| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem2.1 |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 3 |  | poimirlem2.2 |  |-  ( ph -> T : ( 1 ... N ) --> ZZ ) | 
						
							| 4 |  | poimirlem2.3 |  |-  ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 5 |  | poimirlem1.4 |  |-  ( ph -> M e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 6 |  | f1of |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ph -> U : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 8 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 9 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 11 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 12 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 13 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 14 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 15 | 11 12 13 14 | 4syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 16 | 10 15 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 17 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 19 | 18 5 | sseldd |  |-  ( ph -> M e. ( 1 ... N ) ) | 
						
							| 20 | 7 19 | ffvelcdmd |  |-  ( ph -> ( U ` M ) e. ( 1 ... N ) ) | 
						
							| 21 |  | fzp1elp1 |  |-  ( M e. ( 1 ... ( N - 1 ) ) -> ( M + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 22 | 5 21 | syl |  |-  ( ph -> ( M + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 23 | 10 | oveq2d |  |-  ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) | 
						
							| 24 | 22 23 | eleqtrd |  |-  ( ph -> ( M + 1 ) e. ( 1 ... N ) ) | 
						
							| 25 | 7 24 | ffvelcdmd |  |-  ( ph -> ( U ` ( M + 1 ) ) e. ( 1 ... N ) ) | 
						
							| 26 |  | imassrn |  |-  ( U " ( M ... ( M + 1 ) ) ) C_ ran U | 
						
							| 27 |  | frn |  |-  ( U : ( 1 ... N ) --> ( 1 ... N ) -> ran U C_ ( 1 ... N ) ) | 
						
							| 28 | 4 6 27 | 3syl |  |-  ( ph -> ran U C_ ( 1 ... N ) ) | 
						
							| 29 | 26 28 | sstrid |  |-  ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( 1 ... N ) ) | 
						
							| 30 | 29 | sselda |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( 1 ... N ) ) | 
						
							| 31 | 3 | ffvelcdmda |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. ZZ ) | 
						
							| 32 | 31 | zred |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. RR ) | 
						
							| 33 | 32 | ltp1d |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) < ( ( T ` n ) + 1 ) ) | 
						
							| 34 | 32 33 | ltned |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) =/= ( ( T ` n ) + 1 ) ) | 
						
							| 35 | 30 34 | syldan |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( T ` n ) =/= ( ( T ` n ) + 1 ) ) | 
						
							| 36 |  | breq1 |  |-  ( y = ( M - 1 ) -> ( y < M <-> ( M - 1 ) < M ) ) | 
						
							| 37 |  | id |  |-  ( y = ( M - 1 ) -> y = ( M - 1 ) ) | 
						
							| 38 | 36 37 | ifbieq1d |  |-  ( y = ( M - 1 ) -> if ( y < M , y , ( y + 1 ) ) = if ( ( M - 1 ) < M , ( M - 1 ) , ( y + 1 ) ) ) | 
						
							| 39 |  | elfzelz |  |-  ( M e. ( 1 ... ( N - 1 ) ) -> M e. ZZ ) | 
						
							| 40 | 5 39 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 41 | 40 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 42 | 41 | ltm1d |  |-  ( ph -> ( M - 1 ) < M ) | 
						
							| 43 | 42 | iftrued |  |-  ( ph -> if ( ( M - 1 ) < M , ( M - 1 ) , ( y + 1 ) ) = ( M - 1 ) ) | 
						
							| 44 | 38 43 | sylan9eqr |  |-  ( ( ph /\ y = ( M - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = ( M - 1 ) ) | 
						
							| 45 | 44 | csbeq1d |  |-  ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 46 | 11 12 | syl |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 47 |  | elfzm1b |  |-  ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( M e. ( 1 ... ( N - 1 ) ) <-> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) | 
						
							| 48 | 40 46 47 | syl2anc |  |-  ( ph -> ( M e. ( 1 ... ( N - 1 ) ) <-> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) | 
						
							| 49 | 5 48 | mpbid |  |-  ( ph -> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) | 
						
							| 50 |  | oveq2 |  |-  ( j = ( M - 1 ) -> ( 1 ... j ) = ( 1 ... ( M - 1 ) ) ) | 
						
							| 51 | 50 | imaeq2d |  |-  ( j = ( M - 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( M - 1 ) ) ) ) | 
						
							| 52 | 51 | xpeq1d |  |-  ( j = ( M - 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) | 
						
