Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem2.1 |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
3 |
|
poimirlem2.2 |
|- ( ph -> T : ( 1 ... N ) --> ZZ ) |
4 |
|
poimirlem2.3 |
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
5 |
|
poimirlem1.4 |
|- ( ph -> M e. ( 1 ... ( N - 1 ) ) ) |
6 |
|
f1of |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) --> ( 1 ... N ) ) |
7 |
4 6
|
syl |
|- ( ph -> U : ( 1 ... N ) --> ( 1 ... N ) ) |
8 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
9 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
10 |
8 9
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
11 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
12 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
13 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
14 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
15 |
11 12 13 14
|
4syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
16 |
10 15
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
17 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
18 |
16 17
|
syl |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
19 |
18 5
|
sseldd |
|- ( ph -> M e. ( 1 ... N ) ) |
20 |
7 19
|
ffvelrnd |
|- ( ph -> ( U ` M ) e. ( 1 ... N ) ) |
21 |
|
fzp1elp1 |
|- ( M e. ( 1 ... ( N - 1 ) ) -> ( M + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) |
22 |
5 21
|
syl |
|- ( ph -> ( M + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) |
23 |
10
|
oveq2d |
|- ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
24 |
22 23
|
eleqtrd |
|- ( ph -> ( M + 1 ) e. ( 1 ... N ) ) |
25 |
7 24
|
ffvelrnd |
|- ( ph -> ( U ` ( M + 1 ) ) e. ( 1 ... N ) ) |
26 |
|
imassrn |
|- ( U " ( M ... ( M + 1 ) ) ) C_ ran U |
27 |
|
frn |
|- ( U : ( 1 ... N ) --> ( 1 ... N ) -> ran U C_ ( 1 ... N ) ) |
28 |
4 6 27
|
3syl |
|- ( ph -> ran U C_ ( 1 ... N ) ) |
29 |
26 28
|
sstrid |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( 1 ... N ) ) |
30 |
29
|
sselda |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( 1 ... N ) ) |
31 |
3
|
ffvelrnda |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. ZZ ) |
32 |
31
|
zred |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. RR ) |
33 |
32
|
ltp1d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) < ( ( T ` n ) + 1 ) ) |
34 |
32 33
|
ltned |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) =/= ( ( T ` n ) + 1 ) ) |
35 |
30 34
|
syldan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( T ` n ) =/= ( ( T ` n ) + 1 ) ) |
36 |
|
breq1 |
|- ( y = ( M - 1 ) -> ( y < M <-> ( M - 1 ) < M ) ) |
37 |
|
id |
|- ( y = ( M - 1 ) -> y = ( M - 1 ) ) |
38 |
36 37
|
ifbieq1d |
|- ( y = ( M - 1 ) -> if ( y < M , y , ( y + 1 ) ) = if ( ( M - 1 ) < M , ( M - 1 ) , ( y + 1 ) ) ) |
39 |
|
elfzelz |
|- ( M e. ( 1 ... ( N - 1 ) ) -> M e. ZZ ) |
40 |
5 39
|
syl |
|- ( ph -> M e. ZZ ) |
41 |
40
|
zred |
|- ( ph -> M e. RR ) |
42 |
41
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
43 |
42
|
iftrued |
|- ( ph -> if ( ( M - 1 ) < M , ( M - 1 ) , ( y + 1 ) ) = ( M - 1 ) ) |
44 |
38 43
|
sylan9eqr |
|- ( ( ph /\ y = ( M - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = ( M - 1 ) ) |
45 |
44
|
csbeq1d |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
46 |
11 12
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
47 |
|
elfzm1b |
|- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( M e. ( 1 ... ( N - 1 ) ) <-> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) |
48 |
40 46 47
|
syl2anc |
|- ( ph -> ( M e. ( 1 ... ( N - 1 ) ) <-> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) |
49 |
5 48
|
mpbid |
|- ( ph -> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) |
50 |
|
oveq2 |
|- ( j = ( M - 1 ) -> ( 1 ... j ) = ( 1 ... ( M - 1 ) ) ) |
51 |
50
|
imaeq2d |
|- ( j = ( M - 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( M - 1 ) ) ) ) |
52 |
51
|
xpeq1d |
|- ( j = ( M - 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) |
53 |
52
|
adantl |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) |
54 |
|
oveq1 |
|- ( j = ( M - 1 ) -> ( j + 1 ) = ( ( M - 1 ) + 1 ) ) |
55 |
40
|
zcnd |
|- ( ph -> M e. CC ) |
56 |
|
npcan1 |
|- ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) |
57 |
55 56
|
syl |
|- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
58 |
54 57
|
sylan9eqr |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( j + 1 ) = M ) |
59 |
58
|
oveq1d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( j + 1 ) ... N ) = ( M ... N ) ) |
60 |
59
|
imaeq2d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( M ... N ) ) ) |
61 |
60
|
xpeq1d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( M ... N ) ) X. { 0 } ) ) |
62 |
53 61
|
uneq12d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) |
63 |
62
|
oveq2d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
64 |
49 63
|
csbied |
|- ( ph -> [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
65 |
64
|
adantr |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
66 |
45 65
|
eqtrd |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
67 |
46
|
zcnd |
|- ( ph -> ( N - 1 ) e. CC ) |
68 |
|
npcan1 |
|- ( ( N - 1 ) e. CC -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) |
69 |
67 68
|
syl |
|- ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) |
70 |
|
peano2zm |
|- ( ( N - 1 ) e. ZZ -> ( ( N - 1 ) - 1 ) e. ZZ ) |
71 |
|
uzid |
|- ( ( ( N - 1 ) - 1 ) e. ZZ -> ( ( N - 1 ) - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
72 |
|
peano2uz |
|- ( ( ( N - 1 ) - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) -> ( ( ( N - 1 ) - 1 ) + 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
73 |
46 70 71 72
|
4syl |
|- ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
74 |
69 73
|
eqeltrrd |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
75 |
|
fzss2 |
|- ( ( N - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) -> ( 0 ... ( ( N - 1 ) - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
76 |
74 75
|
syl |
|- ( ph -> ( 0 ... ( ( N - 1 ) - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
77 |
76 49
|
sseldd |
|- ( ph -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
78 |
|
ovexd |
|- ( ph -> ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) e. _V ) |
79 |
2 66 77 78
|
fvmptd |
|- ( ph -> ( F ` ( M - 1 ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
80 |
79
|
fveq1d |
|- ( ph -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) |
81 |
80
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) |
82 |
3
|
ffnd |
|- ( ph -> T Fn ( 1 ... N ) ) |
83 |
82
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> T Fn ( 1 ... N ) ) |
84 |
|
1ex |
|- 1 e. _V |
85 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) ) |
86 |
84 85
|
ax-mp |
|- ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) |
87 |
|
c0ex |
|- 0 e. _V |
88 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) |
89 |
87 88
|
ax-mp |
|- ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) |
90 |
86 89
|
pm3.2i |
|- ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) |
91 |
|
dff1o3 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) |
92 |
91
|
simprbi |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) |
93 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) ) |
94 |
4 92 93
|
3syl |
|- ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) ) |
95 |
|
fzdisj |
|- ( ( M - 1 ) < M -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) |
96 |
42 95
|
syl |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) |
97 |
96
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( U " (/) ) ) |
98 |
|
ima0 |
|- ( U " (/) ) = (/) |
99 |
97 98
|
eqtrdi |
|- ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = (/) ) |
100 |
94 99
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) |
101 |
|
fnun |
|- ( ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) /\ ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) |
102 |
90 100 101
|
sylancr |
|- ( ph -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) |
103 |
|
elfzuz |
|- ( M e. ( 1 ... ( N - 1 ) ) -> M e. ( ZZ>= ` 1 ) ) |
104 |
5 103
|
syl |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
105 |
57 104
|
eqeltrd |
|- ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
106 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
107 |
|
uzid |
|- ( ( M - 1 ) e. ZZ -> ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
108 |
|
peano2uz |
|- ( ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
109 |
40 106 107 108
|
4syl |
|- ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
110 |
57 109
|
eqeltrrd |
|- ( ph -> M e. ( ZZ>= ` ( M - 1 ) ) ) |
111 |
|
peano2uz |
|- ( M e. ( ZZ>= ` ( M - 1 ) ) -> ( M + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
112 |
|
uzss |
|- ( ( M + 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ZZ>= ` ( M + 1 ) ) C_ ( ZZ>= ` ( M - 1 ) ) ) |
113 |
110 111 112
|
3syl |
|- ( ph -> ( ZZ>= ` ( M + 1 ) ) C_ ( ZZ>= ` ( M - 1 ) ) ) |
114 |
|
elfzuz3 |
|- ( M e. ( 1 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
115 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
116 |
5 114 115
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
117 |
10 116
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
118 |
113 117
|
sseldd |
|- ( ph -> N e. ( ZZ>= ` ( M - 1 ) ) ) |
119 |
|
fzsplit2 |
|- ( ( ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( M - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) |
120 |
105 118 119
|
syl2anc |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) |
121 |
57
|
oveq1d |
|- ( ph -> ( ( ( M - 1 ) + 1 ) ... N ) = ( M ... N ) ) |
122 |
121
|
uneq2d |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) |
123 |
120 122
|
eqtrd |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) |
124 |
123
|
imaeq2d |
|- ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) ) |
