> y C_ X ) | 
						
							| 136 | 135 | adantr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> y C_ X ) | 
						
							| 137 |  | simprr |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> ( x ( ball ` D ) r ) C_ y ) | 
						
							| 138 |  | filss |  |-  ( ( G e. ( Fil ` X ) /\ ( ( x ( ball ` D ) r ) e. G /\ y C_ X /\ ( x ( ball ` D ) r ) C_ y ) ) -> y e. G ) | 
						
							| 139 | 24 132 136 137 138 | syl13anc |  |-  ( ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) /\ ( r e. RR+ /\ ( x ( ball ` D ) r ) C_ y ) ) -> y e. G ) | 
						
							| 140 | 139 | rexlimdvaa |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( E. r e. RR+ ( x ( ball ` D ) r ) C_ y -> y e. G ) ) | 
						
							| 141 | 23 140 | syld |  |-  ( ( ( ph /\ F ( ~~>t ` J ) x ) /\ y e. J ) -> ( x e. y -> y e. G ) ) | 
						
							| 142 | 141 | ralrimiva |  |-  ( ( ph /\ F ( ~~>t ` J ) x ) -> A. y e. J ( x e. y -> y e. G ) ) | 
						
							| 143 |  | flimopn |  |-  ( ( J e. ( TopOn ` X ) /\ G e. ( Fil ` X ) ) -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) | 
						
							| 144 | 17 8 143 | syl2anc |  |-  ( ph -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) | 
						
							| 145 | 144 | adantr |  |-  ( ( ph /\ F ( ~~>t ` J ) x ) -> ( x e. ( J fLim G ) <-> ( x e. X /\ A. y e. J ( x e. y -> y e. G ) ) ) ) | 
						
							| 146 | 19 142 145 | mpbir2and |  |-  ( ( ph /\ F ( ~~>t ` J ) x ) -> x e. ( J fLim G ) ) | 
						
							| 147 | 146 | ne0d |  |-  ( ( ph /\ F ( ~~>t ` J ) x ) -> ( J fLim G ) =/= (/) ) | 
						
							| 148 | 13 147 | exlimddv |  |-  ( ph -> ( J fLim G ) =/= (/) ) |