							| 54 |  | oveq1 |  |-  ( j = ( M - 1 ) -> ( j + 1 ) = ( ( M - 1 ) + 1 ) ) | 
						
							| 55 | 40 | zcnd |  |-  ( ph -> M e. CC ) | 
						
							| 56 |  | npcan1 |  |-  ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 57 | 55 56 | syl |  |-  ( ph -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 58 | 54 57 | sylan9eqr |  |-  ( ( ph /\ j = ( M - 1 ) ) -> ( j + 1 ) = M ) | 
						
							| 59 | 58 | oveq1d |  |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( j + 1 ) ... N ) = ( M ... N ) ) | 
						
							| 60 | 59 | imaeq2d |  |-  ( ( ph /\ j = ( M - 1 ) ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( M ... N ) ) ) | 
						
							| 61 | 60 | xpeq1d |  |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( M ... N ) ) X. { 0 } ) ) | 
						
							| 62 | 53 61 | uneq12d |  |-  ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( ( ph /\ j = ( M - 1 ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 64 | 49 63 | csbied |  |-  ( ph -> [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ y = ( M - 1 ) ) -> [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 66 | 45 65 | eqtrd |  |-  ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 67 | 46 | zcnd |  |-  ( ph -> ( N - 1 ) e. CC ) | 
						
							| 68 |  | npcan1 |  |-  ( ( N - 1 ) e. CC -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) | 
						
							| 70 |  | peano2zm |  |-  ( ( N - 1 ) e. ZZ -> ( ( N - 1 ) - 1 ) e. ZZ ) | 
						
							| 71 |  | uzid |  |-  ( ( ( N - 1 ) - 1 ) e. ZZ -> ( ( N - 1 ) - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) | 
						
							| 72 |  | peano2uz |  |-  ( ( ( N - 1 ) - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) -> ( ( ( N - 1 ) - 1 ) + 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) | 
						
							| 73 | 46 70 71 72 | 4syl |  |-  ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) | 
						
							| 74 | 69 73 | eqeltrrd |  |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) | 
						
							| 75 |  | fzss2 |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) -> ( 0 ... ( ( N - 1 ) - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( ph -> ( 0 ... ( ( N - 1 ) - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) | 
						
							| 77 | 76 49 | sseldd |  |-  ( ph -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 78 |  | ovexd |  |-  ( ph -> ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) e. _V ) | 
						
							| 79 | 2 66 77 78 | fvmptd |  |-  ( ph -> ( F ` ( M - 1 ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 80 | 79 | fveq1d |  |-  ( ph -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) | 
						
							| 82 | 3 | ffnd |  |-  ( ph -> T Fn ( 1 ... N ) ) | 
						
							| 83 | 82 | adantr |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> T Fn ( 1 ... N ) ) | 
						
							| 84 |  | 1ex |  |-  1 e. _V | 
						
							| 85 |  | fnconstg |  |-  ( 1 e. _V -> ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) ) | 
						
							| 86 | 84 85 | ax-mp |  |-  ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) | 
						
							| 87 |  | c0ex |  |-  0 e. _V | 
						
							| 88 |  | fnconstg |  |-  ( 0 e. _V -> ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) | 
						
							| 89 | 87 88 | ax-mp |  |-  ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) | 
						
							| 90 | 86 89 | pm3.2i |  |-  ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) | 
						
							| 91 |  | dff1o3 |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) | 
						
							| 92 | 91 | simprbi |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) | 
						
							| 93 |  | imain |  |-  ( Fun `' U -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) ) | 
						
							| 94 | 4 92 93 | 3syl |  |-  ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) ) | 
						
							| 95 |  | fzdisj |  |-  ( ( M - 1 ) < M -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) | 
						
							| 96 | 42 95 | syl |  |-  ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) | 
						
							| 97 | 96 | imaeq2d |  |-  ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( U " (/) ) ) | 
						
							| 98 |  | ima0 |  |-  ( U " (/) ) = (/) | 
						
							| 99 | 97 98 | eqtrdi |  |-  ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = (/) ) | 
						
							| 100 | 94 99 | eqtr3d |  |-  ( ph -> ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) | 
						
							| 101 |  | fnun |  |-  ( ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) /\ ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) | 
						
							| 102 | 90 100 101 | sylancr |  |-  ( ph -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) | 
						
