| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn1uz2 |
|- ( a e. NN <-> ( a = 1 \/ a e. ( ZZ>= ` 2 ) ) ) |
| 2 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 3 |
2
|
eqcomi |
|- 1 = ( 1 x. 1 ) |
| 4 |
|
simpl |
|- ( ( a = 1 /\ ( #b ` a ) = ( y + 1 ) ) -> a = 1 ) |
| 5 |
|
oveq2 |
|- ( ( y + 1 ) = ( #b ` a ) -> ( 0 ..^ ( y + 1 ) ) = ( 0 ..^ ( #b ` a ) ) ) |
| 6 |
5
|
eqcoms |
|- ( ( #b ` a ) = ( y + 1 ) -> ( 0 ..^ ( y + 1 ) ) = ( 0 ..^ ( #b ` a ) ) ) |
| 7 |
|
fveq2 |
|- ( a = 1 -> ( #b ` a ) = ( #b ` 1 ) ) |
| 8 |
|
blen1 |
|- ( #b ` 1 ) = 1 |
| 9 |
7 8
|
eqtrdi |
|- ( a = 1 -> ( #b ` a ) = 1 ) |
| 10 |
9
|
oveq2d |
|- ( a = 1 -> ( 0 ..^ ( #b ` a ) ) = ( 0 ..^ 1 ) ) |
| 11 |
|
fzo01 |
|- ( 0 ..^ 1 ) = { 0 } |
| 12 |
10 11
|
eqtrdi |
|- ( a = 1 -> ( 0 ..^ ( #b ` a ) ) = { 0 } ) |
| 13 |
6 12
|
sylan9eqr |
|- ( ( a = 1 /\ ( #b ` a ) = ( y + 1 ) ) -> ( 0 ..^ ( y + 1 ) ) = { 0 } ) |
| 14 |
13
|
sumeq1d |
|- ( ( a = 1 /\ ( #b ` a ) = ( y + 1 ) ) -> sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
| 15 |
|
oveq2 |
|- ( a = 1 -> ( k ( digit ` 2 ) a ) = ( k ( digit ` 2 ) 1 ) ) |
| 16 |
15
|
oveq1d |
|- ( a = 1 -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( k ( digit ` 2 ) 1 ) x. ( 2 ^ k ) ) ) |
| 17 |
16
|
sumeq2sdv |
|- ( a = 1 -> sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. { 0 } ( ( k ( digit ` 2 ) 1 ) x. ( 2 ^ k ) ) ) |
| 18 |
|
c0ex |
|- 0 e. _V |
| 19 |
|
ax-1cn |
|- 1 e. CC |
| 20 |
19 19
|
mulcli |
|- ( 1 x. 1 ) e. CC |
| 21 |
|
oveq1 |
|- ( k = 0 -> ( k ( digit ` 2 ) 1 ) = ( 0 ( digit ` 2 ) 1 ) ) |
| 22 |
|
1ex |
|- 1 e. _V |
| 23 |
22
|
prid2 |
|- 1 e. { 0 , 1 } |
| 24 |
|
0dig2pr01 |
|- ( 1 e. { 0 , 1 } -> ( 0 ( digit ` 2 ) 1 ) = 1 ) |
| 25 |
23 24
|
ax-mp |
|- ( 0 ( digit ` 2 ) 1 ) = 1 |
| 26 |
21 25
|
eqtrdi |
|- ( k = 0 -> ( k ( digit ` 2 ) 1 ) = 1 ) |
| 27 |
|
oveq2 |
|- ( k = 0 -> ( 2 ^ k ) = ( 2 ^ 0 ) ) |
| 28 |
|
2cn |
|- 2 e. CC |
| 29 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
| 30 |
28 29
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
| 31 |
27 30
|
eqtrdi |
|- ( k = 0 -> ( 2 ^ k ) = 1 ) |
| 32 |
26 31
|
oveq12d |
|- ( k = 0 -> ( ( k ( digit ` 2 ) 1 ) x. ( 2 ^ k ) ) = ( 1 x. 1 ) ) |
| 33 |
32
|
sumsn |
|- ( ( 0 e. _V /\ ( 1 x. 1 ) e. CC ) -> sum_ k e. { 0 } ( ( k ( digit ` 2 ) 1 ) x. ( 2 ^ k ) ) = ( 1 x. 1 ) ) |
| 34 |
18 20 33
|
mp2an |
|- sum_ k e. { 0 } ( ( k ( digit ` 2 ) 1 ) x. ( 2 ^ k ) ) = ( 1 x. 1 ) |
| 35 |
17 34
|
eqtrdi |
|- ( a = 1 -> sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( 1 x. 1 ) ) |
| 36 |
35
|
adantr |
|- ( ( a = 1 /\ ( #b ` a ) = ( y + 1 ) ) -> sum_ k e. { 0 } ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( 1 x. 1 ) ) |
| 37 |
14 36
|
eqtrd |
|- ( ( a = 1 /\ ( #b ` a ) = ( y + 1 ) ) -> sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( 1 x. 1 ) ) |
| 38 |
3 4 37
|
3eqtr4a |
|- ( ( a = 1 /\ ( #b ` a ) = ( y + 1 ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
| 39 |
38
|
ex |
|- ( a = 1 -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
| 40 |
39
|
a1d |
|- ( a = 1 -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
| 41 |
40
|
2a1d |
|- ( a = 1 -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( y e. NN -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) |
| 42 |
|
eluzge2nn0 |
|- ( a e. ( ZZ>= ` 2 ) -> a e. NN0 ) |
| 43 |
|
nn0ob |
|- ( a e. NN0 -> ( ( ( a + 1 ) / 2 ) e. NN0 <-> ( ( a - 1 ) / 2 ) e. NN0 ) ) |
| 44 |
43
|
bicomd |
|- ( a e. NN0 -> ( ( ( a - 1 ) / 2 ) e. NN0 <-> ( ( a + 1 ) / 2 ) e. NN0 ) ) |
| 45 |
42 44
|
syl |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( ( a - 1 ) / 2 ) e. NN0 <-> ( ( a + 1 ) / 2 ) e. NN0 ) ) |
| 46 |
|
blennngt2o2 |