125 |
|
imaundi |
|- ( U " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) |
126 |
124 125
|
eqtrdi |
|- ( ph -> ( U " ( 1 ... N ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) |
127 |
|
f1ofo |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
128 |
|
foima |
|- ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
129 |
4 127 128
|
3syl |
|- ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
130 |
126 129
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) = ( 1 ... N ) ) |
131 |
130
|
fneq2d |
|- ( ph -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) <-> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) |
132 |
102 131
|
mpbid |
|- ( ph -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
133 |
132
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
134 |
|
ovexd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( 1 ... N ) e. _V ) |
135 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
136 |
|
eqidd |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( T ` n ) = ( T ` n ) ) |
137 |
100
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) |
138 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( M ... ( M + 1 ) ) C_ ( M ... N ) ) |
139 |
|
imass2 |
|- ( ( M ... ( M + 1 ) ) C_ ( M ... N ) -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( M ... N ) ) ) |
140 |
117 138 139
|
3syl |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( M ... N ) ) ) |
141 |
140
|
sselda |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( U " ( M ... N ) ) ) |
142 |
|
fvun2 |
|- ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) /\ ( ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) /\ n e. ( U " ( M ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) |
143 |
86 89 142
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) /\ n e. ( U " ( M ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) |
144 |
137 141 143
|
syl2anc |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) |
145 |
87
|
fvconst2 |
|- ( n e. ( U " ( M ... N ) ) -> ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) = 0 ) |
146 |
141 145
|
syl |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) = 0 ) |
147 |
144 146
|
eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = 0 ) |
148 |
147
|
adantr |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = 0 ) |
149 |
83 133 134 134 135 136 148
|
ofval |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) ) |
150 |
30 149
|
mpdan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) ) |
151 |
31
|
zcnd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. CC ) |
152 |
151
|
addid1d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( T ` n ) + 0 ) = ( T ` n ) ) |
153 |
30 152
|
syldan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T ` n ) + 0 ) = ( T ` n ) ) |
154 |
81 150 153
|
3eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( T ` n ) ) |
155 |
|
breq1 |
|- ( y = M -> ( y < M <-> M < M ) ) |
156 |
|
oveq1 |
|- ( y = M -> ( y + 1 ) = ( M + 1 ) ) |
157 |
155 156
|
ifbieq2d |
|- ( y = M -> if ( y < M , y , ( y + 1 ) ) = if ( M < M , y , ( M + 1 ) ) ) |
158 |
41
|
ltnrd |
|- ( ph -> -. M < M ) |
159 |
158
|
iffalsed |
|- ( ph -> if ( M < M , y , ( M + 1 ) ) = ( M + 1 ) ) |
160 |
157 159
|
sylan9eqr |
|- ( ( ph /\ y = M ) -> if ( y < M , y , ( y + 1 ) ) = ( M + 1 ) ) |
161 |
160
|
csbeq1d |
|- ( ( ph /\ y = M ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
162 |
|
ovex |
|- ( M + 1 ) e. _V |
163 |
|
oveq2 |
|- ( j = ( M + 1 ) -> ( 1 ... j ) = ( 1 ... ( M + 1 ) ) ) |
164 |
163
|
imaeq2d |
|- ( j = ( M + 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( M + 1 ) ) ) ) |
165 |
164
|
xpeq1d |
|- ( j = ( M + 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ) |
166 |
|
oveq1 |
|- ( j = ( M + 1 ) -> ( j + 1 ) = ( ( M + 1 ) + 1 ) ) |
167 |
166
|
oveq1d |
|- ( j = ( M + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( M + 1 ) + 1 ) ... N ) ) |
168 |
167
|
imaeq2d |
|- ( j = ( M + 1 ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
169 |
168
|
xpeq1d |
|- ( j = ( M + 1 ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
170 |
165 169
|
uneq12d |
|- ( j = ( M + 1 ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
171 |
170
|
oveq2d |
|- ( j = ( M + 1 ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
172 |
162 171
|
csbie |
|- [_ ( M + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
173 |
161 172
|
eqtrdi |
|- ( ( ph /\ y = M ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
174 |
|
fz1ssfz0 |
|- ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) |
175 |
174 5
|
sselid |
|- ( ph -> M e. ( 0 ... ( N - 1 ) ) ) |
176 |
|
ovexd |
|- ( ph -> ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V ) |
177 |
2 173 175 176
|
fvmptd |
|- ( ph -> ( F ` M ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
178 |
177
|
fveq1d |
|- ( ph -> ( ( F ` M ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
179 |
178
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` M ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
180 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) ) |
181 |
84 180
|
ax-mp |
|- ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) |
182 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
183 |
87 182
|
ax-mp |
|- ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) |
184 |
181 183
|
pm3.2i |
|- ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
185 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
186 |
4 92 185
|
3syl |
|- ( ph -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
187 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
188 |
41 187
|
syl |
|- ( ph -> ( M + 1 ) e. RR ) |
189 |
188
|
ltp1d |
|- ( ph -> ( M + 1 ) < ( ( M + 1 ) + 1 ) ) |
190 |
|
fzdisj |
|- ( ( M + 1 ) < ( ( M + 1 ) + 1 ) -> ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) = (/) ) |
191 |
189 190
|
syl |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) = (/) ) |
192 |
191
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) |
193 |
186 192
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) |
194 |
193 98
|
eqtrdi |
|- ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) |
195 |
|
fnun |
|- ( ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) /\ ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
196 |
184 194 195
|
sylancr |
|- ( ph -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
197 |
|
fzsplit |
|- ( ( M + 1 ) e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
198 |
24 197
|
syl |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
199 |
198
|
imaeq2d |
|- ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
200 |
|
imaundi |
|- ( U " ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
201 |
199 200
|
eqtrdi |
|- ( ph -> ( U " ( 1 ... N ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
202 |
201 129
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
203 |
202
|
fneq2d |
|- ( ph -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) |
204 |
196 203
|
mpbid |
|- ( ph -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
205 |
204
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
206 |
194
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) |
207 |
|
fzss1 |
|- ( M e. ( ZZ>= ` 1 ) -> ( M ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) ) |
208 |
|
imass2 |
|- ( ( M ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( 1 ... ( M + 1 ) ) ) ) |
209 |
104 207 208
|
3syl |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( 1 ... ( M + 1 ) ) ) ) |
210 |
209
|
sselda |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( U " ( 1 ... ( M + 1 ) ) ) ) |
211 |
|
fvun1 |
|- ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( M + 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) |
212 |
181 183 211
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) |
213 |
206 210 212
|
syl2anc |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) |
214 |
84
|
fvconst2 |
|- ( n e. ( U " ( 1 ... ( M + 1 ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) = 1 ) |
215 |
210 214
|
syl |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) = 1 ) |
216 |
213 215
|
eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 ) |
217 |
216
|
adantr |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 ) |
218 |
83 205 134 134 135 136 217
|
ofval |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) ) |
219 |
30 218
|
mpdan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) ) |
220 |
179 219
|
eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` M ) ` n ) = ( ( T ` n ) + 1 ) ) |
221 |
35 154 220
|
3netr4d |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
222 |
221
|
ralrimiva |
|- ( ph -> A. n e. ( U " ( M ... ( M + 1 ) ) ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
223 |
|
fzpr |
|- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
224 |
5 39 223
|
3syl |
|- ( ph -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
225 |
224
|
imaeq2d |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) = ( U " { M , ( M + 1 ) } ) ) |
226 |
|
f1ofn |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U Fn ( 1 ... N ) ) |
227 |
4 226
|
syl |
|- ( ph -> U Fn ( 1 ... N ) ) |
228 |
|
fnimapr |
|- ( ( U Fn ( 1 ... N ) /\ M e. ( 1 ... N ) /\ ( M + 1 ) e. ( 1 ... N ) ) -> ( U " { M , ( M + 1 ) } ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) |
229 |
227 19 24 228
|
syl3anc |
|- ( ph -> ( U " { M , ( M + 1 ) } ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) |
230 |
225 229
|
eqtrd |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) |
231 |
230
|
raleqdv |
|- ( ph -> ( A. n e. ( U " ( M ... ( M + 1 ) ) ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> A. n e. { ( U ` M ) , ( U ` ( M + 1 ) ) } ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) ) |
232 |
222 231
|
mpbid |