							| 103 |  | elfzuz |  |-  ( M e. ( 1 ... ( N - 1 ) ) -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 104 | 5 103 | syl |  |-  ( ph -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 105 | 57 104 | eqeltrd |  |-  ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 106 |  | peano2zm |  |-  ( M e. ZZ -> ( M - 1 ) e. ZZ ) | 
						
							| 107 |  | uzid |  |-  ( ( M - 1 ) e. ZZ -> ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 108 |  | peano2uz |  |-  ( ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 109 | 40 106 107 108 | 4syl |  |-  ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 110 | 57 109 | eqeltrrd |  |-  ( ph -> M e. ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 111 |  | peano2uz |  |-  ( M e. ( ZZ>= ` ( M - 1 ) ) -> ( M + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 112 |  | uzss |  |-  ( ( M + 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ZZ>= ` ( M + 1 ) ) C_ ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 113 | 110 111 112 | 3syl |  |-  ( ph -> ( ZZ>= ` ( M + 1 ) ) C_ ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 114 |  | elfzuz3 |  |-  ( M e. ( 1 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 115 |  | eluzp1p1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 116 | 5 114 115 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 117 | 10 116 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 118 | 113 117 | sseldd |  |-  ( ph -> N e. ( ZZ>= ` ( M - 1 ) ) ) | 
						
							| 119 |  | fzsplit2 |  |-  ( ( ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( M - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) | 
						
							| 120 | 105 118 119 | syl2anc |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) | 
						
							| 121 | 57 | oveq1d |  |-  ( ph -> ( ( ( M - 1 ) + 1 ) ... N ) = ( M ... N ) ) | 
						
							| 122 | 121 | uneq2d |  |-  ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) | 
						
							| 123 | 120 122 | eqtrd |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) | 
						
							| 124 | 123 | imaeq2d |  |-  ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) ) | 
						
							| 125 |  | imaundi |  |-  ( U " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) | 
						
							| 126 | 124 125 | eqtrdi |  |-  ( ph -> ( U " ( 1 ... N ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) | 
						
							| 127 |  | f1ofo |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 128 |  | foima |  |-  ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 129 | 4 127 128 | 3syl |  |-  ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 130 | 126 129 | eqtr3d |  |-  ( ph -> ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 131 | 130 | fneq2d |  |-  ( ph -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) <-> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) | 
						
							| 132 | 102 131 | mpbid |  |-  ( ph -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 134 |  | ovexd |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( 1 ... N ) e. _V ) | 
						
							| 135 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 136 |  | eqidd |  |-  ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( T ` n ) = ( T ` n ) ) | 
						
							| 137 | 100 | adantr |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) | 
						
							| 138 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( M ... ( M + 1 ) ) C_ ( M ... N ) ) | 
						
							| 139 |  | imass2 |  |-  ( ( M ... ( M + 1 ) ) C_ ( M ... N ) -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( M ... N ) ) ) | 
						
							| 140 | 117 138 139 | 3syl |  |-  ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( M ... N ) ) ) | 
						
							| 141 | 140 | sselda |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( U " ( M ... N ) ) ) | 
						
							| 142 |  | fvun2 |  |-  ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) /\ ( ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) /\ n e. ( U " ( M ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) | 
						
							| 143 | 86 89 142 | mp3an12 |  |-  ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) /\ n e. ( U " ( M ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) | 
						
							| 144 | 137 141 143 | syl2anc |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) | 
						
							| 145 | 87 | fvconst2 |  |-  ( n e. ( U " ( M ... N ) ) -> ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) = 0 ) | 
						
							| 146 | 141 145 | syl |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) = 0 ) | 
						
							| 147 | 144 146 | eqtrd |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = 0 ) | 
						
							| 148 | 147 | adantr |  |-  ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = 0 ) | 
						
							| 149 | 83 133 134 134 135 136 148 | ofval |  |-  ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) ) | 
						
							| 150 | 30 149 | mpdan |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) ) | 
						
							| 151 | 31 | zcnd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. CC ) | 
						
							| 152 | 151 | addridd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( T ` n ) + 0 ) = ( T ` n ) ) | 
						
							| 153 | 30 152 | syldan |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T ` n ) + 0 ) = ( T ` n ) ) | 
						
							| 154 | 81 150 153 | 3eqtrd |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( T ` n ) ) | 
						
