| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem2.1 |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 3 |
|
poimirlem2.2 |
|- ( ph -> T : ( 1 ... N ) --> ZZ ) |
| 4 |
|
poimirlem2.3 |
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 5 |
|
poimirlem1.4 |
|- ( ph -> M e. ( 1 ... ( N - 1 ) ) ) |
| 6 |
|
f1of |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) --> ( 1 ... N ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> U : ( 1 ... N ) --> ( 1 ... N ) ) |
| 8 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 9 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 11 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 12 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 13 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 14 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 15 |
11 12 13 14
|
4syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 16 |
10 15
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 17 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) |
| 19 |
18 5
|
sseldd |
|- ( ph -> M e. ( 1 ... N ) ) |
| 20 |
7 19
|
ffvelcdmd |
|- ( ph -> ( U ` M ) e. ( 1 ... N ) ) |
| 21 |
|
fzp1elp1 |
|- ( M e. ( 1 ... ( N - 1 ) ) -> ( M + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) |
| 22 |
5 21
|
syl |
|- ( ph -> ( M + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) ) |
| 23 |
10
|
oveq2d |
|- ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) ) |
| 24 |
22 23
|
eleqtrd |
|- ( ph -> ( M + 1 ) e. ( 1 ... N ) ) |
| 25 |
7 24
|
ffvelcdmd |
|- ( ph -> ( U ` ( M + 1 ) ) e. ( 1 ... N ) ) |
| 26 |
|
imassrn |
|- ( U " ( M ... ( M + 1 ) ) ) C_ ran U |
| 27 |
|
frn |
|- ( U : ( 1 ... N ) --> ( 1 ... N ) -> ran U C_ ( 1 ... N ) ) |
| 28 |
4 6 27
|
3syl |
|- ( ph -> ran U C_ ( 1 ... N ) ) |
| 29 |
26 28
|
sstrid |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( 1 ... N ) ) |
| 30 |
29
|
sselda |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( 1 ... N ) ) |
| 31 |
3
|
ffvelcdmda |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. ZZ ) |
| 32 |
31
|
zred |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. RR ) |
| 33 |
32
|
ltp1d |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) < ( ( T ` n ) + 1 ) ) |
| 34 |
32 33
|
ltned |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) =/= ( ( T ` n ) + 1 ) ) |
| 35 |
30 34
|
syldan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( T ` n ) =/= ( ( T ` n ) + 1 ) ) |
| 36 |
|
breq1 |
|- ( y = ( M - 1 ) -> ( y < M <-> ( M - 1 ) < M ) ) |
| 37 |
|
id |
|- ( y = ( M - 1 ) -> y = ( M - 1 ) ) |
| 38 |
36 37
|
ifbieq1d |
|- ( y = ( M - 1 ) -> if ( y < M , y , ( y + 1 ) ) = if ( ( M - 1 ) < M , ( M - 1 ) , ( y + 1 ) ) ) |
| 39 |
|
elfzelz |
|- ( M e. ( 1 ... ( N - 1 ) ) -> M e. ZZ ) |
| 40 |
5 39
|
syl |
|- ( ph -> M e. ZZ ) |
| 41 |
40
|
zred |
|- ( ph -> M e. RR ) |
| 42 |
41
|
ltm1d |
|- ( ph -> ( M - 1 ) < M ) |
| 43 |
42
|
iftrued |
|- ( ph -> if ( ( M - 1 ) < M , ( M - 1 ) , ( y + 1 ) ) = ( M - 1 ) ) |
| 44 |
38 43
|
sylan9eqr |
|- ( ( ph /\ y = ( M - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = ( M - 1 ) ) |
| 45 |
44
|
csbeq1d |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 46 |
11 12
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 47 |
|
elfzm1b |
|- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( M e. ( 1 ... ( N - 1 ) ) <-> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) |
| 48 |
40 46 47
|
syl2anc |
|- ( ph -> ( M e. ( 1 ... ( N - 1 ) ) <-> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) ) |
| 49 |
5 48
|
mpbid |
|- ( ph -> ( M - 1 ) e. ( 0 ... ( ( N - 1 ) - 1 ) ) ) |
| 50 |
|
oveq2 |
|- ( j = ( M - 1 ) -> ( 1 ... j ) = ( 1 ... ( M - 1 ) ) ) |
| 51 |
50
|
imaeq2d |
|- ( j = ( M - 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( M - 1 ) ) ) ) |
| 52 |
51
|
xpeq1d |
|- ( j = ( M - 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) |
| 53 |
52
|
adantl |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) ) |
| 54 |
|
oveq1 |
|- ( j = ( M - 1 ) -> ( j + 1 ) = ( ( M - 1 ) + 1 ) ) |
| 55 |
40
|
zcnd |
|- ( ph -> M e. CC ) |
| 56 |
|
npcan1 |
|- ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) |
| 57 |
55 56
|
syl |
|- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
| 58 |
54 57
|
sylan9eqr |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( j + 1 ) = M ) |
| 59 |
58
|