|- ( ( a e. ( ZZ>= ` 2 ) /\ ( ( a + 1 ) / 2 ) e. NN0 ) -> ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) ) |
| 47 |
46
|
ex |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( ( a + 1 ) / 2 ) e. NN0 -> ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) ) ) |
| 48 |
45 47
|
sylbid |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) ) ) |
| 49 |
48
|
imp |
|- ( ( a e. ( ZZ>= ` 2 ) /\ ( ( a - 1 ) / 2 ) e. NN0 ) -> ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) ) |
| 50 |
|
fveqeq2 |
|- ( x = ( ( a - 1 ) / 2 ) -> ( ( #b ` x ) = y <-> ( #b ` ( ( a - 1 ) / 2 ) ) = y ) ) |
| 51 |
|
id |
|- ( x = ( ( a - 1 ) / 2 ) -> x = ( ( a - 1 ) / 2 ) ) |
| 52 |
|
oveq2 |
|- ( x = ( ( a - 1 ) / 2 ) -> ( k ( digit ` 2 ) x ) = ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) ) |
| 53 |
52
|
oveq1d |
|- ( x = ( ( a - 1 ) / 2 ) -> ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) = ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) |
| 54 |
53
|
sumeq2sdv |
|- ( x = ( ( a - 1 ) / 2 ) -> sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) |
| 55 |
51 54
|
eqeq12d |
|- ( x = ( ( a - 1 ) / 2 ) -> ( x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) <-> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) ) |
| 56 |
50 55
|
imbi12d |
|- ( x = ( ( a - 1 ) / 2 ) -> ( ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) <-> ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) ) ) |
| 57 |
56
|
rspcva |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) ) -> ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) ) |
| 58 |
|
eqeq1 |
|- ( ( #b ` a ) = ( y + 1 ) -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) <-> ( y + 1 ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) ) ) |
| 59 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 60 |
59
|
ad2antll |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> y e. CC ) |
| 61 |
|
blennn0elnn |
|- ( ( ( a - 1 ) / 2 ) e. NN0 -> ( #b ` ( ( a - 1 ) / 2 ) ) e. NN ) |
| 62 |
61
|
nncnd |
|- ( ( ( a - 1 ) / 2 ) e. NN0 -> ( #b ` ( ( a - 1 ) / 2 ) ) e. CC ) |
| 63 |
62
|
adantr |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( #b ` ( ( a - 1 ) / 2 ) ) e. CC ) |
| 64 |
63
|
ad2antrl |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( #b ` ( ( a - 1 ) / 2 ) ) e. CC ) |
| 65 |
|
1cnd |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> 1 e. CC ) |
| 66 |
60 64 65
|
addcan2d |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( ( y + 1 ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) <-> y = ( #b ` ( ( a - 1 ) / 2 ) ) ) ) |
| 67 |
|
eqcom |
|- ( y = ( #b ` ( ( a - 1 ) / 2 ) ) <-> ( #b ` ( ( a - 1 ) / 2 ) ) = y ) |
| 68 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
| 69 |
68
|
ad2antll |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> y e. ZZ ) |
| 70 |
|
fzval3 |
|- ( y e. ZZ -> ( 0 ... y ) = ( 0 ..^ ( y + 1 ) ) ) |
| 71 |
69 70
|
syl |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( 0 ... y ) = ( 0 ..^ ( y + 1 ) ) ) |
| 72 |
71
|
eqcomd |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( 0 ..^ ( y + 1 ) ) = ( 0 ... y ) ) |
| 73 |
72
|
sumeq1d |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ k e. ( 0 ... y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
| 74 |
|
nnnn0 |
|- ( y e. NN -> y e. NN0 ) |
| 75 |
|
elnn0uz |
|- ( y e. NN0 <-> y e. ( ZZ>= ` 0 ) ) |
| 76 |
74 75
|
sylib |
|- ( y e. NN -> y e. ( ZZ>= ` 0 ) ) |
| 77 |
76
|
ad2antll |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> y e. ( ZZ>= ` 0 ) ) |
| 78 |
|
2nn |
|- 2 e. NN |
| 79 |
78
|
a1i |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... y ) ) -> 2 e. NN ) |
| 80 |
|
elfzelz |
|- ( k e. ( 0 ... y ) -> k e. ZZ ) |
| 81 |
80
|