							| 155 |  | breq1 |  |-  ( y = M -> ( y < M <-> M < M ) ) | 
						
							| 156 |  | oveq1 |  |-  ( y = M -> ( y + 1 ) = ( M + 1 ) ) | 
						
							| 157 | 155 156 | ifbieq2d |  |-  ( y = M -> if ( y < M , y , ( y + 1 ) ) = if ( M < M , y , ( M + 1 ) ) ) | 
						
							| 158 | 41 | ltnrd |  |-  ( ph -> -. M < M ) | 
						
							| 159 | 158 | iffalsed |  |-  ( ph -> if ( M < M , y , ( M + 1 ) ) = ( M + 1 ) ) | 
						
							| 160 | 157 159 | sylan9eqr |  |-  ( ( ph /\ y = M ) -> if ( y < M , y , ( y + 1 ) ) = ( M + 1 ) ) | 
						
							| 161 | 160 | csbeq1d |  |-  ( ( ph /\ y = M ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 162 |  | ovex |  |-  ( M + 1 ) e. _V | 
						
							| 163 |  | oveq2 |  |-  ( j = ( M + 1 ) -> ( 1 ... j ) = ( 1 ... ( M + 1 ) ) ) | 
						
							| 164 | 163 | imaeq2d |  |-  ( j = ( M + 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( M + 1 ) ) ) ) | 
						
							| 165 | 164 | xpeq1d |  |-  ( j = ( M + 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ) | 
						
							| 166 |  | oveq1 |  |-  ( j = ( M + 1 ) -> ( j + 1 ) = ( ( M + 1 ) + 1 ) ) | 
						
							| 167 | 166 | oveq1d |  |-  ( j = ( M + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( M + 1 ) + 1 ) ... N ) ) | 
						
							| 168 | 167 | imaeq2d |  |-  ( j = ( M + 1 ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) | 
						
							| 169 | 168 | xpeq1d |  |-  ( j = ( M + 1 ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 170 | 165 169 | uneq12d |  |-  ( j = ( M + 1 ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 171 | 170 | oveq2d |  |-  ( j = ( M + 1 ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 172 | 162 171 | csbie |  |-  [_ ( M + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 173 | 161 172 | eqtrdi |  |-  ( ( ph /\ y = M ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 174 |  | fz1ssfz0 |  |-  ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) | 
						
							| 175 | 174 5 | sselid |  |-  ( ph -> M e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 176 |  | ovexd |  |-  ( ph -> ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V ) | 
						
							| 177 | 2 173 175 176 | fvmptd |  |-  ( ph -> ( F ` M ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 178 | 177 | fveq1d |  |-  ( ph -> ( ( F ` M ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) | 
						
							| 179 | 178 | adantr |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` M ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) | 
						
							| 180 |  | fnconstg |  |-  ( 1 e. _V -> ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) ) | 
						
							| 181 | 84 180 | ax-mp |  |-  ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) | 
						
							| 182 |  | fnconstg |  |-  ( 0 e. _V -> ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) | 
						
							| 183 | 87 182 | ax-mp |  |-  ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) | 
						
							| 184 | 181 183 | pm3.2i |  |-  ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) | 
						
							| 185 |  | imain |  |-  ( Fun `' U -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 186 | 4 92 185 | 3syl |  |-  ( ph -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 187 |  | peano2re |  |-  ( M e. RR -> ( M + 1 ) e. RR ) | 
						
							| 188 | 41 187 | syl |  |-  ( ph -> ( M + 1 ) e. RR ) | 
						
							| 189 | 188 | ltp1d |  |-  ( ph -> ( M + 1 ) < ( ( M + 1 ) + 1 ) ) | 
						
							| 190 |  | fzdisj |  |-  ( ( M + 1 ) < ( ( M + 1 ) + 1 ) -> ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 191 | 189 190 | syl |  |-  ( ph -> ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 192 | 191 | imaeq2d |  |-  ( ph -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) | 
						
							| 193 | 186 192 | eqtr3d |  |-  ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) | 
						
							| 194 | 193 98 | eqtrdi |  |-  ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 195 |  | fnun |  |-  ( ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) /\ ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 196 | 184 194 195 | sylancr |  |-  ( ph -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 197 |  | fzsplit |  |-  ( ( M + 1 ) e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) | 
						
							| 198 | 24 197 | syl |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) | 
						
							| 199 | 198 | imaeq2d |  |-  ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 200 |  | imaundi |  |-  ( U " ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) | 
						
							| 201 | 199 200 | eqtrdi |  |-  ( ph -> ( U " ( 1 ... N ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 202 | 201 129 | eqtr3d |  |-  ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 203 | 202 | fneq2d |  |-  ( ph -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) | 
						
							| 204 | 196 203 | mpbid |  |-  ( ph -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 205 | 204 | adantr |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 206 | 194 | adantr |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 207 |  | fzss1 |  |-  ( M e. ( ZZ>= ` 1 ) -> ( M ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) ) | 
						
							| 208 |  | imass2 |  |-  ( ( M ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( 1 ... ( M + 1 ) ) ) ) | 
						
							| 209 | 104 207 208 | 3syl |  |-  ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( 1 ... ( M + 1 ) ) ) ) | 
						
							| 210 | 209 | sselda |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( U " ( 1 ... ( M + 1 ) ) ) ) | 
						
							| 211 |  | fvun1 |  |-  ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( M + 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) | 
						
							| 212 | 181 183 211 | mp3an12 |  |-  ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) | 
						
							| 213 | 206 210 212 | syl2anc |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) | 
						
							| 214 | 84 | fvconst2 |  |-  ( n e. ( U " ( 1 ... ( M + 1 ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) = 1 ) | 
						
							| 215 | 210 214 | syl |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) = 1 ) | 
						
							| 216 | 213 215 | eqtrd |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 ) | 
						
							| 217 | 216 | adantr |  |-  ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 ) | 
						
							| 218 | 83 205 134 134 135 136 217 | ofval |  |-  ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) ) | 
						
							| 219 | 30 218 | mpdan |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) ) | 
						
							| 220 | 179 219 | eqtrd |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` M ) ` n ) = ( ( T ` n ) + 1 ) ) | 
						
							| 221 | 35 154 220 | 3netr4d |  |-  ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) | 
						
							| 222 | 221 | ralrimiva |  |-  ( ph -> A. n e. ( U " ( M ... ( M + 1 ) ) ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) | 
						
							| 223 |  | fzpr |  |-  ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) | 
						
							| 224 | 5 39 223 | 3syl |  |-  ( ph -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) | 
						
							| 225 | 224 | imaeq2d |  |-  ( ph -> ( U " ( M ... ( M + 1 ) ) ) = ( U " { M , ( M + 1 ) } ) ) | 
						
							| 226 |  | f1ofn |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U Fn ( 1 ... N ) ) | 
						
							| 227 | 4 226 | syl |  |-  ( ph -> U Fn ( 1 ... N ) ) | 
						
							| 228 |  | fnimapr |  |-  ( ( U Fn ( 1 ... N ) /\ M e. ( 1 ... N ) /\ ( M + 1 ) e. ( 1 ... N ) ) -> ( U " { M , ( M + 1 ) } ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) | 
						
							| 229 | 227 19 24 228 | syl3anc |  |-  ( ph -> ( U " { M , ( M + 1 ) } ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) | 
						
							| 230 | 225 229 | eqtrd |  |-  ( ph -> ( U " ( M ... ( M + 1 ) ) ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) | 
						
							| 231 | 222 230 | raleqtrdv |  |-  ( ph -> A. n e. { ( U ` M ) , ( U ` ( M + 1 ) ) } ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) | 
						
							| 232 |  | fvex |  |-  ( U ` M ) e. _V | 
						
							| 233 |  | fvex |  |-  ( U ` ( M + 1 ) ) e. _V | 
						
							| 234 |  | fveq2 |  |-  ( n = ( U ` M ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) ) | 
						
							| 235 |  | fveq2 |  |-  ( n = ( U ` M ) -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` ( U ` M ) ) ) | 
						
							| 236 | 234 235 | neeq12d |  |-  ( n = ( U ` M ) -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) ) ) | 
						
							| 237 |  | fveq2 |  |-  ( n = ( U ` ( M + 1 ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) ) | 
						
							| 238 |  | fveq2 |  |-  ( n = ( U ` ( M + 1 ) ) -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) | 
						
							| 239 | 237 238 | neeq12d |  |-  ( n = ( U ` ( M + 1 ) ) -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) | 
						
							| 240 | 232 233 236 239 | ralpr |  |-  ( A. n e. { ( U ` M ) , ( U ` ( M + 1 ) ) } ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) | 
						
							| 241 | 231 240 | sylib |  |-  ( ph -> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) | 
						