oveq1d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( j + 1 ) ... N ) = ( M ... N ) ) |
| 60 |
59
|
imaeq2d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( M ... N ) ) ) |
| 61 |
60
|
xpeq1d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( M ... N ) ) X. { 0 } ) ) |
| 62 |
53 61
|
uneq12d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) |
| 63 |
62
|
oveq2d |
|- ( ( ph /\ j = ( M - 1 ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 64 |
49 63
|
csbied |
|- ( ph -> [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ ( M - 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 66 |
45 65
|
eqtrd |
|- ( ( ph /\ y = ( M - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 67 |
46
|
zcnd |
|- ( ph -> ( N - 1 ) e. CC ) |
| 68 |
|
npcan1 |
|- ( ( N - 1 ) e. CC -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) |
| 69 |
67 68
|
syl |
|- ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) = ( N - 1 ) ) |
| 70 |
|
peano2zm |
|- ( ( N - 1 ) e. ZZ -> ( ( N - 1 ) - 1 ) e. ZZ ) |
| 71 |
|
uzid |
|- ( ( ( N - 1 ) - 1 ) e. ZZ -> ( ( N - 1 ) - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
| 72 |
|
peano2uz |
|- ( ( ( N - 1 ) - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) -> ( ( ( N - 1 ) - 1 ) + 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
| 73 |
46 70 71 72
|
4syl |
|- ( ph -> ( ( ( N - 1 ) - 1 ) + 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
| 74 |
69 73
|
eqeltrrd |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) ) |
| 75 |
|
fzss2 |
|- ( ( N - 1 ) e. ( ZZ>= ` ( ( N - 1 ) - 1 ) ) -> ( 0 ... ( ( N - 1 ) - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
| 76 |
74 75
|
syl |
|- ( ph -> ( 0 ... ( ( N - 1 ) - 1 ) ) C_ ( 0 ... ( N - 1 ) ) ) |
| 77 |
76 49
|
sseldd |
|- ( ph -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 78 |
|
ovexd |
|- ( ph -> ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) e. _V ) |
| 79 |
2 66 77 78
|
fvmptd |
|- ( ph -> ( F ` ( M - 1 ) ) = ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ) |
| 80 |
79
|
fveq1d |
|- ( ph -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 81 |
80
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 82 |
3
|
ffnd |
|- ( ph -> T Fn ( 1 ... N ) ) |
| 83 |
82
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> T Fn ( 1 ... N ) ) |
| 84 |
|
1ex |
|- 1 e. _V |
| 85 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) ) |
| 86 |
84 85
|
ax-mp |
|- ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) |
| 87 |
|
c0ex |
|- 0 e. _V |
| 88 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) |
| 89 |
87 88
|
ax-mp |
|- ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) |
| 90 |
86 89
|
pm3.2i |
|- ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) |
| 91 |
|
dff1o3 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) ) |
| 92 |
91
|
simprbi |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U ) |
| 93 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) ) |
| 94 |
4 92 93
|
3syl |
|- ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) ) |
| 95 |
|
fzdisj |
|- ( ( M - 1 ) < M -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) |
| 96 |
42 95
|
syl |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) = (/) ) |
| 97 |
96
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = ( U " (/) ) ) |
| 98 |
|
ima0 |
|- ( U " (/) ) = (/) |
| 99 |
97 98
|
eqtrdi |
|- ( ph -> ( U " ( ( 1 ... ( M - 1 ) ) i^i ( M ... N ) ) ) = (/) ) |
| 100 |
94 99
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) |
| 101 |
|
fnun |
|- ( ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) ) /\ ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) |
| 102 |
90 100 101
|
sylancr |
|- ( ph -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) |
| 103 |
|
elfzuz |
|- ( M e. ( 1 ... ( N - 1 ) ) -> M e. ( ZZ>= ` 1 ) ) |
| 104 |
5 103
|
syl |
|- ( ph -> M e. ( ZZ>= ` 1 ) ) |
| 105 |
57 104
|
eqeltrd |
|- ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 106 |
|
peano2zm |
|- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
| 107 |
|
uzid |
|- ( ( M - 1 ) e. ZZ -> ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 108 |
|
peano2uz |
|- ( ( M - 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 109 |
40 106 107 108
|
4syl |
|- ( ph -> ( ( M - 1 ) + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 110 |
57 109
|
eqeltrrd |
|- ( ph -> M e. ( ZZ>= ` ( M - 1 ) ) ) |
| 111 |
|
peano2uz |
|- ( M e. ( ZZ>= ` ( M - 1 ) ) -> ( M + 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 112 |
|
uzss |
|- ( ( M + 1 ) e. ( ZZ>= ` ( M - 1 ) ) -> ( ZZ>= ` ( M + 1 ) ) C_ ( ZZ>= ` ( M - 1 ) ) ) |
| 113 |
110 111 112
|
3syl |
|- ( ph -> ( ZZ>= ` ( M + 1 ) ) C_ ( ZZ>= ` ( M - 1 ) ) ) |
| 114 |
|
elfzuz3 |
|- ( M e. ( 1 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` M ) ) |
| 115 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` M ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 116 |
5 114 115
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 117 |
10 116
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
| 118 |
113 117
|
sseldd |
|- ( ph -> N e. ( ZZ>= ` ( M - 1 ) ) ) |
| 119 |
|
fzsplit2 |
|- ( ( ( ( M - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( M - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) |
| 120 |
105 118 119
|
syl2anc |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) ) |
| 121 |
57
|
oveq1d |
|- ( ph -> ( ( ( M - 1 ) + 1 ) ... N ) = ( M ... N ) ) |
| 122 |
121
|
uneq2d |
|- ( ph -> ( ( 1 ... ( M - 1 ) ) u. ( ( ( M - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) |
| 123 |
120 122
|
eqtrd |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) |
| 124 |
123
|
imaeq2d |
|- ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) ) |
| 125 |
|
imaundi |
|- ( U " ( ( 1 ... ( M - 1 ) ) u. ( M ... N ) ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) |
| 126 |
124 125
|
eqtrdi |
|- ( ph -> ( U " ( 1 ... N ) ) = ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) ) |
| 127 |
|
f1ofo |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 128 |
|
foima |
|- ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 129 |
4 127 128
|
3syl |
|- ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 130 |
126 129
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) = ( 1 ... N ) ) |
| 131 |
130
|
fneq2d |
|- ( ph -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M - 1 ) ) ) u. ( U " ( M ... N ) ) ) <-> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) |
| 132 |
102 131
|
mpbid |
|- ( ph -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 133 |
132
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 134 |
|
ovexd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( 1 ... N ) e. _V ) |
| 135 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 136 |
|
eqidd |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( T ` n ) = ( T ` n ) ) |
| 137 |
100
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) ) |
| 138 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( M + 1 ) ) -> ( M ... ( M + 1 ) ) C_ ( M ... N ) ) |
| 139 |
|
imass2 |
|- ( ( M ... ( M + 1 ) ) C_ ( M ... N ) -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( M ... N ) ) ) |
| 140 |
117 138 139
|
3syl |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( M ... N ) ) ) |
| 141 |
140
|
sselda |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( U " ( M ... N ) ) ) |
| 142 |
|
fvun2 |
|- ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M - 1 ) ) ) /\ ( ( U " ( M ... N ) ) X. { 0 } ) Fn ( U " ( M ... N ) ) /\ ( ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) /\ n e. ( U " ( M ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) |
| 143 |
86 89 142
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) i^i ( U " ( M ... N ) ) ) = (/) /\ n e. ( U " ( M ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) |
| 144 |
137 141 143
|
syl2anc |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) ) |
| 145 |
87
|
fvconst2 |
|- ( n e. ( U " ( M ... N ) ) -> ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) = 0 ) |
| 146 |
141 145
|
syl |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( M ... N ) ) X. { 0 } ) ` n ) = 0 ) |
| 147 |
144 146
|
eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = 0 ) |
| 148 |
147
|
adantr |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ` n ) = 0 ) |
| 149 |
83 133 134 134 135 136 148
|
ofval |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) ) |
| 150 |
30 149
|
mpdan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M - 1 ) ) ) X. { 1 } ) u. ( ( U " ( M ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) ) |
| 151 |
31
|
zcnd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( T ` n ) e. CC ) |
| 152 |
151
|
addridd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( T ` n ) + 0 ) = ( T ` n ) ) |
| 153 |
30 152
|
syldan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T ` n ) + 0 ) = ( T ` n ) ) |
| 154 |
81 150 153
|
3eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( T ` n ) ) |
| 155 |
|
breq1 |
|- ( y = M -> ( y < M <-> M < M ) ) |
| 156 |
|
oveq1 |
|- ( y = M -> ( y + 1 ) = ( M + 1 ) ) |
| 157 |
155 156
|
ifbieq2d |
|- ( y = M -> if ( y < M , y , ( y + 1 ) ) = if ( M < M , y , ( M + 1 ) ) ) |
| 158 |
41
|
ltnrd |
|- ( ph -> -. M < M ) |
| 159 |
158
|
iffalsed |
|- ( ph -> if ( M < M , y , ( M + 1 ) ) = ( M + 1 ) ) |
| 160 |
157 159
|
sylan9eqr |
|- ( ( ph /\ y = M ) -> if ( y < M , y , ( y + 1 ) ) = ( M + 1 ) ) |
| 161 |
160
|
csbeq1d |
|- ( ( ph /\ y = M ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( M + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 162 |
|
ovex |
|- ( M + 1 ) e. _V |
| 163 |
|
oveq2 |
|- ( j = ( M + 1 ) -> ( 1 ... j ) = ( 1 ... ( M + 1 ) ) ) |
| 164 |
163
|
imaeq2d |
|- ( j = ( M + 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( M + 1 ) ) ) ) |
| 165 |
164
|
xpeq1d |
|- ( j = ( M + 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ) |
| 166 |
|
oveq1 |
|- ( j = ( M + 1 ) -> ( j + 1 ) = ( ( M + 1 ) + 1 ) ) |
| 167 |
166
|
oveq1d |
|- ( j = ( M + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( M + 1 ) + 1 ) ... N ) ) |
| 168 |
167
|
imaeq2d |
|- ( j = ( M + 1 ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 169 |
168
|
xpeq1d |
|- ( j = ( M + 1 ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
| 170 |
165 169
|
uneq12d |
|- ( j = ( M + 1 ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 171 |
170
|
oveq2d |
|- ( j = ( M + 1 ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 172 |
162 171
|
csbie |
|- [_ ( M + 1 ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 173 |
161 172
|
eqtrdi |
|- ( ( ph /\ y = M ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 174 |
|
fz1ssfz0 |
|- ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) ) |
| 175 |
174 5
|
sselid |
|- ( ph -> M e. ( 0 ... ( N - 1 ) ) ) |
| 176 |
|
ovexd |
|- ( ph -> ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V ) |
| 177 |
2 173 175 176
|
fvmptd |
|- ( ph -> ( F ` M ) = ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 178 |
177
|
fveq1d |
|- ( ph -> ( ( F ` M ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 179 |
178
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` M ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) ) |
| 180 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) ) |
| 181 |
84 180
|
ax-mp |
|- ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) |
| 182 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 183 |
87 182
|
ax-mp |
|- ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) |
| 184 |
181 183
|
pm3.2i |
|- ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 185 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
| 186 |
4 92 185
|
3syl |
|- ( ph -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
| 187 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
| 188 |
41 187
|
syl |
|- ( ph -> ( M + 1 ) e. RR ) |
| 189 |
188
|
ltp1d |
|- ( ph -> ( M + 1 ) < ( ( M + 1 ) + 1 ) ) |
| 190 |
|
fzdisj |
|- ( ( M + 1 ) < ( ( M + 1 ) + 1 ) -> ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) = (/) ) |
| 191 |
189 190
|
syl |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) = (/) ) |
| 192 |
191
|
imaeq2d |
|- ( ph -> ( U " ( ( 1 ... ( M + 1 ) ) i^i ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) |
| 193 |
186 192
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) ) |
| 194 |
193 98
|
eqtrdi |
|- ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 195 |
|
fnun |
|- ( ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) /\ ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
| 196 |
184 194 195
|
sylancr |
|- ( ph -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
| 197 |
|
fzsplit |
|- ( ( M + 1 ) e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 198 |
24 197
|
syl |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 199 |
198
|
imaeq2d |
|- ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
| 200 |
|
imaundi |
|- ( U " ( ( 1 ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 201 |
199 200
|
eqtrdi |
|- ( ph -> ( U " ( 1 ... N ) ) = ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) ) |
| 202 |
201 129
|
eqtr3d |
|- ( ph -> ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 203 |
202
|
fneq2d |
|- ( ph -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( M + 1 ) ) ) u. ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) |
| 204 |
196 203
|
mpbid |
|- ( ph -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 205 |
204
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 206 |
194
|
adantr |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 207 |
|
fzss1 |
|- ( M e. ( ZZ>= ` 1 ) -> ( M ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) ) |
| 208 |
|
imass2 |
|- ( ( M ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( 1 ... ( M + 1 ) ) ) ) |
| 209 |
104 207 208
|
3syl |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) C_ ( U " ( 1 ... ( M + 1 ) ) ) ) |
| 210 |
209
|
sselda |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> n e. ( U " ( 1 ... ( M + 1 ) ) ) ) |
| 211 |
|
fvun1 |
|- ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( M + 1 ) ) ) /\ ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( M + 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) |
| 212 |
181 183 211
|
mp3an12 |
|- ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) i^i ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) |
| 213 |
206 210 212
|
syl2anc |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) ) |
| 214 |
84
|
fvconst2 |
|- ( n e. ( U " ( 1 ... ( M + 1 ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) = 1 ) |
| 215 |
210 214
|
syl |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) ` n ) = 1 ) |
| 216 |
213 215
|
eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 ) |
| 217 |
216
|
adantr |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 ) |
| 218 |
83 205 134 134 135 136 217
|
ofval |
|- ( ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) ) |
| 219 |
30 218
|
mpdan |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( M + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) ) |
| 220 |
179 219
|
eqtrd |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` M ) ` n ) = ( ( T ` n ) + 1 ) ) |
| 221 |
35 154 220
|
3netr4d |
|- ( ( ph /\ n e. ( U " ( M ... ( M + 1 ) ) ) ) -> ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
| 222 |
221
|
ralrimiva |
|- ( ph -> A. n e. ( U " ( M ... ( M + 1 ) ) ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
| 223 |
|
fzpr |
|- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
| 224 |
5 39 223
|
3syl |
|- ( ph -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
| 225 |
224
|
imaeq2d |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) = ( U " { M , ( M + 1 ) } ) ) |
| 226 |
|
f1ofn |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U Fn ( 1 ... N ) ) |
| 227 |
4 226
|
syl |
|- ( ph -> U Fn ( 1 ... N ) ) |
| 228 |
|
fnimapr |
|- ( ( U Fn ( 1 ... N ) /\ M e. ( 1 ... N ) /\ ( M + 1 ) e. ( 1 ... N ) ) -> ( U " { M , ( M + 1 ) } ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) |
| 229 |
227 19 24 228
|
syl3anc |
|- ( ph -> ( U " { M , ( M + 1 ) } ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) |
| 230 |
225 229
|
eqtrd |
|- ( ph -> ( U " ( M ... ( M + 1 ) ) ) = { ( U ` M ) , ( U ` ( M + 1 ) ) } ) |
| 231 |
222 230
|
raleqtrdv |
|- ( ph -> A. n e. { ( U ` M ) , ( U ` ( M + 1 ) ) } ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
| 232 |
|
fvex |
|- ( U ` M ) e. _V |
| 233 |
|
fvex |
|- ( U ` ( M + 1 ) ) e. _V |
| 234 |
|
fveq2 |
|- ( n = ( U ` M ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) ) |
| 235 |
|
fveq2 |
|- ( n = ( U ` M ) -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` ( U ` M ) ) ) |
| 236 |
234 235
|
neeq12d |
|- ( n = ( U ` M ) -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) ) ) |
| 237 |
|
fveq2 |
|- ( n = ( U ` ( M + 1 ) ) -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) ) |
| 238 |
|
fveq2 |
|- ( n = ( U ` ( M + 1 ) ) -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) |
| 239 |
237 238
|
neeq12d |
|- ( n = ( U ` ( M + 1 ) ) -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
| 240 |
232 233 236 239
|
ralpr |
|- ( A. n e. { ( U ` M ) , ( U ` ( M + 1 ) ) } ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
| 241 |
231 240
|
sylib |
|- ( ph -> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
| 242 |
41
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
| 243 |
41 242
|
ltned |
|- ( ph -> M =/= ( M + 1 ) ) |
| 244 |
|
f1of1 |
|- ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -1-1-> ( 1 ... N ) ) |
| 245 |
4 244
|
syl |
|- ( ph -> U : ( 1 ... N ) -1-1-> ( 1 ... N ) ) |
| 246 |
|
f1veqaeq |
|- ( ( U : ( 1 ... N ) -1-1-> ( 1 ... N ) /\ ( M e. ( 1 ... N ) /\ ( M + 1 ) e. ( 1 ... N ) ) ) -> ( ( U ` M ) = ( U ` ( M + 1 ) ) -> M = ( M + 1 ) ) ) |
| 247 |
245 19 24 246
|
syl12anc |
|- ( ph -> ( ( U ` M ) = ( U ` ( M + 1 ) ) -> M = ( M + 1 ) ) ) |
| 248 |
247
|
necon3d |
|- ( ph -> ( M =/= ( M + 1 ) -> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) |
| 249 |
243 248
|
mpd |
|- ( ph -> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) |
| 250 |
236
|
anbi1d |
|- ( n = ( U ` M ) -> ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) ) ) |
| 251 |
|
neeq1 |
|- ( n = ( U ` M ) -> ( n =/= m <-> ( U ` M ) =/= m ) ) |
| 252 |
250 251
|
anbi12d |
|- ( n = ( U ` M ) -> ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ ( U ` M ) =/= m ) ) ) |
| 253 |
|
fveq2 |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( F ` ( M - 1 ) ) ` m ) = ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) ) |
| 254 |
|
fveq2 |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( F ` M ) ` m ) = ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) |
| 255 |
253 254
|
neeq12d |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) <-> ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) |
| 256 |
255
|
anbi2d |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) <-> ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) ) ) |
| 257 |
|
neeq2 |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( U ` M ) =/= m <-> ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) |
| 258 |
256 257
|
anbi12d |
|- ( m = ( U ` ( M + 1 ) ) -> ( ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ ( U ` M ) =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) /\ ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) ) |
| 259 |
252 258
|
rspc2ev |
|- ( ( ( U ` M ) e. ( 1 ... N ) /\ ( U ` ( M + 1 ) ) e. ( 1 ... N ) /\ ( ( ( ( F ` ( M - 1 ) ) ` ( U ` M ) ) =/= ( ( F ` M ) ` ( U ` M ) ) /\ ( ( F ` ( M - 1 ) ) ` ( U ` ( M + 1 ) ) ) =/= ( ( F ` M ) ` ( U ` ( M + 1 ) ) ) ) /\ ( U ` M ) =/= ( U ` ( M + 1 ) ) ) ) -> E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
| 260 |
20 25 241 249 259
|
syl112anc |
|- ( ph -> E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
| 261 |
|
dfrex2 |
|- ( E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
| 262 |
|
fveq2 |
|- ( n = m -> ( ( F ` ( M - 1 ) ) ` n ) = ( ( F ` ( M - 1 ) ) ` m ) ) |
| 263 |
|
fveq2 |
|- ( n = m -> ( ( F ` M ) ` n ) = ( ( F ` M ) ` m ) ) |
| 264 |
262 263
|
neeq12d |
|- ( n = m -> ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) ) |
| 265 |
264
|
rmo4 |
|- ( E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> A. n e. ( 1 ... N ) A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
| 266 |
|
dfral2 |
|- ( A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> -. E. m e. ( 1 ... N ) -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
| 267 |
|
df-ne |
|- ( n =/= m <-> -. n = m ) |
| 268 |
267
|
anbi2i |
|- ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ -. n = m ) ) |
| 269 |
|
annim |
|- ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ -. n = m ) <-> -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
| 270 |
268 269
|
bitri |
|- ( ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
| 271 |
270
|
rexbii |
|- ( E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> E. m e. ( 1 ... N ) -. ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) ) |
| 272 |
266 271
|
xchbinxr |
|- ( A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
| 273 |
272
|
ralbii |
|- ( A. n e. ( 1 ... N ) A. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) -> n = m ) <-> A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
| 274 |
265 273
|
bitri |
|- ( E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) <-> A. n e. ( 1 ... N ) -. E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) ) |
| 275 |
261 274
|
xchbinxr |
|- ( E. n e. ( 1 ... N ) E. m e. ( 1 ... N ) ( ( ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) /\ ( ( F ` ( M - 1 ) ) ` m ) =/= ( ( F ` M ) ` m ) ) /\ n =/= m ) <-> -. E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |
| 276 |
260 275
|
sylib |
|- ( ph -> -. E* n e. ( 1 ... N ) ( ( F ` ( M - 1 ) ) ` n ) =/= ( ( F ` M ) ` n ) ) |