| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 2 |
|
poimirlem2.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
| 3 |
|
poimirlem2.2 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ℤ ) |
| 4 |
|
poimirlem2.3 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
| 5 |
|
poimirlem1.4 |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
| 6 |
|
f1of |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
| 8 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 9 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 11 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 12 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
| 13 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 14 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 15 |
11 12 13 14
|
4syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 16 |
10 15
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 17 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 19 |
18 5
|
sseldd |
⊢ ( 𝜑 → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
| 20 |
7 19
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ) |
| 21 |
|
fzp1elp1 |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 22 |
5 21
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 23 |
10
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
| 24 |
22 23
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
| 25 |
7 24
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑈 ‘ ( 𝑀 + 1 ) ) ∈ ( 1 ... 𝑁 ) ) |
| 26 |
|
imassrn |
⊢ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ran 𝑈 |
| 27 |
|
frn |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) → ran 𝑈 ⊆ ( 1 ... 𝑁 ) ) |
| 28 |
4 6 27
|
3syl |
⊢ ( 𝜑 → ran 𝑈 ⊆ ( 1 ... 𝑁 ) ) |
| 29 |
26 28
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 1 ... 𝑁 ) ) |
| 30 |
29
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
| 31 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ∈ ℤ ) |
| 32 |
31
|
zred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ∈ ℝ ) |
| 33 |
32
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) < ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
| 34 |
32 33
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ≠ ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
| 35 |
30 34
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( 𝑇 ‘ 𝑛 ) ≠ ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
| 36 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( 𝑦 < 𝑀 ↔ ( 𝑀 − 1 ) < 𝑀 ) ) |
| 37 |
|
id |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → 𝑦 = ( 𝑀 − 1 ) ) |
| 38 |
36 37
|
ifbieq1d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑀 − 1 ) < 𝑀 , ( 𝑀 − 1 ) , ( 𝑦 + 1 ) ) ) |
| 39 |
|
elfzelz |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑀 ∈ ℤ ) |
| 40 |
5 39
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 41 |
40
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 42 |
41
|
ltm1d |
⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
| 43 |
42
|
iftrued |
⊢ ( 𝜑 → if ( ( 𝑀 − 1 ) < 𝑀 , ( 𝑀 − 1 ) , ( 𝑦 + 1 ) ) = ( 𝑀 − 1 ) ) |
| 44 |
38 43
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑀 − 1 ) ) |
| 45 |
44
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 46 |
11 12
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
| 47 |
|
elfzm1b |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) → ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) ) |
| 48 |
40 46 47
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) ) |
| 49 |
5 48
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑀 − 1 ) ) ) |
| 51 |
50
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ) |
| 52 |
51
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑀 − 1 ) → ( 𝑗 + 1 ) = ( ( 𝑀 − 1 ) + 1 ) ) |
| 55 |
40
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 56 |
|
npcan1 |
⊢ ( 𝑀 ∈ ℂ → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 57 |
55 56
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) = 𝑀 ) |
| 58 |
54 57
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( 𝑗 + 1 ) = 𝑀 ) |
| 59 |
58
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( 𝑀 ... 𝑁 ) ) |
| 60 |
59
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
| 61 |
60
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) |
| 62 |
53 61
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) |
| 63 |
62
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑀 − 1 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 64 |
49 63
|
csbied |
⊢ ( 𝜑 → ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ ( 𝑀 − 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 66 |
45 65
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑀 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 67 |
46
|
zcnd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℂ ) |
| 68 |
|
npcan1 |
⊢ ( ( 𝑁 − 1 ) ∈ ℂ → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) = ( 𝑁 − 1 ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) = ( 𝑁 − 1 ) ) |
| 70 |
|
peano2zm |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( ( 𝑁 − 1 ) − 1 ) ∈ ℤ ) |
| 71 |
|
uzid |
⊢ ( ( ( 𝑁 − 1 ) − 1 ) ∈ ℤ → ( ( 𝑁 − 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 72 |
|
peano2uz |
⊢ ( ( ( 𝑁 − 1 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 73 |
46 70 71 72
|
4syl |
⊢ ( 𝜑 → ( ( ( 𝑁 − 1 ) − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 74 |
69 73
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) ) |
| 75 |
|
fzss2 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) − 1 ) ) → ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 76 |
74 75
|
syl |