							| 242 | 41 | ltp1d |  |-  ( ph -> M < ( M + 1 ) ) | 
						
							| 243 | 41 242 | ltned |  |-  ( ph -> M =/= ( M + 1 ) ) | 
						
							| 244 |  | f1of1 |  |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 245 | 4 244 | syl |  |-  ( ph -> U : ( 1 ... N ) -1-1-> ( 1 ... N ) ) | 
						
							| 246 |  | f1veqaeq |  |-  ( ( U : ( 1 ... N ) -1-1-> ( 1 ... N ) /\ ( M e. ( 1 ... N ) /\ ( M + 1 ) e. ( 1 ... N ) ) ) -> ( ( U ` M ) = ( U ` ( M + 1 ) ) -> M = ( M + 1 ) ) ) | 
						
							| 247 | 245 19 24 246 | syl12anc |  |-  ( ph -> ( ( U ` M ) = ( U ` ( M + 1 ) ) -> M = ( M + 1 ) ) ) | 
						
							| 248 | 247 | necon3d |  |-  ( ph -> ( M =/= ( M + 1 ) -> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) | 
						
							| 249 | 243 248 | mpd |  |-  ( ph -> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) | 
						
							| 250 | 236 | anbi1d |  |-  ( n = ( U ` M ) -> ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) ) ) | 
						
							| 251 |  | neeq1 |  |-  ( n = ( U ` M ) -> ( n =/= m <-> ( U ` M ) =/= m ) ) | 
						
							| 252 | 250 251 | anbi12d |  |-  ( n = ( U ` M ) -> ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ ( U ` M ) =/= m ) ) ) | 
						
							| 253 |  | fveq2 |  |-  ( m = ( U ` ( M + 1 ) ) -> ( ( F ` ( M - 1 ) ) ` m ) = ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) ) | 
						
							| 254 |  | fveq2 |  |-  ( m = ( U ` ( M + 1 ) ) -> ( ( F ` M ) ` m ) = ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) | 
						
							| 255 | 253 254 | neeq12d |  |-  ( m = ( U ` ( M + 1 ) ) -> ( ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) | 
						
							| 256 | 255 | anbi2d |  |-  ( m = ( U ` ( M + 1 ) ) -> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) ) | 
						
							| 257 |  | neeq2 |  |-  ( m = ( U ` ( M + 1 ) ) -> ( ( U ` M ) =/= m <-> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) | 
						
							| 258 | 256 257 | anbi12d |  |-  ( m = ( U ` ( M + 1 ) ) -> ( ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ ( U ` M ) =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) /\ ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) ) | 
						
							| 259 | 252 258 | rspc2ev |  |-  ( ( ( U ` M ) e. ( 1 ... N ) /\ ( U ` ( M + 1 ) ) e. ( 1 ... N ) /\ ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) /\ ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) -> E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) | 
						
							| 260 | 20 25 241 249 259 | syl112anc |  |-  ( ph -> E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) | 
						
							| 261 |  | dfrex2 |  |-  ( E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) | 
						
							| 262 |  | fveq2 |  |-  ( n = m -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` m ) ) | 
						
							| 263 |  | fveq2 |  |-  ( n = m -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` m ) ) | 
						
							| 264 | 262 263 | neeq12d |  |-  ( n = m -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) ) | 
						
							| 265 | 264 | rmo4 |  |-  ( E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> A. n e. ( 1 ... N ) A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) | 
						
							| 266 |  | dfral2 |  |-  ( A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> -. E. m e. ( 1 ... N ) -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) | 
						
							| 267 |  | df-ne |  |-  ( n =/= m <-> -. n = m ) | 
						
							| 268 | 267 | anbi2i |  |-  ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ -. n = m ) ) | 
						
							| 269 |  | annim |  |-  ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ -. n = m ) <-> -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) | 
						
							| 270 | 268 269 | bitri |  |-  ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) | 
						
							| 271 | 270 | rexbii |  |-  ( E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> E. m e. ( 1 ... N ) -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) | 
						
							| 272 | 266 271 | xchbinxr |  |-  ( A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) | 
						
							| 273 | 272 | ralbii |  |-  ( A. n e. ( 1 ... N ) A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) | 
						
							| 274 | 265 273 | bitri |  |-  ( E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) | 
						
							| 275 | 261 274 | xchbinxr |  |-  ( E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) | 
						
							| 276 | 260 275 | sylib |  |-  ( ph -> -. E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |