| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | poimirlem2.1 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 3 |  | poimirlem2.2 | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ℤ ) | 
						
							| 4 |  | poimirlem2.3 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 5 |  | poimirlem1.4 | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 6 |  | f1of | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) | 
						
							| 8 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 9 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 11 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 12 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 13 |  | uzid | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 14 |  | peano2uz | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 15 | 11 12 13 14 | 4syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 16 | 10 15 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 17 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 19 | 18 5 | sseldd | ⊢ ( 𝜑  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 20 | 7 19 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑀 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 21 |  | fzp1elp1 | ⊢ ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑀  +  1 )  ∈  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 22 | 5 21 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 23 | 10 | oveq2d | ⊢ ( 𝜑  →  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 24 | 22 23 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 25 | 7 24 | ffvelcdmd | ⊢ ( 𝜑  →  ( 𝑈 ‘ ( 𝑀  +  1 ) )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 26 |  | imassrn | ⊢ ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  ⊆  ran  𝑈 | 
						
							| 27 |  | frn | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 )  →  ran  𝑈  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 28 | 4 6 27 | 3syl | ⊢ ( 𝜑  →  ran  𝑈  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 29 | 26 28 | sstrid | ⊢ ( 𝜑  →  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 30 | 29 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 31 | 3 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 32 | 31 | zred | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 33 | 32 | ltp1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  <  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 34 | 32 33 | ltned | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  ≠  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 35 | 30 34 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( 𝑇 ‘ 𝑛 )  ≠  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 36 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( 𝑦  <  𝑀  ↔  ( 𝑀  −  1 )  <  𝑀 ) ) | 
						
							| 37 |  | id | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  𝑦  =  ( 𝑀  −  1 ) ) | 
						
							| 38 | 36 37 | ifbieq1d | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( ( 𝑀  −  1 )  <  𝑀 ,  ( 𝑀  −  1 ) ,  ( 𝑦  +  1 ) ) ) | 
						
							| 39 |  | elfzelz | ⊢ ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 40 | 5 39 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 41 | 40 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 42 | 41 | ltm1d | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  <  𝑀 ) | 
						
							| 43 | 42 | iftrued | ⊢ ( 𝜑  →  if ( ( 𝑀  −  1 )  <  𝑀 ,  ( 𝑀  −  1 ) ,  ( 𝑦  +  1 ) )  =  ( 𝑀  −  1 ) ) | 
						
							| 44 | 38 43 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑀  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( 𝑀  −  1 ) ) | 
						
							| 45 | 44 | csbeq1d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑀  −  1 ) )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ ( 𝑀  −  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 46 | 11 12 | syl | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 47 |  | elfzm1b | ⊢ ( ( 𝑀  ∈  ℤ  ∧  ( 𝑁  −  1 )  ∈  ℤ )  →  ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↔  ( 𝑀  −  1 )  ∈  ( 0 ... ( ( 𝑁  −  1 )  −  1 ) ) ) ) | 
						
							| 48 | 40 46 47 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  ↔  ( 𝑀  −  1 )  ∈  ( 0 ... ( ( 𝑁  −  1 )  −  1 ) ) ) ) | 
						
							| 49 | 5 48 | mpbid | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  ∈  ( 0 ... ( ( 𝑁  −  1 )  −  1 ) ) ) | 
						
							| 50 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑀  −  1 )  →  ( 1 ... 𝑗 )  =  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 51 | 50 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑀  −  1 )  →  ( 𝑈  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 52 | 51 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑀  −  1 )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑀  −  1 ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } ) ) | 
						
							| 54 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑀  −  1 )  →  ( 𝑗  +  1 )  =  ( ( 𝑀  −  1 )  +  1 ) ) | 
						
							| 55 | 40 | zcnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 56 |  | npcan1 | ⊢ ( 𝑀  ∈  ℂ  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 57 | 55 56 | syl | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  +  1 )  =  𝑀 ) | 
						
							| 58 | 54 57 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑀  −  1 ) )  →  ( 𝑗  +  1 )  =  𝑀 ) | 
						
							| 59 | 58 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑀  −  1 ) )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 60 | 59 | imaeq2d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑀  −  1 ) )  →  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 61 | 60 | xpeq1d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑀  −  1 ) )  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 62 | 53 61 | uneq12d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑀  −  1 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 63 | 62 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑀  −  1 ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 64 | 49 63 | csbied | ⊢ ( 𝜑  →  ⦋ ( 𝑀  −  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑀  −  1 ) )  →  ⦋ ( 𝑀  −  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 66 | 45 65 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑀  −  1 ) )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 67 | 46 | zcnd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ℂ ) | 
						
							| 68 |  | npcan1 | ⊢ ( ( 𝑁  −  1 )  ∈  ℂ  →  ( ( ( 𝑁  −  1 )  −  1 )  +  1 )  =  ( 𝑁  −  1 ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  1 )  −  1 )  +  1 )  =  ( 𝑁  −  1 ) ) | 
						
							| 70 |  | peano2zm | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( ( 𝑁  −  1 )  −  1 )  ∈  ℤ ) | 
						
							| 71 |  | uzid | ⊢ ( ( ( 𝑁  −  1 )  −  1 )  ∈  ℤ  →  ( ( 𝑁  −  1 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  −  1 ) ) ) | 
						
							| 72 |  | peano2uz | ⊢ ( ( ( 𝑁  −  1 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  −  1 ) )  →  ( ( ( 𝑁  −  1 )  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  −  1 ) ) ) | 
						
							| 73 | 46 70 71 72 | 4syl | ⊢ ( 𝜑  →  ( ( ( 𝑁  −  1 )  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  −  1 ) ) ) | 
						
							| 74 | 69 73 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  −  1 ) ) ) | 
						
							| 75 |  | fzss2 | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( ( 𝑁  −  1 )  −  1 ) )  →  ( 0 ... ( ( 𝑁  −  1 )  −  1 ) )  ⊆  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 76 | 74 75 | syl | ⊢ ( 𝜑  →  ( 0 ... ( ( 𝑁  −  1 )  −  1 ) )  ⊆  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 77 | 76 49 | sseldd | ⊢ ( 𝜑  →  ( 𝑀  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 78 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V ) | 
						
							| 79 | 2 66 77 78 | fvmptd | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 𝑀  −  1 ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 80 | 79 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 81 | 80 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 82 | 3 | ffnd | ⊢ ( 𝜑  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 84 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 85 |  | fnconstg | ⊢ ( 1  ∈  V  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) ) ) | 
						
							| 86 | 84 85 | ax-mp | ⊢ ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) ) | 
						
							| 87 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 88 |  | fnconstg | ⊢ ( 0  ∈  V  →  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 89 | 87 88 | ax-mp | ⊢ ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) | 
						
							| 90 | 86 89 | pm3.2i | ⊢ ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∧  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 91 |  | dff1o3 | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  ∧  Fun  ◡ 𝑈 ) ) | 
						
							| 92 | 91 | simprbi | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  Fun  ◡ 𝑈 ) | 
						
							| 93 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 94 | 4 92 93 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 95 |  | fzdisj | ⊢ ( ( 𝑀  −  1 )  <  𝑀  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅ ) | 
						
							| 96 | 42 95 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑁 ) )  =  ∅ ) | 
						
							| 97 | 96 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 98 |  | ima0 | ⊢ ( 𝑈  “  ∅ )  =  ∅ | 
						
							| 99 | 97 98 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑀  −  1 ) )  ∩  ( 𝑀 ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 100 | 94 99 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 101 |  | fnun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∧  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  ∧  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 102 | 90 100 101 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 103 |  | elfzuz | ⊢ ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 104 | 5 103 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 105 | 57 104 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 106 |  | peano2zm | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀  −  1 )  ∈  ℤ ) | 
						
							| 107 |  | uzid | ⊢ ( ( 𝑀  −  1 )  ∈  ℤ  →  ( 𝑀  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 108 |  | peano2uz | ⊢ ( ( 𝑀  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) )  →  ( ( 𝑀  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 109 | 40 106 107 108 | 4syl | ⊢ ( 𝜑  →  ( ( 𝑀  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 110 | 57 109 | eqeltrrd | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 111 |  | peano2uz | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) )  →  ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 112 |  | uzss | ⊢ ( ( 𝑀  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) )  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 113 | 110 111 112 | 3syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  ⊆  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 114 |  | elfzuz3 | ⊢ ( 𝑀  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 115 |  | eluzp1p1 | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 116 | 5 114 115 | 3syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 117 | 10 116 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 118 | 113 117 | sseldd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 119 |  | fzsplit2 | ⊢ ( ( ( ( 𝑀  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  −  1 ) ) )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( ( ( 𝑀  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 120 | 105 118 119 | syl2anc | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( ( ( 𝑀  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 121 | 57 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑀  −  1 )  +  1 ) ... 𝑁 )  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 122 | 121 | uneq2d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( ( ( 𝑀  −  1 )  +  1 ) ... 𝑁 ) )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 123 | 120 122 | eqtrd | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 124 | 123 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 𝑈  “  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 125 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... ( 𝑀  −  1 ) )  ∪  ( 𝑀 ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 126 | 124 125 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 127 |  | f1ofo | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) | 
						
							| 128 |  | foima | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 129 | 4 127 128 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 130 | 126 129 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 131 | 130 | fneq2d | ⊢ ( 𝜑  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  ↔  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) ) | 
						
							| 132 | 102 131 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 133 | 132 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 134 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( 1 ... 𝑁 )  ∈  V ) | 
						
							| 135 |  | inidm | ⊢ ( ( 1 ... 𝑁 )  ∩  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) | 
						
							| 136 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 137 | 100 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 138 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑀  +  1 ) )  →  ( 𝑀 ... ( 𝑀  +  1 ) )  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 139 |  | imass2 | ⊢ ( ( 𝑀 ... ( 𝑀  +  1 ) )  ⊆  ( 𝑀 ... 𝑁 )  →  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  ⊆  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 140 | 117 138 139 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  ⊆  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 141 | 140 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 142 |  | fvun2 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∧  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 143 | 86 89 142 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 144 | 137 141 143 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 145 | 87 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 146 | 141 145 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 147 | 144 146 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 148 | 147 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 149 | 83 133 134 134 135 136 148 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  0 ) ) | 
						
							| 150 | 30 149 | mpdan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑀 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  0 ) ) | 
						
							| 151 | 31 | zcnd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 152 | 151 | addridd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇 ‘ 𝑛 )  +  0 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 153 | 30 152 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝑇 ‘ 𝑛 )  +  0 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 154 | 81 150 153 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 155 |  | breq1 | ⊢ ( 𝑦  =  𝑀  →  ( 𝑦  <  𝑀  ↔  𝑀  <  𝑀 ) ) | 
						
							| 156 |  | oveq1 | ⊢ ( 𝑦  =  𝑀  →  ( 𝑦  +  1 )  =  ( 𝑀  +  1 ) ) | 
						
							| 157 | 155 156 | ifbieq2d | ⊢ ( 𝑦  =  𝑀  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑀  <  𝑀 ,  𝑦 ,  ( 𝑀  +  1 ) ) ) | 
						
							| 158 | 41 | ltnrd | ⊢ ( 𝜑  →  ¬  𝑀  <  𝑀 ) | 
						
							| 159 | 158 | iffalsed | ⊢ ( 𝜑  →  if ( 𝑀  <  𝑀 ,  𝑦 ,  ( 𝑀  +  1 ) )  =  ( 𝑀  +  1 ) ) | 
						
							| 160 | 157 159 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑦  =  𝑀 )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( 𝑀  +  1 ) ) | 
						
							| 161 | 160 | csbeq1d | ⊢ ( ( 𝜑  ∧  𝑦  =  𝑀 )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ⦋ ( 𝑀  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 162 |  | ovex | ⊢ ( 𝑀  +  1 )  ∈  V | 
						
							| 163 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( 1 ... 𝑗 )  =  ( 1 ... ( 𝑀  +  1 ) ) ) | 
						
							| 164 | 163 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( 𝑈  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) ) | 
						
							| 165 | 164 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } ) ) | 
						
							| 166 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( 𝑗  +  1 )  =  ( ( 𝑀  +  1 )  +  1 ) ) | 
						
							| 167 | 166 | oveq1d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 168 | 167 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 169 | 168 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 170 | 165 169 | uneq12d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 171 | 170 | oveq2d | ⊢ ( 𝑗  =  ( 𝑀  +  1 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 172 | 162 171 | csbie | ⊢ ⦋ ( 𝑀  +  1 )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 173 | 161 172 | eqtrdi | ⊢ ( ( 𝜑  ∧  𝑦  =  𝑀 )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 174 |  | fz1ssfz0 | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 175 | 174 5 | sselid | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 176 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V ) | 
						
							| 177 | 2 173 175 176 | fvmptd | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑀 )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 178 | 177 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 179 | 178 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 180 |  | fnconstg | ⊢ ( 1  ∈  V  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) ) | 
						
							| 181 | 84 180 | ax-mp | ⊢ ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) | 
						
							| 182 |  | fnconstg | ⊢ ( 0  ∈  V  →  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 183 | 87 182 | ax-mp | ⊢ ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 184 | 181 183 | pm3.2i | ⊢ ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 185 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... ( 𝑀  +  1 ) )  ∩  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 186 | 4 92 185 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑀  +  1 ) )  ∩  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 187 |  | peano2re | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 188 | 41 187 | syl | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  ∈  ℝ ) | 
						
							| 189 | 188 | ltp1d | ⊢ ( 𝜑  →  ( 𝑀  +  1 )  <  ( ( 𝑀  +  1 )  +  1 ) ) | 
						
							| 190 |  | fzdisj | ⊢ ( ( 𝑀  +  1 )  <  ( ( 𝑀  +  1 )  +  1 )  →  ( ( 1 ... ( 𝑀  +  1 ) )  ∩  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 191 | 189 190 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑀  +  1 ) )  ∩  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 192 | 191 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑀  +  1 ) )  ∩  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 193 | 186 192 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 194 | 193 98 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 195 |  | fnun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 196 | 184 194 195 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 197 |  | fzsplit | ⊢ ( ( 𝑀  +  1 )  ∈  ( 1 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑀  +  1 ) )  ∪  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 198 | 24 197 | syl | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑀  +  1 ) )  ∪  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 199 | 198 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 𝑈  “  ( ( 1 ... ( 𝑀  +  1 ) )  ∪  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 200 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... ( 𝑀  +  1 ) )  ∪  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 201 | 199 200 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 202 | 201 129 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 203 | 202 | fneq2d | ⊢ ( 𝜑  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  ↔  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) ) | 
						
							| 204 | 196 203 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 205 | 204 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 206 | 194 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 207 |  | fzss1 | ⊢ ( 𝑀  ∈  ( ℤ≥ ‘ 1 )  →  ( 𝑀 ... ( 𝑀  +  1 ) )  ⊆  ( 1 ... ( 𝑀  +  1 ) ) ) | 
						
							| 208 |  | imass2 | ⊢ ( ( 𝑀 ... ( 𝑀  +  1 ) )  ⊆  ( 1 ... ( 𝑀  +  1 ) )  →  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  ⊆  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) ) | 
						
							| 209 | 104 207 208 | 3syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  ⊆  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) ) | 
						
							| 210 | 209 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) ) | 
						
							| 211 |  | fvun1 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 212 | 181 183 211 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 213 | 206 210 212 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 214 | 84 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 215 | 210 214 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 216 | 213 215 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 217 | 216 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 218 | 83 205 134 134 135 136 217 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 219 | 30 218 | mpdan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑀  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑀  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 220 | 179 219 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 221 | 35 154 220 | 3netr4d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) | 
						
							| 222 | 221 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) ) ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) | 
						
							| 223 |  | fzpr | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... ( 𝑀  +  1 ) )  =  { 𝑀 ,  ( 𝑀  +  1 ) } ) | 
						
							| 224 | 5 39 223 | 3syl | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑀  +  1 ) )  =  { 𝑀 ,  ( 𝑀  +  1 ) } ) | 
						
							| 225 | 224 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  =  ( 𝑈  “  { 𝑀 ,  ( 𝑀  +  1 ) } ) ) | 
						
							| 226 |  | f1ofn | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 227 | 4 226 | syl | ⊢ ( 𝜑  →  𝑈  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 228 |  | fnimapr | ⊢ ( ( 𝑈  Fn  ( 1 ... 𝑁 )  ∧  𝑀  ∈  ( 1 ... 𝑁 )  ∧  ( 𝑀  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑈  “  { 𝑀 ,  ( 𝑀  +  1 ) } )  =  { ( 𝑈 ‘ 𝑀 ) ,  ( 𝑈 ‘ ( 𝑀  +  1 ) ) } ) | 
						
							| 229 | 227 19 24 228 | syl3anc | ⊢ ( 𝜑  →  ( 𝑈  “  { 𝑀 ,  ( 𝑀  +  1 ) } )  =  { ( 𝑈 ‘ 𝑀 ) ,  ( 𝑈 ‘ ( 𝑀  +  1 ) ) } ) | 
						
							| 230 | 225 229 | eqtrd | ⊢ ( 𝜑  →  ( 𝑈  “  ( 𝑀 ... ( 𝑀  +  1 ) ) )  =  { ( 𝑈 ‘ 𝑀 ) ,  ( 𝑈 ‘ ( 𝑀  +  1 ) ) } ) | 
						
							| 231 | 222 230 | raleqtrdv | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  { ( 𝑈 ‘ 𝑀 ) ,  ( 𝑈 ‘ ( 𝑀  +  1 ) ) } ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) | 
						
							| 232 |  | fvex | ⊢ ( 𝑈 ‘ 𝑀 )  ∈  V | 
						
							| 233 |  | fvex | ⊢ ( 𝑈 ‘ ( 𝑀  +  1 ) )  ∈  V | 
						
							| 234 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑈 ‘ 𝑀 )  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) | 
						
							| 235 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑈 ‘ 𝑀 )  →  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) | 
						
							| 236 | 234 235 | neeq12d | ⊢ ( 𝑛  =  ( 𝑈 ‘ 𝑀 )  →  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ↔  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) ) ) ) | 
						
							| 237 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 238 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 239 | 237 238 | neeq12d | ⊢ ( 𝑛  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ↔  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 240 | 232 233 236 239 | ralpr | ⊢ ( ∀ 𝑛  ∈  { ( 𝑈 ‘ 𝑀 ) ,  ( 𝑈 ‘ ( 𝑀  +  1 ) ) } ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ↔  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 241 | 231 240 | sylib | ⊢ ( 𝜑  →  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 242 | 41 | ltp1d | ⊢ ( 𝜑  →  𝑀  <  ( 𝑀  +  1 ) ) | 
						
							| 243 | 41 242 | ltned | ⊢ ( 𝜑  →  𝑀  ≠  ( 𝑀  +  1 ) ) | 
						
							| 244 |  | f1of1 | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) | 
						
							| 245 | 4 244 | syl | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 ) ) | 
						
							| 246 |  | f1veqaeq | ⊢ ( ( 𝑈 : ( 1 ... 𝑁 ) –1-1→ ( 1 ... 𝑁 )  ∧  ( 𝑀  ∈  ( 1 ... 𝑁 )  ∧  ( 𝑀  +  1 )  ∈  ( 1 ... 𝑁 ) ) )  →  ( ( 𝑈 ‘ 𝑀 )  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  𝑀  =  ( 𝑀  +  1 ) ) ) | 
						
							| 247 | 245 19 24 246 | syl12anc | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑀 )  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  𝑀  =  ( 𝑀  +  1 ) ) ) | 
						
							| 248 | 247 | necon3d | ⊢ ( 𝜑  →  ( 𝑀  ≠  ( 𝑀  +  1 )  →  ( 𝑈 ‘ 𝑀 )  ≠  ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 249 | 243 248 | mpd | ⊢ ( 𝜑  →  ( 𝑈 ‘ 𝑀 )  ≠  ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) | 
						
							| 250 | 236 | anbi1d | ⊢ ( 𝑛  =  ( 𝑈 ‘ 𝑀 )  →  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ↔  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ) ) | 
						
							| 251 |  | neeq1 | ⊢ ( 𝑛  =  ( 𝑈 ‘ 𝑀 )  →  ( 𝑛  ≠  𝑚  ↔  ( 𝑈 ‘ 𝑀 )  ≠  𝑚 ) ) | 
						
							| 252 | 250 251 | anbi12d | ⊢ ( 𝑛  =  ( 𝑈 ‘ 𝑀 )  →  ( ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 )  ↔  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  ( 𝑈 ‘ 𝑀 )  ≠  𝑚 ) ) ) | 
						
							| 253 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 254 |  | fveq2 | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 )  =  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 255 | 253 254 | neeq12d | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 )  ↔  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 256 | 255 | anbi2d | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ↔  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) ) ) | 
						
							| 257 |  | neeq2 | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( 𝑈 ‘ 𝑀 )  ≠  𝑚  ↔  ( 𝑈 ‘ 𝑀 )  ≠  ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) | 
						
							| 258 | 256 257 | anbi12d | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑀  +  1 ) )  →  ( ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  ( 𝑈 ‘ 𝑀 )  ≠  𝑚 )  ↔  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑈 ‘ 𝑀 )  ≠  ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) ) ) | 
						
							| 259 | 252 258 | rspc2ev | ⊢ ( ( ( 𝑈 ‘ 𝑀 )  ∈  ( 1 ... 𝑁 )  ∧  ( 𝑈 ‘ ( 𝑀  +  1 ) )  ∈  ( 1 ... 𝑁 )  ∧  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ 𝑀 ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ 𝑀 ) )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) )  ∧  ( 𝑈 ‘ 𝑀 )  ≠  ( 𝑈 ‘ ( 𝑀  +  1 ) ) ) )  →  ∃ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 ) ) | 
						
							| 260 | 20 25 241 249 259 | syl112anc | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 ) ) | 
						
							| 261 |  | dfrex2 | ⊢ ( ∃ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 )  ↔  ¬  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ¬  ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 ) ) | 
						
							| 262 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 ) ) | 
						
							| 263 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) | 
						
							| 264 | 262 263 | neeq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ↔  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) ) ) | 
						
							| 265 | 264 | rmo4 | ⊢ ( ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∀ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 ) ) | 
						
							| 266 |  | dfral2 | ⊢ ( ∀ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 )  ↔  ¬  ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ¬  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 ) ) | 
						
							| 267 |  | df-ne | ⊢ ( 𝑛  ≠  𝑚  ↔  ¬  𝑛  =  𝑚 ) | 
						
							| 268 | 267 | anbi2i | ⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 )  ↔  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  ¬  𝑛  =  𝑚 ) ) | 
						
							| 269 |  | annim | ⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  ¬  𝑛  =  𝑚 )  ↔  ¬  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 ) ) | 
						
							| 270 | 268 269 | bitri | ⊢ ( ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 )  ↔  ¬  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 ) ) | 
						
							| 271 | 270 | rexbii | ⊢ ( ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 )  ↔  ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ¬  ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 ) ) | 
						
							| 272 | 266 271 | xchbinxr | ⊢ ( ∀ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 )  ↔  ¬  ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 ) ) | 
						
							| 273 | 272 | ralbii | ⊢ ( ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ∀ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  →  𝑛  =  𝑚 )  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ¬  ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 ) ) | 
						
							| 274 | 265 273 | bitri | ⊢ ( ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑁 ) ¬  ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 ) ) | 
						
							| 275 | 261 274 | xchbinxr | ⊢ ( ∃ 𝑛  ∈  ( 1 ... 𝑁 ) ∃ 𝑚  ∈  ( 1 ... 𝑁 ) ( ( ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 )  ∧  ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑚 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑚 ) )  ∧  𝑛  ≠  𝑚 )  ↔  ¬  ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) | 
						
							| 276 | 260 275 | sylib | ⊢ ( 𝜑  →  ¬  ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑀  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑀 ) ‘ 𝑛 ) ) |