⊢ ( 𝜑 → ( 0 ... ( ( 𝑁 − 1 ) − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 77 |
76 49
|
sseldd |
⊢ ( 𝜑 → ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 78 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
| 79 |
2 66 77 78
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝑀 − 1 ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 80 |
79
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 82 |
3
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ( 1 ... 𝑁 ) ) |
| 83 |
82
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
| 84 |
|
1ex |
⊢ 1 ∈ V |
| 85 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ) |
| 86 |
84 85
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) |
| 87 |
|
c0ex |
⊢ 0 ∈ V |
| 88 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
| 89 |
87 88
|
ax-mp |
⊢ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) |
| 90 |
86 89
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
| 91 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑈 ) ) |
| 92 |
91
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑈 ) |
| 93 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 94 |
4 92 93
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 95 |
|
fzdisj |
⊢ ( ( 𝑀 − 1 ) < 𝑀 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
| 96 |
42 95
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) = ∅ ) |
| 97 |
96
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
| 98 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
| 99 |
97 98
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∩ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
| 100 |
94 99
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
| 101 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 102 |
90 100 101
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 103 |
|
elfzuz |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 104 |
5 103
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 105 |
57 104
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 106 |
|
peano2zm |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) |
| 107 |
|
uzid |
⊢ ( ( 𝑀 − 1 ) ∈ ℤ → ( 𝑀 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 108 |
|
peano2uz |
⊢ ( ( 𝑀 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 109 |
40 106 107 108
|
4syl |
⊢ ( 𝜑 → ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 110 |
57 109
|
eqeltrrd |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 111 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 112 |
|
uzss |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 113 |
110 111 112
|
3syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ⊆ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 114 |
|
elfzuz3 |
⊢ ( 𝑀 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 115 |
|
eluzp1p1 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 116 |
5 114 115
|
3syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 117 |
10 116
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
| 118 |
113 117
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) |
| 119 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑀 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) ) |
| 120 |
105 118 119
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) ) |
| 121 |
57
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑀 ... 𝑁 ) ) |
| 122 |
121
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( ( ( 𝑀 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) |
| 123 |
120 122
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) |
| 124 |
123
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) ) |
| 125 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑀 − 1 ) ) ∪ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
| 126 |
124 125
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 127 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
| 128 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 129 |
4 127 128
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
| 130 |
126 129
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
| 131 |
130
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
| 132 |
102 131
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 133 |
132
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 134 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( 1 ... 𝑁 ) ∈ V ) |
| 135 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
| 136 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 137 |
100
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ) |
| 138 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 139 |
|
imass2 |
⊢ ( ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 𝑀 ... 𝑁 ) → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
| 140 |
117 138 139
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
| 141 |
140
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) |
| 142 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
| 143 |
86 89 142
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
| 144 |
137 141 143
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
| 145 |
87
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 146 |
141 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
| 147 |
144 146
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
| 148 |
147
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
| 149 |
83 133 134 134 135 136 148
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
| 150 |
30 149
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑀 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
| 151 |
31
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) ∈ ℂ ) |
