Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem2.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
3 |
|
poimirlem2.2 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ℤ ) |
4 |
|
poimirlem2.3 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
5 |
|
poimirlem1.4 |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
6 |
|
f1of |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
8 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
9 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
11 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
12 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
13 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
14 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
15 |
11 12 13 14
|
4syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
16 |
10 15
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
17 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
19 |
18 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
20 |
7 19
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) |
21 |
|
fzp1elp1 |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
22 |
5 21
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
23 |
10
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
24 |
22 23
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
25 |
7 24
|
ffvelrnd |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 𝑀 + 1 ) ) ∈ ( 1 ... 𝑁 ) ) |
26 |
|
imassrn |
⊢ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ran 𝑈 |
27 |
|
frn |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) → ran 𝑈 ⊆ ( 1 ... 𝑁 ) ) |
28 |
4 6 27
|
3syl |
⊢ ( 𝜑 → ran 𝑈 ⊆ ( 1 ... 𝑁 ) ) |
29 |
26 28
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 1 ... 𝑁 ) ) |
30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
31 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ∈ ℤ ) |
32 |
31
|
zred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ∈ ℝ ) |
33 |
32
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) < ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
34 |
32 33
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ≠ ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
35 |
30 34
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( 𝑇 ‘ 𝑛 ) ≠ ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
36 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( 𝑦 < 𝑀 ↔ ( 𝑀 − 1 ) < 𝑀 ) ) |
37 |
|
id |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → 𝑦 = ( 𝑀 − 1 ) ) |
38 |
36 37
|
ifbieq1d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑀 − 1 ) < 𝑀 , ( 𝑀 − 1 ) , ( 𝑦 + 1 ) ) ) |
39 |
|
elfzelz |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑀 ∈ ℤ ) |
40 |
5 39
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
41 |
40
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
42 |
41
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
43 |
42
|
iftrued |
⊢ ( 𝜑 → if ( ( 𝑀 − 1 ) < 𝑀 , ( 𝑀 − 1 ) , ( 𝑦 + 1 ) ) = ( 𝑀 − 1 ) ) |
44 |
38 43
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑀 − 1 ) ) |
45 |
44
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
46 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
47 |
|
elfzm1b |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) ) |
48 |
40 46 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) ) |
49 |
5 48
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) |
50 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
51 |
50
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ) |
52 |
51
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ) |
54 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 𝑗 + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) |
55 |
40
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
56 |
|
npcan1 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
57 |
55 56
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
58 |
54 57
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( 𝑗 + 1 ) = 𝑀 ) |
59 |
58
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( 𝑀 ... 𝑁 ) ) |
60 |
59
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
61 |
60
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) |
62 |
53 61
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) |
63 |
62
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
64 |
49 63
|
csbied |
⊢ ( 𝜑 → ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
66 |
45 65
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
67 |
46
|
zcnd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℂ ) |
68 |
|
npcan1 |
⊢ ( ( 𝑁 − 1 ) ∈ ℂ → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) = ( 𝑁 − 1 ) ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) = ( 𝑁 − 1 ) ) |
70 |
|
peano2zm |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( ( 𝑁 − 1 ) − 1 ) ∈ ℤ ) |
71 |
|
uzid |
⊢ ( ( ( 𝑁 − 1 ) − 1 ) ∈ ℤ → ( ( 𝑁 − 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
72 |
|
peano2uz |
⊢ ( ( ( 𝑁 − 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
73 |
46 70 71 72
|
4syl |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
74 |
69 73
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
75 |
|
fzss2 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) → ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
76 |
74 75
|
syl |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
77 |
76 49
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
78 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
79 |
2 66 77 78
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 − 1 ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
80 |
79
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
82 |
3
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ( 1 ... 𝑁 ) ) |
83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
84 |
|
1ex |
⊢ 1 ∈ V |
85 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ) |
86 |
84 85
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) |
87 |
|
c0ex |
⊢ 0 ∈ V |
88 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
89 |
87 88
|
ax-mp |
⊢ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) |
90 |
86 89
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
91 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑈 ) ) |
92 |
91
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑈 ) |
93 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
94 |
4 92 93
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
95 |
|
fzdisj |
⊢ ( ( 𝑀 − 1 ) < 𝑀 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
96 |
42 95
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
97 |
96
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
98 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
99 |
97 98
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
100 |
94 99
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
101 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
102 |
90 100 101
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
103 |
|
elfzuz |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
104 |
5 103
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
105 |
57 104
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
106 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
107 |
|
uzid |
⊢ ( ( 𝑀 − 1 ) ∈ ℤ → ( 𝑀 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
108 |
|
peano2uz |
⊢ ( ( 𝑀 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
109 |
40 106 107 108
|
4syl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
110 |
57 109
|
eqeltrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
111 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
112 |
|
uzss |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
113 |
110 111 112
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
114 |
|
elfzuz3 |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
115 |
|
eluzp1p1 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
116 |
5 114 115
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
117 |
10 116
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
118 |
113 117
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
119 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) ) |
120 |
105 118 119
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) ) |
121 |
57
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑀 ... 𝑁 ) ) |
122 |
121
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) |
123 |
120 122
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) |
124 |
123
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) ) |
125 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
126 |
124 125
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
127 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
128 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
129 |
4 127 128
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
130 |
126 129
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
131 |
130
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
132 |
102 131
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
134 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( 1 ... 𝑁 ) ∈ V ) |
135 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
136 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
137 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
138 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
139 |
|
imass2 |
⊢ ( ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
140 |
117 138 139
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
141 |
140
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
142 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
143 |
86 89 142
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
144 |
137 141 143
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
145 |
87
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
146 |
141 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
147 |
144 146
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
148 |
147
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
149 |
83 133 134 134 135 136 148
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
150 |
30 149
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
151 |
31
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ∈ ℂ ) |
152 |
151
|
addid1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ‘ 𝑛 ) + 0 ) = ( 𝑇 ‘ 𝑛 ) ) |
153 |
30 152
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑇 ‘ 𝑛 ) + 0 ) = ( 𝑇 ‘ 𝑛 ) ) |
154 |
81 150 153
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
155 |
|
breq1 |
⊢ ( 𝑦 = 𝑀 → ( 𝑦 < 𝑀 ↔ 𝑀 < 𝑀 ) ) |
156 |
|
oveq1 |
⊢ ( 𝑦 = 𝑀 → ( 𝑦 + 1 ) = ( 𝑀 + 1 ) ) |
157 |
155 156
|
ifbieq2d |
⊢ ( 𝑦 = 𝑀 → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑀 < 𝑀 , 𝑦 , ( 𝑀 + 1 ) ) ) |
158 |
41
|
ltnrd |
⊢ ( 𝜑 → ¬ 𝑀 < 𝑀 ) |
159 |
158
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑀 < 𝑀 , 𝑦 , ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) |
160 |
157 159
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑀 + 1 ) ) |
161 |
160
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ ( 𝑀 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
162 |
|
ovex |
⊢ ( 𝑀 + 1 ) ∈ V |
163 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
164 |
163
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
165 |
164
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ) |
166 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑀 + 1 ) + 1 ) ) |
167 |
166
|
oveq1d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) |
168 |
167
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
169 |
168
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
170 |
165 169
|
uneq12d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
171 |
170
|
oveq2d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
172 |
162 171
|
csbie |
⊢ ⦋ ( 𝑀 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
173 |
161 172
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
174 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) |
175 |
174 5
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
176 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
177 |
2 173 175 176
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
178 |
177
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
179 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
180 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
181 |
84 180
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) |
182 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
183 |
87 182
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) |
184 |
181 183
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
185 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
186 |
4 92 185
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
187 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
188 |
41 187
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
189 |
188
|
ltp1d |
⊢ ( 𝜑 → ( 𝑀 + 1 ) < ( ( 𝑀 + 1 ) + 1 ) ) |
190 |
|
fzdisj |
⊢ ( ( 𝑀 + 1 ) < ( ( 𝑀 + 1 ) + 1 ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
191 |
189 190
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
192 |
191
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
193 |
186 192
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
194 |
193 98
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
195 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
196 |
184 194 195
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
197 |
|
fzsplit |
⊢ ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
198 |
24 197
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
199 |
198
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