adantl |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... y ) ) -> k e. ZZ ) |
| 82 |
|
nn0rp0 |
|- ( a e. NN0 -> a e. ( 0 [,) +oo ) ) |
| 83 |
42 82
|
syl |
|- ( a e. ( ZZ>= ` 2 ) -> a e. ( 0 [,) +oo ) ) |
| 84 |
83
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> a e. ( 0 [,) +oo ) ) |
| 85 |
84
|
adantr |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... y ) ) -> a e. ( 0 [,) +oo ) ) |
| 86 |
|
digvalnn0 |
|- ( ( 2 e. NN /\ k e. ZZ /\ a e. ( 0 [,) +oo ) ) -> ( k ( digit ` 2 ) a ) e. NN0 ) |
| 87 |
79 81 85 86
|
syl3anc |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ k e. ( 0 ... y ) ) -> ( k ( digit ` 2 ) a ) e. NN0 ) |
| 88 |
87
|
ex |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( k e. ( 0 ... y ) -> ( k ( digit ` 2 ) a ) e. NN0 ) ) |
| 89 |
88
|
ad2antrl |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( k e. ( 0 ... y ) -> ( k ( digit ` 2 ) a ) e. NN0 ) ) |
| 90 |
89
|
imp |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( 0 ... y ) ) -> ( k ( digit ` 2 ) a ) e. NN0 ) |
| 91 |
90
|
nn0cnd |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( 0 ... y ) ) -> ( k ( digit ` 2 ) a ) e. CC ) |
| 92 |
|
2nn0 |
|- 2 e. NN0 |
| 93 |
92
|
a1i |
|- ( k e. ( 0 ... y ) -> 2 e. NN0 ) |
| 94 |
|
elfznn0 |
|- ( k e. ( 0 ... y ) -> k e. NN0 ) |
| 95 |
93 94
|
nn0expcld |
|- ( k e. ( 0 ... y ) -> ( 2 ^ k ) e. NN0 ) |
| 96 |
95
|
nn0cnd |
|- ( k e. ( 0 ... y ) -> ( 2 ^ k ) e. CC ) |
| 97 |
96
|
adantl |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( 0 ... y ) ) -> ( 2 ^ k ) e. CC ) |
| 98 |
91 97
|
mulcld |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( 0 ... y ) ) -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) e. CC ) |
| 99 |
|
oveq1 |
|- ( k = 0 -> ( k ( digit ` 2 ) a ) = ( 0 ( digit ` 2 ) a ) ) |
| 100 |
99 27
|
oveq12d |
|- ( k = 0 -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( 0 ( digit ` 2 ) a ) x. ( 2 ^ 0 ) ) ) |
| 101 |
30
|
oveq2i |
|- ( ( 0 ( digit ` 2 ) a ) x. ( 2 ^ 0 ) ) = ( ( 0 ( digit ` 2 ) a ) x. 1 ) |
| 102 |
100 101
|
eqtrdi |
|- ( k = 0 -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( 0 ( digit ` 2 ) a ) x. 1 ) ) |
| 103 |
77 98 102
|
fsum1p |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> sum_ k e. ( 0 ... y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( ( 0 ( digit ` 2 ) a ) x. 1 ) + sum_ k e. ( ( 0 + 1 ) ... y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
| 104 |
42
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> a e. NN0 ) |
| 105 |
42 43
|
syl |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( ( a + 1 ) / 2 ) e. NN0 <-> ( ( a - 1 ) / 2 ) e. NN0 ) ) |
| 106 |
105
|
biimparc |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( ( a + 1 ) / 2 ) e. NN0 ) |
| 107 |
|
0dig2nn0o |
|- ( ( a e. NN0 /\ ( ( a + 1 ) / 2 ) e. NN0 ) -> ( 0 ( digit ` 2 ) a ) = 1 ) |
| 108 |
104 106 107
|
syl2anc |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( 0 ( digit ` 2 ) a ) = 1 ) |
| 109 |
108
|
ad2antrl |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( 0 ( digit ` 2 ) a ) = 1 ) |
| 110 |
109
|
oveq1d |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( ( 0 ( digit ` 2 ) a ) x. 1 ) = ( 1 x. 1 ) ) |
| 111 |
110 2
|
eqtrdi |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( ( 0 ( digit ` 2 ) a ) x. 1 ) = 1 ) |
| 112 |
|
1z |
|- 1 e. ZZ |
| 113 |
112
|
a1i |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> 1 e. ZZ ) |
| 114 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
| 115 |
114 112
|
eqeltri |
|- ( 0 + 1 ) e. ZZ |
| 116 |
115
|
a1i |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( 0 + 1 ) e. ZZ ) |
| 117 |
78
|
a1i |
|- ( ( a e. ( ZZ>= ` 2 ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> 2 e. NN ) |
| 118 |
|
elfzelz |
|- ( k e. ( ( 0 + 1 ) ... y ) -> k e. ZZ ) |
| 119 |
118
|
adantl |
|- ( ( a e. ( ZZ>= ` 2 ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> k e. ZZ ) |
| 120 |
42
|
adantr |
|- ( ( a e. ( ZZ>= ` 2 ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> a e. NN0 ) |
| 121 |
120 82
|
syl |
|- ( ( a e. ( ZZ>= ` 2 ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> a e. ( 0 [,) +oo ) ) |
| 122 |
117 119 121 86
|
syl3anc |
|- ( ( a e. ( ZZ>= ` 2 ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> ( k ( digit ` 2 ) a ) e. NN0 ) |
| 123 |
122
|
ex |
|- ( a e. ( ZZ>= ` 2 ) -> ( k e. ( ( 0 + 1 ) ... y ) -> ( k ( digit ` 2 ) a ) e. NN0 ) ) |
| 124 |
123
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( k e. ( ( 0 + 1 ) ... y ) -> ( k ( digit ` 2 ) a ) e. NN0 ) ) |
| 125 |
124
|
ad2antrl |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( k e. ( ( 0 + 1 ) ... y ) -> ( k ( digit ` 2 ) a ) e. NN0 ) ) |
| 126 |
125
|
imp |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> ( k ( digit ` 2 ) a ) e. NN0 ) |
| 127 |
126
|
nn0cnd |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> ( k ( digit ` 2 ) a ) e. CC ) |
| 128 |
|
2cnd |
|- ( k e. ( ( 0 + 1 ) ... y ) -> 2 e. CC ) |
| 129 |
|
elfznn |
|- ( k e. ( 1 ... y ) -> k e. NN ) |
| 130 |
129
|
nnnn0d |
|- ( k e. ( 1 ... y ) -> k e. NN0 ) |
| 131 |
114
|
oveq1i |
|- ( ( 0 + 1 ) ... y ) = ( 1 ... y ) |
| 132 |
130 131
|
eleq2s |
|- ( k e. ( ( 0 + 1 ) ... y ) -> k e. NN0 ) |
| 133 |
128 132
|
expcld |
|- ( k e. ( ( 0 + 1 ) ... y ) -> ( 2 ^ k ) e. CC ) |
| 134 |
133
|
adantl |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> ( 2 ^ k ) e. CC ) |
| 135 |
127 134
|
mulcld |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ k e. ( ( 0 + 1 ) ... y ) ) -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) e. CC ) |
| 136 |
|
oveq1 |
|- ( k = ( i + 1 ) -> ( k ( digit ` 2 ) a ) = ( ( i + 1 ) ( digit ` 2 ) a ) ) |
| 137 |
|
oveq2 |
|- ( k = ( i + 1 ) -> ( 2 ^ k ) = ( 2 ^ ( i + 1 ) ) ) |
| 138 |
136 137
|
oveq12d |
|- ( k = ( i + 1 ) -> ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) ) |
| 139 |
113 116 69 135 138
|
fsumshftm |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> sum_ k e. ( ( 0 + 1 ) ... y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) ) |
| 140 |
111 139
|
oveq12d |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( ( ( 0 ( digit ` 2 ) a ) x. 1 ) + sum_ k e. ( ( 0 + 1 ) ... y ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) = ( 1 + sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) ) ) |
| 141 |
73 103 140
|
3eqtrd |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( 1 + sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) ) ) |
| 142 |
141
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) = ( 1 + sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) ) ) |
| 143 |
78
|
a1i |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ i e. ( 0 ..^ y ) ) -> 2 e. NN ) |
| 144 |
|
elfzoelz |
|- ( i e. ( 0 ..^ y ) -> i e. ZZ ) |
| 145 |
144
|
adantl |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ i e. ( 0 ..^ y ) ) -> i e. ZZ ) |
| 146 |
|
nn0rp0 |
|- ( ( ( a - 1 ) / 2 ) e. NN0 -> ( ( a - 1 ) / 2 ) e. ( 0 [,) +oo ) ) |
| 147 |
146
|
adantr |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( ( a - 1 ) / 2 ) e. ( 0 [,) +oo ) ) |
| 148 |
147
|
adantr |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( a - 1 ) / 2 ) e. ( 0 [,) +oo ) ) |
| 149 |
|
digvalnn0 |
|- ( ( 2 e. NN /\ i e. ZZ /\ ( ( a - 1 ) / 2 ) e. ( 0 [,) +oo ) ) -> ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) e. NN0 ) |
| 150 |
143 145 148 149
|
syl3anc |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ i e. ( 0 ..^ y ) ) -> ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) e. NN0 ) |
| 151 |
150
|
nn0cnd |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ i e. ( 0 ..^ y ) ) -> ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) e. CC ) |
| 152 |
151
|
ex |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( i e. ( 0 ..^ y ) -> ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) e. CC ) ) |
| 153 |
152
|
ad2antrl |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( i e. ( 0 ..^ y ) -> ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) e. CC ) ) |
| 154 |
153
|
imp |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( 0 ..^ y ) ) -> ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) e. CC ) |
| 155 |
92
|
a1i |
|- ( i e. ( 0 ..^ y ) -> 2 e. NN0 ) |
| 156 |
|
elfzonn0 |
|- ( i e. ( 0 ..^ y ) -> i e. NN0 ) |
| 157 |
155 156
|
nn0expcld |
|- ( i e. ( 0 ..^ y ) -> ( 2 ^ i ) e. NN0 ) |
| 158 |
157
|
nn0cnd |
|- ( i e. ( 0 ..^ y ) -> ( 2 ^ i ) e. CC ) |
| 159 |
158
|
adantl |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( 0 ..^ y ) ) -> ( 2 ^ i ) e. CC ) |
| 160 |
|
2cnd |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( 0 ..^ y ) ) -> 2 e. CC ) |
| 161 |
154 159 160
|
mulassd |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) = ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( ( 2 ^ i ) x. 2 ) ) ) |
| 162 |
161
|
eqcomd |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( ( 2 ^ i ) x. 2 ) ) = ( ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) ) |
| 163 |
162
|
sumeq2dv |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( ( 2 ^ i ) x. 2 ) ) = sum_ i e. ( 0 ..^ y ) ( ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) ) |
| 164 |
163
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( ( 2 ^ i ) x. 2 ) ) = sum_ i e. ( 0 ..^ y ) ( ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) ) |
| 165 |
|
0cn |
|- 0 e. CC |
| 166 |
|
pncan1 |
|- ( 0 e. CC -> ( ( 0 + 1 ) - 1 ) = 0 ) |
| 167 |
165 166
|
ax-mp |
|- ( ( 0 + 1 ) - 1 ) = 0 |
| 168 |
167
|
a1i |
|- ( y e. NN -> ( ( 0 + 1 ) - 1 ) = 0 ) |
| 169 |
168
|
oveq1d |
|- ( y e. NN -> ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) = ( 0 ... ( y - 1 ) ) ) |
| 170 |
|
fzoval |
|- ( y e. ZZ -> ( 0 ..^ y ) = ( 0 ... ( y - 1 ) ) ) |
| 171 |
68 170
|
syl |
|- ( y e. NN -> ( 0 ..^ y ) = ( 0 ... ( y - 1 ) ) ) |
| 172 |
169 171
|
eqtr4d |
|- ( y e. NN -> ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) = ( 0 ..^ y ) ) |
| 173 |
172
|
ad2antll |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) = ( 0 ..^ y ) ) |
| 174 |
|
simprlr |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> a e. ( ZZ>= ` 2 ) ) |
| 175 |
|
elfznn0 |
|- ( i e. ( 0 ... ( y - 1 ) ) -> i e. NN0 ) |
| 176 |
167
|
oveq1i |
|- ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) = ( 0 ... ( y - 1 ) ) |
| 177 |
175 176
|
eleq2s |
|- ( i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) -> i e. NN0 ) |
| 178 |
|
dignn0flhalf |
|- ( ( a e. ( ZZ>= ` 2 ) /\ i e. NN0 ) -> ( ( i + 1 ) ( digit ` 2 ) a ) = ( i ( digit ` 2 ) ( |_ ` ( a / 2 ) ) ) ) |
| 179 |
174 177 178
|
syl2an |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ) -> ( ( i + 1 ) ( digit ` 2 ) a ) = ( i ( digit ` 2 ) ( |_ ` ( a / 2 ) ) ) ) |
| 180 |
|
eluzelz |
|- ( a e. ( ZZ>= ` 2 ) -> a e. ZZ ) |
| 181 |
180
|
adantr |
|- ( ( a e. ( ZZ>= ` 2 ) /\ ( ( a - 1 ) / 2 ) e. NN0 ) -> a e. ZZ ) |
| 182 |
|
nn0z |
|- ( ( ( a - 1 ) / 2 ) e. NN0 -> ( ( a - 1 ) / 2 ) e. ZZ ) |
| 183 |
|
zob |
|- ( a e. ZZ -> ( ( ( a + 1 ) / 2 ) e. ZZ <-> ( ( a - 1 ) / 2 ) e. ZZ ) ) |
| 184 |
180 183
|
syl |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( ( a + 1 ) / 2 ) e. ZZ <-> ( ( a - 1 ) / 2 ) e. ZZ ) ) |
| 185 |
182 184
|
imbitrrid |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( ( a + 1 ) / 2 ) e. ZZ ) ) |
| 186 |
185
|
imp |
|- ( ( a e. ( ZZ>= ` 2 ) /\ ( ( a - 1 ) / 2 ) e. NN0 ) -> ( ( a + 1 ) / 2 ) e. ZZ ) |
| 187 |
181 186
|
jca |
|- ( ( a e. ( ZZ>= ` 2 ) /\ ( ( a - 1 ) / 2 ) e. NN0 ) -> ( a e. ZZ /\ ( ( a + 1 ) / 2 ) e. ZZ ) ) |
| 188 |
187
|
ancoms |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( a e. ZZ /\ ( ( a + 1 ) / 2 ) e. ZZ ) ) |
| 189 |
188
|
ad2antrl |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( a e. ZZ /\ ( ( a + 1 ) / 2 ) e. ZZ ) ) |
| 190 |
189
|
adantr |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ) -> ( a e. ZZ /\ ( ( a + 1 ) / 2 ) e. ZZ ) ) |
| 191 |
|
zofldiv2 |
|- ( ( a e. ZZ /\ ( ( a + 1 ) / 2 ) e. ZZ ) -> ( |_ ` ( a / 2 ) ) = ( ( a - 1 ) / 2 ) ) |
| 192 |
190 191
|
syl |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ) -> ( |_ ` ( a / 2 ) ) = ( ( a - 1 ) / 2 ) ) |
| 193 |
192
|
oveq2d |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ) -> ( i ( digit ` 2 ) ( |_ ` ( a / 2 ) ) ) = ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) ) |
| 194 |
179 193
|
eqtrd |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ) -> ( ( i + 1 ) ( digit ` 2 ) a ) = ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) ) |
| 195 |
|
2cnd |
|- ( i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) -> 2 e. CC ) |
| 196 |
195 177
|
expp1d |
|- ( i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) -> ( 2 ^ ( i + 1 ) ) = ( ( 2 ^ i ) x. 2 ) ) |
| 197 |
196
|
adantl |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ) -> ( 2 ^ ( i + 1 ) ) = ( ( 2 ^ i ) x. 2 ) ) |
| 198 |
194 197
|
oveq12d |
|- ( ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) /\ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ) -> ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) = ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( ( 2 ^ i ) x. 2 ) ) ) |
| 199 |
173 198
|
sumeq12dv |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) = sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( ( 2 ^ i ) x. 2 ) ) ) |
| 200 |
199
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) = sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( ( 2 ^ i ) x. 2 ) ) ) |
| 201 |
|
oveq1 |
|- ( k = i -> ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) = ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) ) |
| 202 |
|
oveq2 |
|- ( k = i -> ( 2 ^ k ) = ( 2 ^ i ) ) |
| 203 |
201 202
|
oveq12d |
|- ( k = i -> ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) = ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) ) |
| 204 |
203
|
cbvsumv |
|- sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) = sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) |
| 205 |
204
|
eqeq2i |
|- ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) <-> ( ( a - 1 ) / 2 ) = sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) ) |
| 206 |
205
|
biimpi |
|- ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) -> ( ( a - 1 ) / 2 ) = sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) ) |
| 207 |
206
|
adantr |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( ( a - 1 ) / 2 ) = sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) ) |
| 208 |
207
|
oveq1d |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( ( ( a - 1 ) / 2 ) x. 2 ) = ( sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) ) |
| 209 |
|
fzofi |
|- ( 0 ..^ y ) e. Fin |
| 210 |
209
|
a1i |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( 0 ..^ y ) e. Fin ) |
| 211 |
|
2cnd |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> 2 e. CC ) |
| 212 |
158
|
adantl |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ i e. ( 0 ..^ y ) ) -> ( 2 ^ i ) e. CC ) |
| 213 |
151 212
|
mulcld |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) e. CC ) |
| 214 |
213
|
ex |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( i e. ( 0 ..^ y ) -> ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) e. CC ) ) |
| 215 |
214
|
adantr |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) -> ( i e. ( 0 ..^ y ) -> ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) e. CC ) ) |
| 216 |
215
|
ad2antll |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( i e. ( 0 ..^ y ) -> ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) e. CC ) ) |
| 217 |
216
|
imp |
|- ( ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) /\ i e. ( 0 ..^ y ) ) -> ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) e. CC ) |
| 218 |
210 211 217
|
fsummulc1 |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( sum_ i e. ( 0 ..^ y ) ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) = sum_ i e. ( 0 ..^ y ) ( ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) ) |
| 219 |
208 218
|
eqtrd |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( ( ( a - 1 ) / 2 ) x. 2 ) = sum_ i e. ( 0 ..^ y ) ( ( ( i ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ i ) ) x. 2 ) ) |
| 220 |
164 200 219
|
3eqtr4d |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) = ( ( ( a - 1 ) / 2 ) x. 2 ) ) |
| 221 |
220
|
oveq2d |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( 1 + sum_ i e. ( ( ( 0 + 1 ) - 1 ) ... ( y - 1 ) ) ( ( ( i + 1 ) ( digit ` 2 ) a ) x. ( 2 ^ ( i + 1 ) ) ) ) = ( 1 + ( ( ( a - 1 ) / 2 ) x. 2 ) ) ) |
| 222 |
|
eluzelcn |
|- ( a e. ( ZZ>= ` 2 ) -> a e. CC ) |
| 223 |
|
peano2cnm |
|- ( a e. CC -> ( a - 1 ) e. CC ) |
| 224 |
222 223
|
syl |
|- ( a e. ( ZZ>= ` 2 ) -> ( a - 1 ) e. CC ) |
| 225 |
|
2cnd |
|- ( a e. ( ZZ>= ` 2 ) -> 2 e. CC ) |
| 226 |
|
2ne0 |
|- 2 =/= 0 |
| 227 |
226
|
a1i |
|- ( a e. ( ZZ>= ` 2 ) -> 2 =/= 0 ) |
| 228 |
224 225 227
|
3jca |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( a - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
| 229 |
228
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( ( a - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) ) |
| 230 |
|
divcan1 |
|- ( ( ( a - 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( a - 1 ) / 2 ) x. 2 ) = ( a - 1 ) ) |
| 231 |
229 230
|
syl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( ( ( a - 1 ) / 2 ) x. 2 ) = ( a - 1 ) ) |
| 232 |
231
|
oveq2d |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( 1 + ( ( ( a - 1 ) / 2 ) x. 2 ) ) = ( 1 + ( a - 1 ) ) ) |
| 233 |
|
1cnd |
|- ( a e. ( ZZ>= ` 2 ) -> 1 e. CC ) |
| 234 |
233 222
|
jca |
|- ( a e. ( ZZ>= ` 2 ) -> ( 1 e. CC /\ a e. CC ) ) |
| 235 |
234
|
adantl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( 1 e. CC /\ a e. CC ) ) |
| 236 |
|
pncan3 |
|- ( ( 1 e. CC /\ a e. CC ) -> ( 1 + ( a - 1 ) ) = a ) |
| 237 |
235 236
|
syl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( 1 + ( a - 1 ) ) = a ) |
| 238 |
232 237
|
eqtrd |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) -> ( 1 + ( ( ( a - 1 ) / 2 ) x. 2 ) ) = a ) |
| 239 |
238
|
adantr |
|- ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) -> ( 1 + ( ( ( a - 1 ) / 2 ) x. 2 ) ) = a ) |
| 240 |
239
|
ad2antll |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> ( 1 + ( ( ( a - 1 ) / 2 ) x. 2 ) ) = a ) |
| 241 |
142 221 240
|
3eqtrrd |
|- ( ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) /\ ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) |
| 242 |
241
|
ex |
|- ( ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) -> ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) |
| 243 |
242
|
imim2i |
|- ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
| 244 |
243
|
com13 |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
| 245 |
67 244
|
biimtrid |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( y = ( #b ` ( ( a - 1 ) / 2 ) ) -> ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
| 246 |
66 245
|
sylbid |
|- ( ( ( #b ` a ) = ( y + 1 ) /\ ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) ) -> ( ( y + 1 ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |
| 247 |
246
|
ex |
|- ( ( #b ` a ) = ( y + 1 ) -> ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) -> ( ( y + 1 ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) |
| 248 |
247
|
com23 |
|- ( ( #b ` a ) = ( y + 1 ) -> ( ( y + 1 ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) -> ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) |
| 249 |
58 248
|
sylbid |
|- ( ( #b ` a ) = ( y + 1 ) -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) -> ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) |
| 250 |
249
|
com23 |
|- ( ( #b ` a ) = ( y + 1 ) -> ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) |
| 251 |
250
|
com14 |
|- ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> ( ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ a e. ( ZZ>= ` 2 ) ) /\ y e. NN ) -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) |
| 252 |
251
|
exp4c |
|- ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( a e. ( ZZ>= ` 2 ) -> ( y e. NN -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) ) |
| 253 |
252
|
com35 |
|- ( ( ( #b ` ( ( a - 1 ) / 2 ) ) = y -> ( ( a - 1 ) / 2 ) = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) ( ( a - 1 ) / 2 ) ) x. ( 2 ^ k ) ) ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( y e. NN -> ( a e. ( ZZ>= ` 2 ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) ) |
| 254 |
57 253
|
syl |
|- ( ( ( ( a - 1 ) / 2 ) e. NN0 /\ A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( y e. NN -> ( a e. ( ZZ>= ` 2 ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) ) |
| 255 |
254
|
ex |
|- ( ( ( a - 1 ) / 2 ) e. NN0 -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( y e. NN -> ( a e. ( ZZ>= ` 2 ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) ) ) |
| 256 |
255
|
pm2.43a |
|- ( ( ( a - 1 ) / 2 ) e. NN0 -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( y e. NN -> ( a e. ( ZZ>= ` 2 ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) ) |
| 257 |
256
|
com25 |
|- ( ( ( a - 1 ) / 2 ) e. NN0 -> ( a e. ( ZZ>= ` 2 ) -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( y e. NN -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) ) |
| 258 |
257
|
impcom |
|- ( ( a e. ( ZZ>= ` 2 ) /\ ( ( a - 1 ) / 2 ) e. NN0 ) -> ( ( #b ` a ) = ( ( #b ` ( ( a - 1 ) / 2 ) ) + 1 ) -> ( y e. NN -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) |
| 259 |
49 258
|
mpd |
|- ( ( a e. ( ZZ>= ` 2 ) /\ ( ( a - 1 ) / 2 ) e. NN0 ) -> ( y e. NN -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) |
| 260 |
259
|
ex |
|- ( a e. ( ZZ>= ` 2 ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( y e. NN -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) |
| 261 |
41 260
|
jaoi |
|- ( ( a = 1 \/ a e. ( ZZ>= ` 2 ) ) -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( y e. NN -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) |
| 262 |
1 261
|
sylbi |
|- ( a e. NN -> ( ( ( a - 1 ) / 2 ) e. NN0 -> ( y e. NN -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) ) ) |
| 263 |
262
|
imp31 |
|- ( ( ( a e. NN /\ ( ( a - 1 ) / 2 ) e. NN0 ) /\ y e. NN ) -> ( A. x e. NN0 ( ( #b ` x ) = y -> x = sum_ k e. ( 0 ..^ y ) ( ( k ( digit ` 2 ) x ) x. ( 2 ^ k ) ) ) -> ( ( #b ` a ) = ( y + 1 ) -> a = sum_ k e. ( 0 ..^ ( y + 1 ) ) ( ( k ( digit ` 2 ) a ) x. ( 2 ^ k ) ) ) ) ) |