| 152 |
151
|
addridd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ‘ 𝑛 ) + 0 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 153 |
30 152
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑇 ‘ 𝑛 ) + 0 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 154 |
81 150 153
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
| 155 |
|
breq1 |
⊢ ( 𝑦 = 𝑀 → ( 𝑦 < 𝑀 ↔ 𝑀 < 𝑀 ) ) |
| 156 |
|
oveq1 |
⊢ ( 𝑦 = 𝑀 → ( 𝑦 + 1 ) = ( 𝑀 + 1 ) ) |
| 157 |
155 156
|
ifbieq2d |
⊢ ( 𝑦 = 𝑀 → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑀 < 𝑀 , 𝑦 , ( 𝑀 + 1 ) ) ) |
| 158 |
41
|
ltnrd |
⊢ ( 𝜑 → ¬ 𝑀 < 𝑀 ) |
| 159 |
158
|
iffalsed |
⊢ ( 𝜑 → if ( 𝑀 < 𝑀 , 𝑦 , ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) |
| 160 |
157 159
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑀 + 1 ) ) |
| 161 |
160
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ⦋ ( 𝑀 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 162 |
|
ovex |
⊢ ( 𝑀 + 1 ) ∈ V |
| 163 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
| 164 |
163
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 165 |
164
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ) |
| 166 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑀 + 1 ) + 1 ) ) |
| 167 |
166
|
oveq1d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) |
| 168 |
167
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 169 |
168
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
| 170 |
165 169
|
uneq12d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 171 |
170
|
oveq2d |
⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 172 |
162 171
|
csbie |
⊢ ⦋ ( 𝑀 + 1 ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
| 173 |
161 172
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝑀 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 174 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) |
| 175 |
174 5
|
sselid |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
| 176 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
| 177 |
2 173 175 176
|
fvmptd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
| 178 |
177
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 179 |
178
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
| 180 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 181 |
84 180
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) |
| 182 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 183 |
87 182
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) |
| 184 |
181 183
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 185 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 186 |
4 92 185
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 187 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
| 188 |
41 187
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
| 189 |
188
|
ltp1d |
⊢ ( 𝜑 → ( 𝑀 + 1 ) < ( ( 𝑀 + 1 ) + 1 ) ) |
| 190 |
|
fzdisj |
⊢ ( ( 𝑀 + 1 ) < ( ( 𝑀 + 1 ) + 1 ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 191 |
189 190
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
| 192 |
191
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
| 193 |
186 192
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
| 194 |
193 98
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 195 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 196 |
184 194 195
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 197 |
|
fzsplit |
⊢ ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 198 |
24 197
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 199 |
198
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 200 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
| 201 |
199 200
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
| 202 |
201 129
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
| 203 |
202
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
| 204 |
196 203
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 205 |
204
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
| 206 |
194
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
| 207 |
|
fzss1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) |
| 208 |
|
imass2 |
⊢ ( ( 𝑀 ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 209 |
104 207 208
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 210 |
209
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 211 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
| 212 |
181 183 211
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
| 213 |
206 210 212
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
| 214 |
84
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
| 215 |
210 214
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
| 216 |
213 215
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
| 217 |
216
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
| 218 |
83 205 134 134 135 136 217
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
| 219 |
30 218
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑀 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
| 220 |
179 219
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
| 221 |
35 154 220
|
3netr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
| 222 |
221
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
| 223 |
|
fzpr |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
| 224 |
5 39 223
|
3syl |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 + 1 ) ) = { 𝑀 , ( 𝑀 + 1 ) } ) |
| 225 |
224
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) = ( 𝑈 “ { 𝑀 , ( 𝑀 + 1 ) } ) ) |
| 226 |
|
f1ofn |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 Fn ( 1 ... 𝑁 ) ) |
| 227 |
4 226
|
syl |
⊢ ( 𝜑 → 𝑈 Fn ( 1 ... 𝑁 ) ) |
| 228 |
|
fnimapr |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) → ( 𝑈 “ { 𝑀 , ( 𝑀 + 1 ) } ) = { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ) |
| 229 |
227 19 24 228
|
syl3anc |
⊢ ( 𝜑 → ( 𝑈 “ { 𝑀 , ( 𝑀 + 1 ) } ) = { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ) |
| 230 |
225 229
|
eqtrd |
⊢ ( 𝜑 → ( 𝑈 “ ( 𝑀 ... ( 𝑀 + 1 ) ) ) = { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ) |
| 231 |
222 230
|
raleqtrdv |
⊢ ( 𝜑 → ∀ 𝑛 ∈ { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
| 232 |
|
fvex |
⊢ ( 𝑈 ‘ 𝑀 ) ∈ V |
| 233 |
|
fvex |
⊢ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ∈ V |
| 234 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) |
| 235 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) |
| 236 |
234 235
|
neeq12d |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) ) |
| 237 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
| 238 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
| 239 |
237 238
|
neeq12d |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 240 |
232 233 236 239
|
ralpr |
⊢ ( ∀ 𝑛 ∈ { ( 𝑈 ‘ 𝑀 ) , ( 𝑈 ‘ ( 𝑀 + 1 ) ) } ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 241 |
231 240
|
sylib |
⊢ ( 𝜑 → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 242 |
41
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
| 243 |
41 242
|
ltned |
⊢ ( 𝜑 → 𝑀 ≠ ( 𝑀 + 1 ) ) |
| 244 |
|
f1of1 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) |
| 245 |
4 244
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) |
| 246 |
|
f1veqaeq |
⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ∧ ( 𝑀 ∈ ( 1 ... 𝑁 ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑁 ) ) ) → ( ( 𝑈 ‘ 𝑀 ) = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → 𝑀 = ( 𝑀 + 1 ) ) ) |
| 247 |
245 19 24 246
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑀 ) = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → 𝑀 = ( 𝑀 + 1 ) ) ) |
| 248 |
247
|
necon3d |
⊢ ( 𝜑 → ( 𝑀 ≠ ( 𝑀 + 1 ) → ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
| 249 |
243 248
|
mpd |
⊢ ( 𝜑 → ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) |
| 250 |
236
|
anbi1d |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ↔ ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) |
| 251 |
|
neeq1 |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( 𝑛 ≠ 𝑚 ↔ ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ) ) |
| 252 |
250 251
|
anbi12d |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑀 ) → ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ) ) ) |
| 253 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
| 254 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
| 255 |
253 254
|
neeq12d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 256 |
255
|
anbi2d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ↔ ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) ) |
| 257 |
|
neeq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ↔ ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) |
| 258 |
256 257
|
anbi12d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑀 + 1 ) ) → ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ 𝑚 ) ↔ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ) |
| 259 |
252 258
|
rspc2ev |
⊢ ( ( ( 𝑈 ‘ 𝑀 ) ∈ ( 1 ... 𝑁 ) ∧ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ∈ ( 1 ... 𝑁 ) ∧ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) ∧ ( 𝑈 ‘ 𝑀 ) ≠ ( 𝑈 ‘ ( 𝑀 + 1 ) ) ) ) → ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
| 260 |
20 25 241 249 259
|
syl112anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
| 261 |
|
dfrex2 |
⊢ ( ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ¬ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
| 262 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ) |
| 263 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) |
| 264 |
262 263
|
neeq12d |
⊢ ( 𝑛 = 𝑚 → ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ) |
| 265 |
264
|
rmo4 |
⊢ ( ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
| 266 |
|
dfral2 |
⊢ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ↔ ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
| 267 |
|
df-ne |
⊢ ( 𝑛 ≠ 𝑚 ↔ ¬ 𝑛 = 𝑚 ) |
| 268 |
267
|
anbi2i |
⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ¬ 𝑛 = 𝑚 ) ) |
| 269 |
|
annim |
⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ ¬ 𝑛 = 𝑚 ) ↔ ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
| 270 |
268 269
|
bitri |
⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
| 271 |
270
|
rexbii |
⊢ ( ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ¬ ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ) |
| 272 |
266 271
|
xchbinxr |
⊢ ( ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ↔ ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
| 273 |
272
|
ralbii |
⊢ ( ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ∀ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) → 𝑛 = 𝑚 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
| 274 |
265 273
|
bitri |
⊢ ( ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ¬ ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ) |
| 275 |
261 274
|
xchbinxr |
⊢ ( ∃ 𝑛 ∈ ( 1 ... 𝑁 ) ∃ 𝑚 ∈ ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ∧ ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑚 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ∧ 𝑛 ≠ 𝑚 ) ↔ ¬ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |
| 276 |
260 275
|
sylib |
⊢ ( 𝜑 → ¬ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |