Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem2.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
3 |
|
poimirlem2.2 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ℤ ) |
4 |
|
poimirlem2.3 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
5 |
|
poimirlem2.4 |
⊢ ( 𝜑 → 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
6 |
|
poimirlem2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
7 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑈 ) ) |
8 |
7
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑈 ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝑈 ) |
10 |
|
imadif |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
12 |
|
fzp1elp1 |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑉 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
14 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
15 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
18 |
13 17
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
19 |
|
fzsplit |
⊢ ( ( 𝑉 + 1 ) ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
21 |
20
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∖ { ( 𝑉 + 1 ) } ) ) |
22 |
|
difundir |
⊢ ( ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) ∪ ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) |
23 |
|
elfzuz |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑉 ∈ ( ℤ≥ ‘ 1 ) ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( ℤ≥ ‘ 1 ) ) |
25 |
|
fzsuc |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑉 + 1 ) ) = ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑉 + 1 ) ) = ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ) |
27 |
26
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ∖ { ( 𝑉 + 1 ) } ) ) |
28 |
|
difun2 |
⊢ ( ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ∖ { ( 𝑉 + 1 ) } ) = ( ( 1 ... 𝑉 ) ∖ { ( 𝑉 + 1 ) } ) |
29 |
5
|
elfzelzd |
⊢ ( 𝜑 → 𝑉 ∈ ℤ ) |
30 |
29
|
zred |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
31 |
30
|
ltp1d |
⊢ ( 𝜑 → 𝑉 < ( 𝑉 + 1 ) ) |
32 |
29
|
peano2zd |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ℤ ) |
33 |
32
|
zred |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ℝ ) |
34 |
30 33
|
ltnled |
⊢ ( 𝜑 → ( 𝑉 < ( 𝑉 + 1 ) ↔ ¬ ( 𝑉 + 1 ) ≤ 𝑉 ) ) |
35 |
31 34
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝑉 + 1 ) ≤ 𝑉 ) |
36 |
|
elfzle2 |
⊢ ( ( 𝑉 + 1 ) ∈ ( 1 ... 𝑉 ) → ( 𝑉 + 1 ) ≤ 𝑉 ) |
37 |
35 36
|
nsyl |
⊢ ( 𝜑 → ¬ ( 𝑉 + 1 ) ∈ ( 1 ... 𝑉 ) ) |
38 |
|
difsn |
⊢ ( ¬ ( 𝑉 + 1 ) ∈ ( 1 ... 𝑉 ) → ( ( 1 ... 𝑉 ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
40 |
28 39
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
41 |
27 40
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
42 |
33
|
ltp1d |
⊢ ( 𝜑 → ( 𝑉 + 1 ) < ( ( 𝑉 + 1 ) + 1 ) ) |
43 |
|
peano2re |
⊢ ( ( 𝑉 + 1 ) ∈ ℝ → ( ( 𝑉 + 1 ) + 1 ) ∈ ℝ ) |
44 |
33 43
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 + 1 ) + 1 ) ∈ ℝ ) |
45 |
33 44
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑉 + 1 ) < ( ( 𝑉 + 1 ) + 1 ) ↔ ¬ ( ( 𝑉 + 1 ) + 1 ) ≤ ( 𝑉 + 1 ) ) ) |
46 |
42 45
|
mpbid |
⊢ ( 𝜑 → ¬ ( ( 𝑉 + 1 ) + 1 ) ≤ ( 𝑉 + 1 ) ) |
47 |
|
elfzle1 |
⊢ ( ( 𝑉 + 1 ) ∈ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) → ( ( 𝑉 + 1 ) + 1 ) ≤ ( 𝑉 + 1 ) ) |
48 |
46 47
|
nsyl |
⊢ ( 𝜑 → ¬ ( 𝑉 + 1 ) ∈ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
49 |
|
difsn |
⊢ ( ¬ ( 𝑉 + 1 ) ∈ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) → ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
50 |
48 49
|
syl |
⊢ ( 𝜑 → ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
51 |
41 50
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) ∪ ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
52 |
22 51
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
53 |
21 52
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
54 |
53
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
55 |
11 54
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) = ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
56 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
57 |
55 56
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
58 |
57
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) ) |
59 |
|
eldif |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
60 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
61 |
58 59 60
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) ) |
63 |
|
imassrn |
⊢ ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ran 𝑈 |
64 |
|
f1of |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
65 |
4 64
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
66 |
65
|
frnd |
⊢ ( 𝜑 → ran 𝑈 ⊆ ( 1 ... 𝑁 ) ) |
67 |
63 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ( 1 ... 𝑁 ) ) |
68 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
69 |
3
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ( 1 ... 𝑁 ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
71 |
|
1ex |
⊢ 1 ∈ V |
72 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
73 |
71 72
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) |
74 |
|
c0ex |
⊢ 0 ∈ V |
75 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
76 |
74 75
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
77 |
73 76
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
78 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
79 |
9 78
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
80 |
|
fzdisj |
⊢ ( 𝑉 < ( 𝑉 + 1 ) → ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) = ∅ ) |
81 |
31 80
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) = ∅ ) |
82 |
81
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
83 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
84 |
82 83
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
85 |
79 84
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
86 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
87 |
77 85 86
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
88 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
89 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
90 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
91 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
92 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
93 |
89 90 91 92
|
4syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
94 |
16 93
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
95 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
96 |
94 95
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
97 |
96 5
|
sseldd |
⊢ ( 𝜑 → 𝑉 ∈ ( 1 ... 𝑁 ) ) |
98 |
|
fzsplit |
⊢ ( 𝑉 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
99 |
97 98
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
100 |
99
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
101 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
102 |
4 101
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
103 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
104 |
102 103
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
105 |
100 104
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
106 |
88 105
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
107 |
106
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
108 |
87 107
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
109 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
110 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
111 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
112 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
113 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) ) |
114 |
73 76 113
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) ) |
115 |
85 114
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) ) |
116 |
71
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
117 |
116
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
118 |
115 117
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
119 |
118
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
120 |
70 109 110 110 111 112 119
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
121 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
122 |
71 121
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) |
123 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
124 |
74 123
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
125 |
122 124
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
126 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
127 |
9 126
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
128 |
|
fzdisj |
⊢ ( ( 𝑉 + 1 ) < ( ( 𝑉 + 1 ) + 1 ) → ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
129 |
42 128
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
130 |
129
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
131 |
130 83
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
132 |
127 131
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
133 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
134 |
125 132 133
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
135 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
136 |
20
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
137 |
136 104
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
138 |
135 137
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
139 |
138
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
140 |
134 139
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
141 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
142 |
|
uzid |
⊢ ( 𝑉 ∈ ℤ → 𝑉 ∈ ( ℤ≥ ‘ 𝑉 ) ) |
143 |
29 142
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( ℤ≥ ‘ 𝑉 ) ) |
144 |
|
peano2uz |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ 𝑉 ) → ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) ) |
145 |
|
fzss2 |
⊢ ( ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) → ( 1 ... 𝑉 ) ⊆ ( 1 ... ( 𝑉 + 1 ) ) ) |
146 |
|
imass2 |
⊢ ( ( 1 ... 𝑉 ) ⊆ ( 1 ... ( 𝑉 + 1 ) ) → ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
147 |
143 144 145 146
|
4syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
148 |
147
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
149 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
150 |
122 124 149
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
151 |
132 150
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
152 |
71
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
153 |
152
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
154 |
151 153
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
155 |
148 154
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
156 |
155
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
157 |
70 141 110 110 111 112 156
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
158 |
120 157
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
159 |
68 158
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
160 |
|
imassrn |
⊢ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ran 𝑈 |
161 |
160 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) ) |
162 |