|- ( ph -> A. n e. { ( U ` M ) , ( U ` ( M + 1 ) ) } ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
233 |
|
fvex |
|- ( U ` M ) e. _V |
234 |
|
fvex |
|- ( U ` ( M + 1 ) ) e. _V |
235 |
|
fveq2 |
|- ( n = ( U ` M ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) ) |
236 |
|
fveq2 |
|- ( n = ( U ` M ) -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` ( U ` M ) ) ) |
237 |
235 236
|
neeq12d |
|- ( n = ( U ` M ) -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) ) ) |
238 |
|
fveq2 |
|- ( n = ( U ` ( M + 1 ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) ) |
239 |
|
fveq2 |
|- ( n = ( U ` ( M + 1 ) ) -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) |
240 |
238 239
|
neeq12d |
|- ( n = ( U ` ( M + 1 ) ) -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
241 |
233 234 237 240
|
ralpr |
|- ( A. n e. { ( U ` M ) , ( U ` ( M + 1 ) ) } ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
242 |
232 241
|
sylib |
|- ( ph -> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
243 |
41
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
244 |
41 243
|
ltned |
|- ( ph -> M =/= ( M + 1 ) ) |
245 |
|
f1of1 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -1-1-> ( 1 ... N ) ) |
246 |
4 245
|
syl |
|- ( ph -> U : ( 1 ... N ) -1-1-> ( 1 ... N ) ) |
247 |
|
f1veqaeq |
|- ( ( U : ( 1 ... N ) -1-1-> ( 1 ... N ) /\ ( M e. ( 1 ... N ) /\ ( M + 1 ) e. ( 1 ... N ) ) ) -> ( ( U ` M ) = ( U ` ( M + 1 ) ) -> M = ( M + 1 ) ) ) |
248 |
246 19 24 247
|
syl12anc |
|- ( ph -> ( ( U ` M ) = ( U ` ( M + 1 ) ) -> M = ( M + 1 ) ) ) |
249 |
248
|
necon3d |
|- ( ph -> ( M =/= ( M + 1 ) -> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) |
250 |
244 249
|
mpd |
|- ( ph -> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) |
251 |
237
|
anbi1d |
|- ( n = ( U ` M ) -> ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) ) ) |
252 |
|
neeq1 |
|- ( n = ( U ` M ) -> ( n =/= m <-> ( U ` M ) =/= m ) ) |
253 |
251 252
|
anbi12d |
|- ( n = ( U ` M ) -> ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ ( U ` M ) =/= m ) ) ) |
254 |
|
fveq2 |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( F ` ( M - 1 ) ) ` m ) = ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) ) |
255 |
|
fveq2 |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( F ` M ) ` m ) = ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) |
256 |
254 255
|
neeq12d |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
257 |
256
|
anbi2d |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) ) |
258 |
|
neeq2 |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( U ` M ) =/= m <-> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) |
259 |
257 258
|
anbi12d |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ ( U ` M ) =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) /\ ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) ) |
260 |
253 259
|
rspc2ev |
|- ( ( ( U ` M ) e. ( 1 ... N ) /\ ( U ` ( M + 1 ) ) e. ( 1 ... N ) /\ ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) /\ ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) -> E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
261 |
20 25 242 250 260
|
syl112anc |
|- ( ph -> E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
262 |
|
dfrex2 |
|- ( E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
263 |
|
fveq2 |
|- ( n = m -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` m ) ) |
264 |
|
fveq2 |
|- ( n = m -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` m ) ) |
265 |
263 264
|
neeq12d |
|- ( n = m -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) ) |
266 |
265
|
rmo4 |
|- ( E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> A. n e. ( 1 ... N ) A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
267 |
|
dfral2 |
|- ( A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> -. E. m e. ( 1 ... N ) -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
268 |
|
df-ne |
|- ( n =/= m <-> -. n = m ) |
269 |
268
|
anbi2i |
|- ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ -. n = m ) ) |
270 |
|
annim |
|- ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ -. n = m ) <-> -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
271 |
269 270
|
bitri |
|- ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
272 |
271
|
rexbii |
|- ( E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> E. m e. ( 1 ... N ) -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
273 |
267 272
|
xchbinxr |
|- ( A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
274 |
273
|
ralbii |
|- ( A. n e. ( 1 ... N ) A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
275 |
266 274
|
bitri |
|- ( E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
276 |
262 275
|
xchbinxr |
|- ( E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
277 |
261 276
|
sylib |
|- ( ph -> -. E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |