| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem22.s |  |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } | 
						
							| 3 |  | poimirlem22.1 |  |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 4 |  | poimirlem22.2 |  |-  ( ph -> T e. S ) | 
						
							| 5 |  | poimirlem18.3 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K ) | 
						
							| 6 |  | poimirlem18.4 |  |-  ( ph -> ( 2nd ` T ) = 0 ) | 
						
							| 7 | 1 2 3 4 5 6 | poimirlem17 |  |-  ( ph -> E. z e. S z =/= T ) | 
						
							| 8 | 6 | adantr |  |-  ( ( ph /\ z e. S ) -> ( 2nd ` T ) = 0 ) | 
						
							| 9 |  | 0nnn |  |-  -. 0 e. NN | 
						
							| 10 |  | elfznn |  |-  ( 0 e. ( 1 ... ( N - 1 ) ) -> 0 e. NN ) | 
						
							| 11 | 9 10 | mto |  |-  -. 0 e. ( 1 ... ( N - 1 ) ) | 
						
							| 12 |  | eleq1 |  |-  ( ( 2nd ` z ) = 0 -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) <-> 0 e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 13 | 11 12 | mtbiri |  |-  ( ( 2nd ` z ) = 0 -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 14 | 13 | necon2ai |  |-  ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` z ) =/= 0 ) | 
						
							| 15 | 1 | ad2antrr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> N e. NN ) | 
						
							| 16 |  | fveq2 |  |-  ( t = z -> ( 2nd ` t ) = ( 2nd ` z ) ) | 
						
							| 17 | 16 | breq2d |  |-  ( t = z -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` z ) ) ) | 
						
							| 18 | 17 | ifbid |  |-  ( t = z -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) ) | 
						
							| 19 | 18 | csbeq1d |  |-  ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 20 |  | 2fveq3 |  |-  ( t = z -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` z ) ) ) | 
						
							| 21 |  | 2fveq3 |  |-  ( t = z -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` z ) ) ) | 
						
							| 22 | 21 | imaeq1d |  |-  ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) ) | 
						
							| 23 | 22 | xpeq1d |  |-  ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 24 | 21 | imaeq1d |  |-  ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 25 | 24 | xpeq1d |  |-  ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 26 | 23 25 | uneq12d |  |-  ( t = z -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 27 | 20 26 | oveq12d |  |-  ( t = z -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 28 | 27 | csbeq2dv |  |-  ( t = z -> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 29 | 19 28 | eqtrd |  |-  ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 30 | 29 | mpteq2dv |  |-  ( t = z -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 31 | 30 | eqeq2d |  |-  ( t = z -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 32 | 31 2 | elrab2 |  |-  ( z e. S <-> ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 33 | 32 | simprbi |  |-  ( z e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 34 | 33 | ad2antlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 35 |  | elrabi |  |-  ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 36 | 35 2 | eleq2s |  |-  ( z e. S -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 37 |  | xp1st |  |-  ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 38 |  | xp1st |  |-  ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 39 |  | elmapi |  |-  ( ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 40 | 36 37 38 39 | 4syl |  |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 41 |  | elfzoelz |  |-  ( n e. ( 0 ..^ K ) -> n e. ZZ ) | 
						
							| 42 | 41 | ssriv |  |-  ( 0 ..^ K ) C_ ZZ | 
						
							| 43 |  | fss |  |-  ( ( ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 44 | 40 42 43 | sylancl |  |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 45 | 44 | ad2antlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 46 | 36 37 | syl |  |-  ( z e. S -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 47 |  | xp2nd |  |-  ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 48 | 46 47 | syl |  |-  ( z e. S -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 49 |  | fvex |  |-  ( 2nd ` ( 1st ` z ) ) e. _V | 
						
							| 50 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` z ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 51 | 49 50 | elab |  |-  ( ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 52 | 48 51 | sylib |  |-  ( z e. S -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 53 | 52 | ad2antlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 54 |  | simpr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 55 | 15 34 45 53 54 | poimirlem1 |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) | 
						
							| 56 | 1 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> N e. NN ) | 
						
							| 57 |  | fveq2 |  |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) | 
						
							| 58 | 57 | breq2d |  |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) | 
						
							| 59 | 58 | ifbid |  |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) | 
						
							| 60 | 59 | csbeq1d |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 61 |  | 2fveq3 |  |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) | 
						
							| 62 |  | 2fveq3 |  |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 63 | 62 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) | 
						
							| 64 | 63 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 65 | 62 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 66 | 65 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 67 | 64 66 | uneq12d |  |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 68 | 61 67 | oveq12d |  |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 69 | 68 | csbeq2dv |  |-  ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 70 | 60 69 | eqtrd |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 71 | 70 | mpteq2dv |  |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 72 | 71 | eqeq2d |  |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 73 | 72 2 | elrab2 |  |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 74 | 73 | simprbi |  |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 75 | 4 74 | syl |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 76 | 75 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 77 |  | elrabi |  |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 78 | 77 2 | eleq2s |  |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 79 | 4 78 | syl |  |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 80 |  | xp1st |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 81 |  | xp1st |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 82 |  | elmapi |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 83 | 79 80 81 82 | 4syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 84 |  | fss |  |-  ( ( ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 85 | 83 42 84 | sylancl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 86 | 85 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 87 |  | xp2nd |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 88 | 4 78 80 87 | 4syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 89 |  | fvex |  |-  ( 2nd ` ( 1st ` T ) ) e. _V | 
						
							| 90 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 91 | 89 90 | elab |  |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 92 | 88 91 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 93 | 92 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 94 |  | simplr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 95 |  | xp2nd |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` T ) e. ( 0 ... N ) ) | 
						
							| 96 | 79 95 | syl |  |-  ( ph -> ( 2nd ` T ) e. ( 0 ... N ) ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) e. ( 0 ... N ) ) | 
						
							| 98 |  | eldifsn |  |-  ( ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) <-> ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) ) | 
						
							| 99 | 98 | biimpri |  |-  ( ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) ) | 
						
							| 100 | 97 99 | sylan |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) ) | 
						
							| 101 | 56 76 86 93 94 100 | poimirlem2 |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) | 
						
							| 102 | 101 | ex |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= ( 2nd ` z ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) ) | 
						
							| 103 | 102 | necon1bd |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) ) | 
						
							| 104 | 103 | adantlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) ) | 
						
							| 105 | 55 104 | mpd |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = ( 2nd ` z ) ) | 
						
							| 106 | 105 | neeq1d |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= 0 <-> ( 2nd ` z ) =/= 0 ) ) | 
						
							| 107 | 106 | exbiri |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( ( 2nd ` z ) =/= 0 -> ( 2nd ` T ) =/= 0 ) ) ) | 
						
							| 108 | 14 107 | mpdi |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) =/= 0 ) ) | 
						
							| 109 | 108 | necon2bd |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` T ) = 0 -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 110 | 8 109 | mpd |  |-  ( ( ph /\ z e. S ) -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 111 |  | xp2nd |  |-  ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` z ) e. ( 0 ... N ) ) | 
						
							| 112 | 36 111 | syl |  |-  ( z e. S -> ( 2nd ` z ) e. ( 0 ... N ) ) | 
						
							| 113 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 114 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 115 | 113 114 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 116 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 117 | 1 116 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 118 | 115 117 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 119 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 120 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 121 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 122 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 123 | 119 120 121 122 | 4syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 124 | 115 123 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 125 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 126 | 118 124 125 | syl2anc |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 127 | 115 | oveq1d |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) | 
						
							| 128 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 129 | 119 128 | syl |  |-  ( ph -> ( N ... N ) = { N } ) | 
						
							| 130 | 127 129 | eqtrd |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) | 
						
							| 131 | 130 | uneq2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 132 | 126 131 | eqtrd |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 133 | 132 | eleq2d |  |-  ( ph -> ( ( 2nd ` z ) e. ( 1 ... N ) <-> ( 2nd ` z ) e. ( ( 1 ... ( N - 1 ) ) u. { N } ) ) ) | 
						
							| 134 | 133 | notbid |  |-  ( ph -> ( -. ( 2nd ` z ) e. ( 1 ... N ) <-> -. ( 2nd ` z ) e. ( ( 1 ... ( N - 1 ) ) u. { N } ) ) ) | 
						
							| 135 |  | ioran |  |-  ( -. ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) \/ ( 2nd ` z ) = N ) <-> ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) ) | 
						
							| 136 |  | elun |  |-  ( ( 2nd ` z ) e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) \/ ( 2nd ` z ) e. { N } ) ) | 
						
							| 137 |  | fvex |  |-  ( 2nd ` z ) e. _V | 
						
							| 138 | 137 | elsn |  |-  ( ( 2nd ` z ) e. { N } <-> ( 2nd ` z ) = N ) | 
						
							| 139 | 138 | orbi2i |  |-  ( ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) \/ ( 2nd ` z ) e. { N } ) <-> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) \/ ( 2nd ` z ) = N ) ) | 
						
							| 140 | 136 139 | bitri |  |-  ( ( 2nd ` z ) e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) \/ ( 2nd ` z ) = N ) ) | 
						
							| 141 | 135 140 | xchnxbir |  |-  ( -. ( 2nd ` z ) e. ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) ) | 
						
							| 142 | 134 141 | bitrdi |  |-  ( ph -> ( -. ( 2nd ` z ) e. ( 1 ... N ) <-> ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) ) ) | 
						
							| 143 | 142 | anbi2d |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 1 ... N ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) ) ) ) | 
						
							| 144 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 145 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 146 | 144 145 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 147 |  | fzpred |  |-  ( N e. ( ZZ>= ` 0 ) -> ( 0 ... N ) = ( { 0 } u. ( ( 0 + 1 ) ... N ) ) ) | 
						
							| 148 | 146 147 | syl |  |-  ( ph -> ( 0 ... N ) = ( { 0 } u. ( ( 0 + 1 ) ... N ) ) ) | 
						
							| 149 | 148 | difeq1d |  |-  ( ph -> ( ( 0 ... N ) \ ( 1 ... N ) ) = ( ( { 0 } u. ( ( 0 + 1 ) ... N ) ) \ ( 1 ... N ) ) ) | 
						
							| 150 |  | difun2 |  |-  ( ( { 0 } u. ( 1 ... N ) ) \ ( 1 ... N ) ) = ( { 0 } \ ( 1 ... N ) ) | 
						
							| 151 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 152 | 151 | oveq1i |  |-  ( ( 0 + 1 ) ... N ) = ( 1 ... N ) | 
						
							| 153 | 152 | uneq2i |  |-  ( { 0 } u. ( ( 0 + 1 ) ... N ) ) = ( { 0 } u. ( 1 ... N ) ) | 
						
							| 154 | 153 | difeq1i |  |-  ( ( { 0 } u. ( ( 0 + 1 ) ... N ) ) \ ( 1 ... N ) ) = ( ( { 0 } u. ( 1 ... N ) ) \ ( 1 ... N ) ) | 
						
							| 155 |  | incom |  |-  ( { 0 } i^i ( 1 ... N ) ) = ( ( 1 ... N ) i^i { 0 } ) | 
						
							| 156 |  | elfznn |  |-  ( 0 e. ( 1 ... N ) -> 0 e. NN ) | 
						
							| 157 | 9 156 | mto |  |-  -. 0 e. ( 1 ... N ) | 
						
							| 158 |  | disjsn |  |-  ( ( ( 1 ... N ) i^i { 0 } ) = (/) <-> -. 0 e. ( 1 ... N ) ) | 
						
							| 159 | 157 158 | mpbir |  |-  ( ( 1 ... N ) i^i { 0 } ) = (/) | 
						
							| 160 | 155 159 | eqtri |  |-  ( { 0 } i^i ( 1 ... N ) ) = (/) | 
						
							| 161 |  | disj3 |  |-  ( ( { 0 } i^i ( 1 ... N ) ) = (/) <-> { 0 } = ( { 0 } \ ( 1 ... N ) ) ) | 
						
							| 162 | 160 161 | mpbi |  |-  { 0 } = ( { 0 } \ ( 1 ... N ) ) | 
						
							| 163 | 150 154 162 | 3eqtr4i |  |-  ( ( { 0 } u. ( ( 0 + 1 ) ... N ) ) \ ( 1 ... N ) ) = { 0 } | 
						
							| 164 | 149 163 | eqtrdi |  |-  ( ph -> ( ( 0 ... N ) \ ( 1 ... N ) ) = { 0 } ) | 
						
							| 165 | 164 | eleq2d |  |-  ( ph -> ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 1 ... N ) ) <-> ( 2nd ` z ) e. { 0 } ) ) | 
						
							| 166 |  | eldif |  |-  ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 1 ... N ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 1 ... N ) ) ) | 
						
							| 167 | 137 | elsn |  |-  ( ( 2nd ` z ) e. { 0 } <-> ( 2nd ` z ) = 0 ) | 
						
							| 168 | 165 166 167 | 3bitr3g |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 1 ... N ) ) <-> ( 2nd ` z ) = 0 ) ) | 
						
							| 169 | 143 168 | bitr3d |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) ) <-> ( 2nd ` z ) = 0 ) ) | 
						
							| 170 | 169 | biimpd |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) ) -> ( 2nd ` z ) = 0 ) ) | 
						
							| 171 | 170 | expdimp |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 0 ... N ) ) -> ( ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) -> ( 2nd ` z ) = 0 ) ) | 
						
							| 172 | 112 171 | sylan2 |  |-  ( ( ph /\ z e. S ) -> ( ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) /\ -. ( 2nd ` z ) = N ) -> ( 2nd ` z ) = 0 ) ) | 
						
							| 173 | 110 172 | mpand |  |-  ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = N -> ( 2nd ` z ) = 0 ) ) | 
						
							| 174 | 1 2 3 | poimirlem13 |  |-  ( ph -> E* z e. S ( 2nd ` z ) = 0 ) | 
						
							| 175 |  | fveqeq2 |  |-  ( z = s -> ( ( 2nd ` z ) = 0 <-> ( 2nd ` s ) = 0 ) ) | 
						
							| 176 | 175 | rmo4 |  |-  ( E* z e. S ( 2nd ` z ) = 0 <-> A. z e. S A. s e. S ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` s ) = 0 ) -> z = s ) ) | 
						
							| 177 | 174 176 | sylib |  |-  ( ph -> A. z e. S A. s e. S ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` s ) = 0 ) -> z = s ) ) | 
						
							| 178 | 177 | r19.21bi |  |-  ( ( ph /\ z e. S ) -> A. s e. S ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` s ) = 0 ) -> z = s ) ) | 
						
							| 179 | 4 | adantr |  |-  ( ( ph /\ z e. S ) -> T e. S ) | 
						
							| 180 |  | fveqeq2 |  |-  ( s = T -> ( ( 2nd ` s ) = 0 <-> ( 2nd ` T ) = 0 ) ) | 
						
							| 181 | 180 | anbi2d |  |-  ( s = T -> ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` s ) = 0 ) <-> ( ( 2nd ` z ) = 0 /\ ( 2nd ` T ) = 0 ) ) ) | 
						
							| 182 |  | eqeq2 |  |-  ( s = T -> ( z = s <-> z = T ) ) | 
						
							| 183 | 181 182 | imbi12d |  |-  ( s = T -> ( ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` s ) = 0 ) -> z = s ) <-> ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` T ) = 0 ) -> z = T ) ) ) | 
						
							| 184 | 183 | rspccv |  |-  ( A. s e. S ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` s ) = 0 ) -> z = s ) -> ( T e. S -> ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` T ) = 0 ) -> z = T ) ) ) | 
						
							| 185 | 178 179 184 | sylc |  |-  ( ( ph /\ z e. S ) -> ( ( ( 2nd ` z ) = 0 /\ ( 2nd ` T ) = 0 ) -> z = T ) ) | 
						
							| 186 | 8 185 | mpan2d |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) = 0 -> z = T ) ) | 
						
							| 187 | 173 186 | syld |  |-  ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = N -> z = T ) ) | 
						
							| 188 | 187 | necon1ad |  |-  ( ( ph /\ z e. S ) -> ( z =/= T -> ( 2nd ` z ) = N ) ) | 
						
							| 189 | 188 | ralrimiva |  |-  ( ph -> A. z e. S ( z =/= T -> ( 2nd ` z ) = N ) ) | 
						
							| 190 | 1 2 3 | poimirlem14 |  |-  ( ph -> E* z e. S ( 2nd ` z ) = N ) | 
						
							| 191 |  | rmoim |  |-  ( A. z e. S ( z =/= T -> ( 2nd ` z ) = N ) -> ( E* z e. S ( 2nd ` z ) = N -> E* z e. S z =/= T ) ) | 
						
							| 192 | 189 190 191 | sylc |  |-  ( ph -> E* z e. S z =/= T ) | 
						
							| 193 |  | reu5 |  |-  ( E! z e. S z =/= T <-> ( E. z e. S z =/= T /\ E* z e. S z =/= T ) ) | 
						
							| 194 | 7 192 193 | sylanbrc |  |-  ( ph -> E! z e. S z =/= T ) |