161
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
163 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
164 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
165 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
166 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
167 |
|
uzid |
⊢ ( ( 𝑉 + 1 ) ∈ ℤ → ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) ) |
168 |
32 167
|
syl |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) ) |
169 |
|
peano2uz |
⊢ ( ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) → ( ( 𝑉 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) ) |
170 |
|
fzss1 |
⊢ ( ( ( 𝑉 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) → ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ⊆ ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
171 |
|
imass2 |
⊢ ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ⊆ ( ( 𝑉 + 1 ) ... 𝑁 ) → ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
172 |
168 169 170 171
|
4syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
173 |
172
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
174 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
175 |
73 76 174
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
176 |
85 175
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
177 |
74
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) → ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
178 |
177
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
179 |
176 178
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
180 |
173 179
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
181 |
180
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
182 |
163 164 165 165 111 166 181
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
183 |
140
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
184 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
185 |
122 124 184
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
186 |
132 185
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
187 |
74
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) → ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
188 |
187
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
189 |
186 188
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
190 |
189
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
191 |
163 183 165 165 111 166 190
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
192 |
182 191
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
193 |
162 192
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
194 |
159 193
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
195 |
194
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
196 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
197 |
|
vex |
⊢ 𝑦 ∈ V |
198 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
199 |
197 198
|
ifex |
⊢ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V |
200 |
199
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
201 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑉 − 1 ) → ( 𝑦 < 𝑀 ↔ ( 𝑉 − 1 ) < 𝑀 ) ) |
202 |
201
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → ( 𝑦 < 𝑀 ↔ ( 𝑉 − 1 ) < 𝑀 ) ) |
203 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → 𝑦 = ( 𝑉 − 1 ) ) |
204 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑉 − 1 ) → ( 𝑦 + 1 ) = ( ( 𝑉 − 1 ) + 1 ) ) |
205 |
29
|
zcnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
206 |
|
npcan1 |
⊢ ( 𝑉 ∈ ℂ → ( ( 𝑉 − 1 ) + 1 ) = 𝑉 ) |
207 |
205 206
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) + 1 ) = 𝑉 ) |
208 |
204 207
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → ( 𝑦 + 1 ) = 𝑉 ) |
209 |
202 203 208
|
ifbieq12d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) ) |
210 |
209
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) ) |
211 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
212 |
211
|
elfzelzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
213 |
|
zltlem1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑉 ∈ ℤ ) → ( 𝑀 < 𝑉 ↔ 𝑀 ≤ ( 𝑉 − 1 ) ) ) |
214 |
212 29 213
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 ↔ 𝑀 ≤ ( 𝑉 − 1 ) ) ) |
215 |
212
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
216 |
|
peano2zm |
⊢ ( 𝑉 ∈ ℤ → ( 𝑉 − 1 ) ∈ ℤ ) |
217 |
29 216
|
syl |
⊢ ( 𝜑 → ( 𝑉 − 1 ) ∈ ℤ ) |
218 |
217
|
zred |
⊢ ( 𝜑 → ( 𝑉 − 1 ) ∈ ℝ ) |
219 |
215 218
|
lenltd |
⊢ ( 𝜑 → ( 𝑀 ≤ ( 𝑉 − 1 ) ↔ ¬ ( 𝑉 − 1 ) < 𝑀 ) ) |
220 |
214 219
|
bitrd |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 ↔ ¬ ( 𝑉 − 1 ) < 𝑀 ) ) |
221 |
220
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ¬ ( 𝑉 − 1 ) < 𝑀 ) |
222 |
221
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = 𝑉 ) |
223 |
222
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = 𝑉 ) |
224 |
210 223
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑉 ) |
225 |
224
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → ( 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ↔ 𝑗 = 𝑉 ) ) |
226 |
225
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → 𝑗 = 𝑉 ) |
227 |
|
oveq2 |
⊢ ( 𝑗 = 𝑉 → ( 1 ... 𝑗 ) = ( 1 ... 𝑉 ) ) |
228 |
227
|
imaeq2d |
⊢ ( 𝑗 = 𝑉 → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
229 |
228
|
xpeq1d |
⊢ ( 𝑗 = 𝑉 → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ) |
230 |
|
oveq1 |
⊢ ( 𝑗 = 𝑉 → ( 𝑗 + 1 ) = ( 𝑉 + 1 ) ) |
231 |
230
|
oveq1d |
⊢ ( 𝑗 = 𝑉 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
232 |
231
|
imaeq2d |
⊢ ( 𝑗 = 𝑉 → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
233 |
232
|
xpeq1d |
⊢ ( 𝑗 = 𝑉 → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
234 |
229 233
|
uneq12d |
⊢ ( 𝑗 = 𝑉 → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
235 |
234
|
oveq2d |
⊢ ( 𝑗 = 𝑉 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
236 |
226 235
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
237 |
200 236
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
238 |
|
elfzm1b |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑉 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
239 |
29 89 238
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
240 |
97 239
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
241 |
240
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
242 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
243 |
196 237 241 242
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝐹 ‘ ( 𝑉 − 1 ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
244 |
243
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
245 |
244
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
246 |
199
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
247 |
|
breq1 |
⊢ ( 𝑦 = 𝑉 → ( 𝑦 < 𝑀 ↔ 𝑉 < 𝑀 ) ) |
248 |
|
id |
⊢ ( 𝑦 = 𝑉 → 𝑦 = 𝑉 ) |
249 |
|
oveq1 |
⊢ ( 𝑦 = 𝑉 → ( 𝑦 + 1 ) = ( 𝑉 + 1 ) ) |
250 |
247 248 249
|
ifbieq12d |
⊢ ( 𝑦 = 𝑉 → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑉 < 𝑀 , 𝑉 , ( 𝑉 + 1 ) ) ) |
251 |
|
ltnsym |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑉 ∈ ℝ ) → ( 𝑀 < 𝑉 → ¬ 𝑉 < 𝑀 ) ) |
252 |
215 30 251
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 → ¬ 𝑉 < 𝑀 ) ) |
253 |
252
|
imp |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ¬ 𝑉 < 𝑀 ) |
254 |
253
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → if ( 𝑉 < 𝑀 , 𝑉 , ( 𝑉 + 1 ) ) = ( 𝑉 + 1 ) ) |
255 |
250 254
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑉 + 1 ) ) |
256 |
255
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → ( 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ↔ 𝑗 = ( 𝑉 + 1 ) ) ) |
257 |
256
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → 𝑗 = ( 𝑉 + 1 ) ) |
258 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑉 + 1 ) ) ) |
259 |
258
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
260 |
259
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ) |
261 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑉 + 1 ) + 1 ) ) |
262 |
261
|
oveq1d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
263 |
262
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
264 |
263
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
265 |
260 264
|
uneq12d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
266 |
265
|
oveq2d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
267 |
257 266
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
268 |
246 267
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
269 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) |
270 |
269 5
|
sselid |
⊢ ( 𝜑 → 𝑉 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
271 |
270
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → 𝑉 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
272 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
273 |
196 268 271 272
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝐹 ‘ 𝑉 ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
274 |
273
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
275 |
274
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
276 |
195 245 275
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) |
277 |
276
|
ex |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
278 |
62 277
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
279 |
278
|
expdimp |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
280 |
279
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
281 |
|
elimasni |
⊢ ( 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → ( 𝑉 + 1 ) 𝑈 𝑛 ) |
282 |
|
eqcom |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ↔ ( 𝑈 ‘ ( 𝑉 + 1 ) ) = 𝑛 ) |
283 |
|
f1ofn |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 Fn ( 1 ... 𝑁 ) ) |
284 |
4 283
|
syl |
⊢ ( 𝜑 → 𝑈 Fn ( 1 ... 𝑁 ) ) |
285 |
|
fnbrfvb |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ ( 𝑉 + 1 ) ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑈 ‘ ( 𝑉 + 1 ) ) = 𝑛 ↔ ( 𝑉 + 1 ) 𝑈 𝑛 ) ) |
286 |
284 18 285
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ ( 𝑉 + 1 ) ) = 𝑛 ↔ ( 𝑉 + 1 ) 𝑈 𝑛 ) ) |
287 |
282 286
|
bitrid |
⊢ ( 𝜑 → ( 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ↔ ( 𝑉 + 1 ) 𝑈 𝑛 ) ) |
288 |
281 287
|
imbitrrid |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
289 |
288
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
290 |
280 289
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
291 |
290
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
292 |
|
fvex |
⊢ ( 𝑈 ‘ ( 𝑉 + 1 ) ) ∈ V |
293 |
|
eqeq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) → ( 𝑛 = 𝑚 ↔ 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
294 |
293
|
imbi2d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) → ( ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) ) |
295 |
294
|
ralbidv |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) → ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) ) |
296 |
292 295
|
spcev |
⊢ ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
297 |
291 296
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
298 |
|
imadif |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ) |
299 |
9 298
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ) |
300 |
99
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) = ( ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∖ { 𝑉 } ) ) |
301 |
|
difundir |
⊢ ( ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∖ { 𝑉 } ) = ( ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) ∪ ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) ) |
302 |
207 24
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
303 |
|
uzid |
⊢ ( ( 𝑉 − 1 ) ∈ ℤ → ( 𝑉 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
304 |
|
peano2uz |
⊢ ( ( 𝑉 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
305 |
29 216 303 304
|
4syl |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
306 |
207 305
|
eqeltrrd |
⊢ ( 𝜑 → 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
307 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) → ( 1 ... 𝑉 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) ) ) |
308 |
302 306 307
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑉 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) ) ) |
309 |
207
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) = ( 𝑉 ... 𝑉 ) ) |
310 |
|
fzsn |
⊢ ( 𝑉 ∈ ℤ → ( 𝑉 ... 𝑉 ) = { 𝑉 } ) |
311 |
29 310
|
syl |
⊢ ( 𝜑 → ( 𝑉 ... 𝑉 ) = { 𝑉 } ) |
312 |
309 311
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) = { 𝑉 } ) |
313 |
312
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ) |
314 |
308 313
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑉 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ) |
315 |
314
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) = ( ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ∖ { 𝑉 } ) ) |
316 |
|
difun2 |
⊢ ( ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ∖ { 𝑉 } ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∖ { 𝑉 } ) |
317 |
30
|
ltm1d |
⊢ ( 𝜑 → ( 𝑉 − 1 ) < 𝑉 ) |
318 |
218 30
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) < 𝑉 ↔ ¬ 𝑉 ≤ ( 𝑉 − 1 ) ) ) |
319 |
317 318
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑉 ≤ ( 𝑉 − 1 ) ) |
320 |
|
elfzle2 |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑉 − 1 ) ) → 𝑉 ≤ ( 𝑉 − 1 ) ) |
321 |
319 320
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑉 ∈ ( 1 ... ( 𝑉 − 1 ) ) ) |
322 |
|
difsn |
⊢ ( ¬ 𝑉 ∈ ( 1 ... ( 𝑉 − 1 ) ) → ( ( 1 ... ( 𝑉 − 1 ) ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
323 |
321 322
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
324 |
316 323
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
325 |
315 324
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
326 |
|
elfzle1 |
⊢ ( 𝑉 ∈ ( ( 𝑉 + 1 ) ... 𝑁 ) → ( 𝑉 + 1 ) ≤ 𝑉 ) |
327 |
35 326
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑉 ∈ ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
328 |
|
difsn |
⊢ ( ¬ 𝑉 ∈ ( ( 𝑉 + 1 ) ... 𝑁 ) → ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) = ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
329 |
327 328
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) = ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
330 |
325 329
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) ∪ ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
331 |
301 330
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∖ { 𝑉 } ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
332 |
300 331
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
333 |
332
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
334 |
299 333
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
335 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
336 |
334 335
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
337 |
336
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ↔ 𝑛 ∈ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) ) |
338 |
|
eldif |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ) |
339 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
340 |
337 338 339
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) ) |
341 |
340
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) ) |
342 |
|
imassrn |
⊢ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ran 𝑈 |
343 |
342 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ( 1 ... 𝑁 ) ) |
344 |
343
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
345 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
346 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) |
347 |
71 346
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) |
348 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
349 |
74 348
|
ax-mp |
⊢ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) |
350 |
347 349
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
351 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
352 |
9 351
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
353 |
|
fzdisj |
⊢ ( ( 𝑉 − 1 ) < 𝑉 → ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) = ∅ ) |
354 |
317 353
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) = ∅ ) |
355 |
354
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
356 |
355 83
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ∅ ) |
357 |
352 356
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ) |
358 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
359 |
350 357 358
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
360 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
361 |
|
uzss |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( ℤ≥ ‘ 𝑉 ) ⊆ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
362 |
306 361
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑉 ) ⊆ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
363 |
|
elfzuz3 |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) ) |
364 |
5 363
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) ) |
365 |
362 364
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
366 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
367 |
365 366
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
368 |
16 367
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
369 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) ) ) |
370 |
302 368 369
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) ) ) |
371 |
207
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑉 ... 𝑁 ) ) |
372 |
371
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) |
373 |
370 372
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) |
374 |
373
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) ) |
375 |
374 104
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
376 |
360 375
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
377 |
376
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
378 |
359 377
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
379 |
378
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
380 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
381 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
382 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
383 |
347 349 382
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
384 |
357 383
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
385 |
71
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
386 |
385
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
387 |
384 386
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
388 |
387
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
389 |
345 379 380 380 111 381 388
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
390 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
391 |
|
fzss2 |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( 1 ... ( 𝑉 − 1 ) ) ⊆ ( 1 ... 𝑉 ) ) |
392 |
306 391
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑉 − 1 ) ) ⊆ ( 1 ... 𝑉 ) ) |
393 |
|
imass2 |
⊢ ( ( 1 ... ( 𝑉 − 1 ) ) ⊆ ( 1 ... 𝑉 ) → ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
394 |
392 393
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
395 |
394
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
396 |
395 118
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
397 |
396
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
398 |
345 390 380 380 111 381 397
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
399 |
389 398
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
400 |
344 399
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
401 |
|
imassrn |
⊢ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ran 𝑈 |
402 |
401 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) ) |
403 |
402
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
404 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
405 |
378
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
406 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
407 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
408 |
|
fzss1 |
⊢ ( ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) → ( ( 𝑉 + 1 ) ... 𝑁 ) ⊆ ( 𝑉 ... 𝑁 ) ) |
409 |
|
imass2 |
⊢ ( ( ( 𝑉 + 1 ) ... 𝑁 ) ⊆ ( 𝑉 ... 𝑁 ) → ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
410 |
143 144 408 409
|
4syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
411 |
410
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
412 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
413 |
347 349 412
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
414 |
357 413
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
415 |
74
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
416 |
415
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
417 |
414 416
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
418 |
411 417
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
419 |
418
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
420 |
404 405 406 406 111 407 419
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
421 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
422 |
179
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
423 |
404 421 406 406 111 407 422
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
424 |
420 423
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
425 |
403 424
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
426 |
400 425
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
427 |
426
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
428 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
429 |
199
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
430 |
209
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) ) |
431 |
|
lttr |
⊢ ( ( ( 𝑉 − 1 ) ∈ ℝ ∧ 𝑉 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( ( 𝑉 − 1 ) < 𝑉 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) < 𝑀 ) ) |
432 |
218 30 215 431
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) < 𝑉 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) < 𝑀 ) ) |
433 |
317 432
|
mpand |
⊢ ( 𝜑 → ( 𝑉 < 𝑀 → ( 𝑉 − 1 ) < 𝑀 ) ) |
434 |
433
|
imp |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) < 𝑀 ) |
435 |
434
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = ( 𝑉 − 1 ) ) |
436 |
435
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = ( 𝑉 − 1 ) ) |
437 |
430 436
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑉 − 1 ) ) |
438 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → 𝜑 ) |
439 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
440 |
439
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) |
441 |
440
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ) |
442 |
441
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ) |
443 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( 𝑗 + 1 ) = ( ( 𝑉 − 1 ) + 1 ) ) |
444 |
443 207
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑗 + 1 ) = 𝑉 ) |
445 |
444
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( 𝑉 ... 𝑁 ) ) |
446 |
445
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
447 |
446
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) |
448 |
442 447
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) |
449 |
448
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
450 |
438 449
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
451 |
429 437 450
|
csbied2 |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
452 |
240
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
453 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
454 |
428 451 452 453
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝐹 ‘ ( 𝑉 − 1 ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
455 |
454
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
456 |
455
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
457 |
199
|
a1i |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
458 |
|
iftrue |
⊢ ( 𝑉 < 𝑀 → if ( 𝑉 < 𝑀 , 𝑉 , ( 𝑉 + 1 ) ) = 𝑉 ) |
459 |
250 458
|
sylan9eqr |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑉 ) |
460 |
459
|
eqeq2d |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → ( 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ↔ 𝑗 = 𝑉 ) ) |
461 |
460
|
biimpa |
⊢ ( ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → 𝑗 = 𝑉 ) |
462 |
461 235
|
syl |
⊢ ( ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
463 |
457 462
|
csbied |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
464 |
463
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = 𝑉 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
465 |
270
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → 𝑉 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
466 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
467 |
428 464 465 466
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝐹 ‘ 𝑉 ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
468 |
467
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
469 |
468
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
470 |
427 456 469
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) |
471 |
470
|
ex |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
472 |
341 471
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
473 |
472
|
expdimp |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
474 |
473
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ) |
475 |
|
elimasni |
⊢ ( 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → 𝑉 𝑈 𝑛 ) |
476 |
|
eqcom |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑉 ) ↔ ( 𝑈 ‘ 𝑉 ) = 𝑛 ) |
477 |
|
fnbrfvb |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ 𝑉 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑈 ‘ 𝑉 ) = 𝑛 ↔ 𝑉 𝑈 𝑛 ) ) |
478 |
284 97 477
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑉 ) = 𝑛 ↔ 𝑉 𝑈 𝑛 ) ) |
479 |
476 478
|
bitrid |
⊢ ( 𝜑 → ( 𝑛 = ( 𝑈 ‘ 𝑉 ) ↔ 𝑉 𝑈 𝑛 ) ) |
480 |
475 479
|
imbitrrid |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
481 |
480
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
482 |
474 481
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
483 |
482
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
484 |
|
fvex |
⊢ ( 𝑈 ‘ 𝑉 ) ∈ V |
485 |
|
eqeq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ 𝑉 ) → ( 𝑛 = 𝑚 ↔ 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
486 |
485
|
imbi2d |
⊢ ( 𝑚 = ( 𝑈 ‘ 𝑉 ) → ( ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) ) |
487 |
486
|
ralbidv |
⊢ ( 𝑚 = ( 𝑈 ‘ 𝑉 ) → ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) ) |
488 |
484 487
|
spcev |
⊢ ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
489 |
483 488
|
syl |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
490 |
|
eldifsni |
⊢ ( 𝑀 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑀 ≠ 𝑉 ) |
491 |
6 490
|
syl |
⊢ ( 𝜑 → 𝑀 ≠ 𝑉 ) |
492 |
215 30
|
lttri2d |
⊢ ( 𝜑 → ( 𝑀 ≠ 𝑉 ↔ ( 𝑀 < 𝑉 ∨ 𝑉 < 𝑀 ) ) ) |
493 |
491 492
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 ∨ 𝑉 < 𝑀 ) ) |
494 |
297 489 493
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
495 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) |
496 |
495
|
rmo2 |
⊢ ( ∃* 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ↔ ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
497 |
|
rmoeq1 |
⊢ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) → ( ∃* 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ↔ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
498 |
4 101 103 497
|
4syl |
⊢ ( 𝜑 → ( ∃* 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ↔ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
499 |
496 498
|
bitr3id |
⊢ ( 𝜑 → ( ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
500 |
494 499
|
mpbid |
⊢ ( 𝜑 → ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) |