200 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
201 |
199 200
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
202 |
201 129
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
203 |
202
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
204 |
196 203
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
205 |
204
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
206 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
207 |
|
fzss1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) |
208 |
|
imass2 |
⊢ ( ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
209 |
104 207 208
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
210 |
209
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
211 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
212 |
181 183 211
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
213 |
206 210 212
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
214 |
84
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
215 |
210 214
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
216 |
213 215
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
217 |
216
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
218 |
83 205 134 134 135 136 217
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
219 |
30 218
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
220 |
179 219
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
221 |
35 154 220
|
3netr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
222 |
221
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
223 |
|
fzpr |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
224 |
5 39 223
|
3syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
225 |
224
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) = ( 𝑈 “ { 𝑀 , ( 𝑀 + 1 ) } ) ) |
226 |
|
f1ofn |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 Fn ( 1 ... 𝑁 ) ) |
227 |
4 226
|
syl |
⊢ ( 𝜑 → 𝑈 Fn ( 1 ... 𝑁 ) ) |
228 |
|
fnimapr |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) → ( 𝑈 “ { 𝑀 , ( 𝑀 + 1 ) } ) = { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ) |
229 |
227 19 24 228
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 “ { 𝑀 , ( 𝑀 + 1 ) } ) = { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ) |
230 |
225 229
|
eqtrd |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) = { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ) |
231 |
230
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) ) |
232 |
222 231
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑛 ∈ { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
233 |
|
fvex |
⊢ ( 𝑈 ‘ 𝑀 ) ∈ V |
234 |
|
fvex |
⊢ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ∈ V |
235 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) |
236 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) |
237 |
235 236
|
neeq12d |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) ) |
238 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
239 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
240 |
238 239
|
neeq12d |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
241 |
233 234 237 240
|
ralpr |
⊢ ( ∀ 𝑛 ∈ { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
242 |
232 241
|
sylib |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
243 |
41
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
244 |
41 243
|
ltned |
⊢ ( 𝜑 → 𝑀 ≠ ( 𝑀 + 1 ) ) |
245 |
|
f1of1 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) |
246 |
4 245
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) |
247 |
|
f1veqaeq |
⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ∧ ( 𝑀 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑈 ‘ 𝑀 ) = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → 𝑀 = ( 𝑀 + 1 ) ) ) |
248 |
246 19 24 247
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑀 ) = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → 𝑀 = ( 𝑀 + 1 ) ) ) |
249 |
248
|
necon3d |
⊢ ( 𝜑 → ( 𝑀 ≠ ( 𝑀 + 1 ) → ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
250 |
244 249
|
mpd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) |
251 |
237
|
anbi1d |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ↔ ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
252 |
|
neeq1 |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( 𝑛 ≠ 𝑚 ↔ ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ) ) |
253 |
251 252
|
anbi12d |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ) ) ) |
254 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
255 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
256 |
254 255
|
neeq12d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
257 |
256
|
anbi2d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ↔ ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
258 |
|
neeq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ↔ ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
259 |
257 258
|
anbi12d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ) ↔ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
260 |
253 259
|
rspc2ev |
⊢ ( ( ( 𝑈 ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ∈ ( 1 ... 𝑁 ) ∧ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) → ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
261 |
20 25 242 250 260
|
syl112anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
262 |
|
dfrex2 |
⊢ ( ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ¬ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
263 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ) |
264 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) |
265 |
263 264
|
neeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ) |
266 |
265
|
rmo4 |
⊢ ( ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
267 |
|
dfral2 |
⊢ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ↔ ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
268 |
|
df-ne |
⊢ ( 𝑛 ≠ 𝑚 ↔ ¬ 𝑛 = 𝑚 ) |
269 |
268
|
anbi2i |
⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ¬ 𝑛 = 𝑚 ) ) |
270 |
|
annim |
⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ¬ 𝑛 = 𝑚 ) ↔ ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
271 |
269 270
|
bitri |
⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
272 |
271
|
rexbii |
⊢ ( ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
273 |
267 272
|
xchbinxr |
⊢ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ↔ ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
274 |
273
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
275 |
266 274
|
bitri |
⊢ ( ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
276 |
262 275
|
xchbinxr |
⊢ ( ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ¬ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
277 |
261 276
|
sylib |
⊢ ( 𝜑 → ¬ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |