| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 2 |  | poimirlem2.1 | ⊢ ( 𝜑  →  𝐹  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 3 |  | poimirlem2.2 | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ℤ ) | 
						
							| 4 |  | poimirlem2.3 | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) | 
						
							| 5 |  | poimirlem2.4 | ⊢ ( 𝜑  →  𝑉  ∈  ( 1 ... ( 𝑁  −  1 ) ) ) | 
						
							| 6 |  | poimirlem2.5 | ⊢ ( 𝜑  →  𝑀  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } ) ) | 
						
							| 7 |  | dff1o3 | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  ↔  ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  ∧  Fun  ◡ 𝑈 ) ) | 
						
							| 8 | 7 | simprbi | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  Fun  ◡ 𝑈 ) | 
						
							| 9 | 4 8 | syl | ⊢ ( 𝜑  →  Fun  ◡ 𝑈 ) | 
						
							| 10 |  | imadif | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } ) )  =  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { ( 𝑉  +  1 ) } ) ) ) | 
						
							| 11 | 9 10 | syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } ) )  =  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { ( 𝑉  +  1 ) } ) ) ) | 
						
							| 12 |  | fzp1elp1 | ⊢ ( 𝑉  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑉  +  1 )  ∈  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 13 | 5 12 | syl | ⊢ ( 𝜑  →  ( 𝑉  +  1 )  ∈  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) ) ) | 
						
							| 14 | 1 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 15 |  | npcan1 | ⊢ ( 𝑁  ∈  ℂ  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝜑  →  ( 1 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 18 | 13 17 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑉  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 19 |  | fzsplit | ⊢ ( ( 𝑉  +  1 )  ∈  ( 1 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 21 | 20 | difeq1d | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ∖  { ( 𝑉  +  1 ) } ) ) | 
						
							| 22 |  | difundir | ⊢ ( ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( ( 1 ... ( 𝑉  +  1 ) )  ∖  { ( 𝑉  +  1 ) } )  ∪  ( ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } ) ) | 
						
							| 23 |  | elfzuz | ⊢ ( 𝑉  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  𝑉  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 24 | 5 23 | syl | ⊢ ( 𝜑  →  𝑉  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 25 |  | fzsuc | ⊢ ( 𝑉  ∈  ( ℤ≥ ‘ 1 )  →  ( 1 ... ( 𝑉  +  1 ) )  =  ( ( 1 ... 𝑉 )  ∪  { ( 𝑉  +  1 ) } ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( 𝜑  →  ( 1 ... ( 𝑉  +  1 ) )  =  ( ( 1 ... 𝑉 )  ∪  { ( 𝑉  +  1 ) } ) ) | 
						
							| 27 | 26 | difeq1d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑉  +  1 ) )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( ( 1 ... 𝑉 )  ∪  { ( 𝑉  +  1 ) } )  ∖  { ( 𝑉  +  1 ) } ) ) | 
						
							| 28 |  | difun2 | ⊢ ( ( ( 1 ... 𝑉 )  ∪  { ( 𝑉  +  1 ) } )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( 1 ... 𝑉 )  ∖  { ( 𝑉  +  1 ) } ) | 
						
							| 29 | 5 | elfzelzd | ⊢ ( 𝜑  →  𝑉  ∈  ℤ ) | 
						
							| 30 | 29 | zred | ⊢ ( 𝜑  →  𝑉  ∈  ℝ ) | 
						
							| 31 | 30 | ltp1d | ⊢ ( 𝜑  →  𝑉  <  ( 𝑉  +  1 ) ) | 
						
							| 32 | 29 | peano2zd | ⊢ ( 𝜑  →  ( 𝑉  +  1 )  ∈  ℤ ) | 
						
							| 33 | 32 | zred | ⊢ ( 𝜑  →  ( 𝑉  +  1 )  ∈  ℝ ) | 
						
							| 34 | 30 33 | ltnled | ⊢ ( 𝜑  →  ( 𝑉  <  ( 𝑉  +  1 )  ↔  ¬  ( 𝑉  +  1 )  ≤  𝑉 ) ) | 
						
							| 35 | 31 34 | mpbid | ⊢ ( 𝜑  →  ¬  ( 𝑉  +  1 )  ≤  𝑉 ) | 
						
							| 36 |  | elfzle2 | ⊢ ( ( 𝑉  +  1 )  ∈  ( 1 ... 𝑉 )  →  ( 𝑉  +  1 )  ≤  𝑉 ) | 
						
							| 37 | 35 36 | nsyl | ⊢ ( 𝜑  →  ¬  ( 𝑉  +  1 )  ∈  ( 1 ... 𝑉 ) ) | 
						
							| 38 |  | difsn | ⊢ ( ¬  ( 𝑉  +  1 )  ∈  ( 1 ... 𝑉 )  →  ( ( 1 ... 𝑉 )  ∖  { ( 𝑉  +  1 ) } )  =  ( 1 ... 𝑉 ) ) | 
						
							| 39 | 37 38 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑉 )  ∖  { ( 𝑉  +  1 ) } )  =  ( 1 ... 𝑉 ) ) | 
						
							| 40 | 28 39 | eqtrid | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑉 )  ∪  { ( 𝑉  +  1 ) } )  ∖  { ( 𝑉  +  1 ) } )  =  ( 1 ... 𝑉 ) ) | 
						
							| 41 | 27 40 | eqtrd | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑉  +  1 ) )  ∖  { ( 𝑉  +  1 ) } )  =  ( 1 ... 𝑉 ) ) | 
						
							| 42 | 33 | ltp1d | ⊢ ( 𝜑  →  ( 𝑉  +  1 )  <  ( ( 𝑉  +  1 )  +  1 ) ) | 
						
							| 43 |  | peano2re | ⊢ ( ( 𝑉  +  1 )  ∈  ℝ  →  ( ( 𝑉  +  1 )  +  1 )  ∈  ℝ ) | 
						
							| 44 | 33 43 | syl | ⊢ ( 𝜑  →  ( ( 𝑉  +  1 )  +  1 )  ∈  ℝ ) | 
						
							| 45 | 33 44 | ltnled | ⊢ ( 𝜑  →  ( ( 𝑉  +  1 )  <  ( ( 𝑉  +  1 )  +  1 )  ↔  ¬  ( ( 𝑉  +  1 )  +  1 )  ≤  ( 𝑉  +  1 ) ) ) | 
						
							| 46 | 42 45 | mpbid | ⊢ ( 𝜑  →  ¬  ( ( 𝑉  +  1 )  +  1 )  ≤  ( 𝑉  +  1 ) ) | 
						
							| 47 |  | elfzle1 | ⊢ ( ( 𝑉  +  1 )  ∈  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  →  ( ( 𝑉  +  1 )  +  1 )  ≤  ( 𝑉  +  1 ) ) | 
						
							| 48 | 46 47 | nsyl | ⊢ ( 𝜑  →  ¬  ( 𝑉  +  1 )  ∈  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 49 |  | difsn | ⊢ ( ¬  ( 𝑉  +  1 )  ∈  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  →  ( ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 50 | 48 49 | syl | ⊢ ( 𝜑  →  ( ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 51 | 41 50 | uneq12d | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑉  +  1 ) )  ∖  { ( 𝑉  +  1 ) } )  ∪  ( ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } ) )  =  ( ( 1 ... 𝑉 )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 52 | 22 51 | eqtrid | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( 1 ... 𝑉 )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 53 | 21 52 | eqtrd | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } )  =  ( ( 1 ... 𝑉 )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 54 | 53 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { ( 𝑉  +  1 ) } ) )  =  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 55 | 11 54 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { ( 𝑉  +  1 ) } ) )  =  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 56 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... 𝑉 )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 57 | 55 56 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { ( 𝑉  +  1 ) } ) )  =  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 58 | 57 | eleq2d | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { ( 𝑉  +  1 ) } ) )  ↔  𝑛  ∈  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) ) | 
						
							| 59 |  | eldif | ⊢ ( 𝑛  ∈  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { ( 𝑉  +  1 ) } ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } ) ) ) | 
						
							| 60 |  | elun | ⊢ ( 𝑛  ∈  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 61 | 58 59 60 | 3bitr3g | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) ) | 
						
							| 63 |  | imassrn | ⊢ ( 𝑈  “  ( 1 ... 𝑉 ) )  ⊆  ran  𝑈 | 
						
							| 64 |  | f1of | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) | 
						
							| 65 | 4 64 | syl | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) | 
						
							| 66 | 65 | frnd | ⊢ ( 𝜑  →  ran  𝑈  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 67 | 63 66 | sstrid | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑉 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 68 | 67 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 69 | 3 | ffnd | ⊢ ( 𝜑  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 70 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 71 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 72 |  | fnconstg | ⊢ ( 1  ∈  V  →  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑉 ) ) ) | 
						
							| 73 | 71 72 | ax-mp | ⊢ ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑉 ) ) | 
						
							| 74 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 75 |  | fnconstg | ⊢ ( 0  ∈  V  →  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 76 | 74 75 | ax-mp | ⊢ ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) | 
						
							| 77 | 73 76 | pm3.2i | ⊢ ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∧  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 78 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∩  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 79 | 9 78 | syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∩  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 80 |  | fzdisj | ⊢ ( 𝑉  <  ( 𝑉  +  1 )  →  ( ( 1 ... 𝑉 )  ∩  ( ( 𝑉  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 81 | 31 80 | syl | ⊢ ( 𝜑  →  ( ( 1 ... 𝑉 )  ∩  ( ( 𝑉  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 82 | 81 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∩  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 83 |  | ima0 | ⊢ ( 𝑈  “  ∅ )  =  ∅ | 
						
							| 84 | 82 83 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∩  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 85 | 79 84 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 86 |  | fnun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∧  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ∧  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 87 | 77 85 86 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 88 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 89 | 1 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 90 |  | peano2zm | ⊢ ( 𝑁  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ℤ ) | 
						
							| 91 |  | uzid | ⊢ ( ( 𝑁  −  1 )  ∈  ℤ  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 92 |  | peano2uz | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 93 | 89 90 91 92 | 4syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 94 | 16 93 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 95 |  | fzss2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ ( 𝑁  −  1 ) )  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 96 | 94 95 | syl | ⊢ ( 𝜑  →  ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 97 | 96 5 | sseldd | ⊢ ( 𝜑  →  𝑉  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 98 |  | fzsplit | ⊢ ( 𝑉  ∈  ( 1 ... 𝑁 )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 99 | 97 98 | syl | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 100 | 99 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 101 |  | f1ofo | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) | 
						
							| 102 | 4 101 | syl | ⊢ ( 𝜑  →  𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) | 
						
							| 103 |  | foima | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 )  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 104 | 102 103 | syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 105 | 100 104 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 106 | 88 105 | eqtr3id | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 107 | 106 | fneq2d | ⊢ ( 𝜑  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ↔  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) ) | 
						
							| 108 | 87 107 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 109 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 110 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 111 |  | inidm | ⊢ ( ( 1 ... 𝑁 )  ∩  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 ) | 
						
							| 112 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 113 |  | fvun1 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∧  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 114 | 73 76 113 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 115 | 85 114 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 116 | 71 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 117 | 116 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 118 | 115 117 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 119 | 118 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 120 | 70 109 110 110 111 112 119 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 121 |  | fnconstg | ⊢ ( 1  ∈  V  →  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) ) | 
						
							| 122 | 71 121 | ax-mp | ⊢ ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) | 
						
							| 123 |  | fnconstg | ⊢ ( 0  ∈  V  →  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 124 | 74 123 | ax-mp | ⊢ ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 125 | 122 124 | pm3.2i | ⊢ ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 126 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  +  1 ) )  ∩  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 127 | 9 126 | syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  +  1 ) )  ∩  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 128 |  | fzdisj | ⊢ ( ( 𝑉  +  1 )  <  ( ( 𝑉  +  1 )  +  1 )  →  ( ( 1 ... ( 𝑉  +  1 ) )  ∩  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 129 | 42 128 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑉  +  1 ) )  ∩  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  =  ∅ ) | 
						
							| 130 | 129 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  +  1 ) )  ∩  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 131 | 130 83 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  +  1 ) )  ∩  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 132 | 127 131 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 133 |  | fnun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 134 | 125 132 133 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 135 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 136 | 20 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 𝑈  “  ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 137 | 136 104 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  +  1 ) )  ∪  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 138 | 135 137 | eqtr3id | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 139 | 138 | fneq2d | ⊢ ( 𝜑  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∪  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ↔  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) ) | 
						
							| 140 | 134 139 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 141 | 140 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 142 |  | uzid | ⊢ ( 𝑉  ∈  ℤ  →  𝑉  ∈  ( ℤ≥ ‘ 𝑉 ) ) | 
						
							| 143 | 29 142 | syl | ⊢ ( 𝜑  →  𝑉  ∈  ( ℤ≥ ‘ 𝑉 ) ) | 
						
							| 144 |  | peano2uz | ⊢ ( 𝑉  ∈  ( ℤ≥ ‘ 𝑉 )  →  ( 𝑉  +  1 )  ∈  ( ℤ≥ ‘ 𝑉 ) ) | 
						
							| 145 |  | fzss2 | ⊢ ( ( 𝑉  +  1 )  ∈  ( ℤ≥ ‘ 𝑉 )  →  ( 1 ... 𝑉 )  ⊆  ( 1 ... ( 𝑉  +  1 ) ) ) | 
						
							| 146 |  | imass2 | ⊢ ( ( 1 ... 𝑉 )  ⊆  ( 1 ... ( 𝑉  +  1 ) )  →  ( 𝑈  “  ( 1 ... 𝑉 ) )  ⊆  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) ) | 
						
							| 147 | 143 144 145 146 | 4syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑉 ) )  ⊆  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) ) | 
						
							| 148 | 147 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) ) | 
						
							| 149 |  | fvun1 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 150 | 122 124 149 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 151 | 132 150 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 152 | 71 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 153 | 152 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 154 | 151 153 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 155 | 148 154 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 156 | 155 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 157 | 70 141 110 110 111 112 156 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 158 | 120 157 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 159 | 68 158 | mpdan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 160 |  | imassrn | ⊢ ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ⊆  ran  𝑈 | 
						
							| 161 | 160 66 | sstrid | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 162 | 161 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 163 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 164 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 165 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 166 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 167 |  | uzid | ⊢ ( ( 𝑉  +  1 )  ∈  ℤ  →  ( 𝑉  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  +  1 ) ) ) | 
						
							| 168 | 32 167 | syl | ⊢ ( 𝜑  →  ( 𝑉  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  +  1 ) ) ) | 
						
							| 169 |  | peano2uz | ⊢ ( ( 𝑉  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  +  1 ) )  →  ( ( 𝑉  +  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  +  1 ) ) ) | 
						
							| 170 |  | fzss1 | ⊢ ( ( ( 𝑉  +  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  +  1 ) )  →  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  ⊆  ( ( 𝑉  +  1 ) ... 𝑁 ) ) | 
						
							| 171 |  | imass2 | ⊢ ( ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 )  ⊆  ( ( 𝑉  +  1 ) ... 𝑁 )  →  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ⊆  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 172 | 168 169 170 171 | 4syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ⊆  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 173 | 172 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 174 |  | fvun2 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∧  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 175 | 73 76 174 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ∩  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 176 | 85 175 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 177 | 74 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 178 | 177 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 179 | 176 178 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 180 | 173 179 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 181 | 180 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 182 | 163 164 165 165 111 166 181 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  0 ) ) | 
						
							| 183 | 140 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 184 |  | fvun2 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∧  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 185 | 122 124 184 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ∩  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 186 | 132 185 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 187 | 74 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 188 | 187 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 189 | 186 188 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 190 | 189 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 191 | 163 183 165 165 111 166 190 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  0 ) ) | 
						
							| 192 | 182 191 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 193 | 162 192 | mpdan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 194 | 159 193 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 195 | 194 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 196 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  𝐹  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 197 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 198 |  | ovex | ⊢ ( 𝑦  +  1 )  ∈  V | 
						
							| 199 | 197 198 | ifex | ⊢ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  V | 
						
							| 200 | 199 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  V ) | 
						
							| 201 |  | breq1 | ⊢ ( 𝑦  =  ( 𝑉  −  1 )  →  ( 𝑦  <  𝑀  ↔  ( 𝑉  −  1 )  <  𝑀 ) ) | 
						
							| 202 | 201 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  ( 𝑦  <  𝑀  ↔  ( 𝑉  −  1 )  <  𝑀 ) ) | 
						
							| 203 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  𝑦  =  ( 𝑉  −  1 ) ) | 
						
							| 204 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑉  −  1 )  →  ( 𝑦  +  1 )  =  ( ( 𝑉  −  1 )  +  1 ) ) | 
						
							| 205 | 29 | zcnd | ⊢ ( 𝜑  →  𝑉  ∈  ℂ ) | 
						
							| 206 |  | npcan1 | ⊢ ( 𝑉  ∈  ℂ  →  ( ( 𝑉  −  1 )  +  1 )  =  𝑉 ) | 
						
							| 207 | 205 206 | syl | ⊢ ( 𝜑  →  ( ( 𝑉  −  1 )  +  1 )  =  𝑉 ) | 
						
							| 208 | 204 207 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  ( 𝑦  +  1 )  =  𝑉 ) | 
						
							| 209 | 202 203 208 | ifbieq12d | ⊢ ( ( 𝜑  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( ( 𝑉  −  1 )  <  𝑀 ,  ( 𝑉  −  1 ) ,  𝑉 ) ) | 
						
							| 210 | 209 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( ( 𝑉  −  1 )  <  𝑀 ,  ( 𝑉  −  1 ) ,  𝑉 ) ) | 
						
							| 211 | 6 | eldifad | ⊢ ( 𝜑  →  𝑀  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 212 | 211 | elfzelzd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 213 |  | zltlem1 | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑉  ∈  ℤ )  →  ( 𝑀  <  𝑉  ↔  𝑀  ≤  ( 𝑉  −  1 ) ) ) | 
						
							| 214 | 212 29 213 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  <  𝑉  ↔  𝑀  ≤  ( 𝑉  −  1 ) ) ) | 
						
							| 215 | 212 | zred | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 216 |  | peano2zm | ⊢ ( 𝑉  ∈  ℤ  →  ( 𝑉  −  1 )  ∈  ℤ ) | 
						
							| 217 | 29 216 | syl | ⊢ ( 𝜑  →  ( 𝑉  −  1 )  ∈  ℤ ) | 
						
							| 218 | 217 | zred | ⊢ ( 𝜑  →  ( 𝑉  −  1 )  ∈  ℝ ) | 
						
							| 219 | 215 218 | lenltd | ⊢ ( 𝜑  →  ( 𝑀  ≤  ( 𝑉  −  1 )  ↔  ¬  ( 𝑉  −  1 )  <  𝑀 ) ) | 
						
							| 220 | 214 219 | bitrd | ⊢ ( 𝜑  →  ( 𝑀  <  𝑉  ↔  ¬  ( 𝑉  −  1 )  <  𝑀 ) ) | 
						
							| 221 | 220 | biimpa | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ¬  ( 𝑉  −  1 )  <  𝑀 ) | 
						
							| 222 | 221 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  if ( ( 𝑉  −  1 )  <  𝑀 ,  ( 𝑉  −  1 ) ,  𝑉 )  =  𝑉 ) | 
						
							| 223 | 222 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( ( 𝑉  −  1 )  <  𝑀 ,  ( 𝑉  −  1 ) ,  𝑉 )  =  𝑉 ) | 
						
							| 224 | 210 223 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  𝑉 ) | 
						
							| 225 | 224 | eqeq2d | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  ( 𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ↔  𝑗  =  𝑉 ) ) | 
						
							| 226 | 225 | biimpa | ⊢ ( ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  ∧  𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  →  𝑗  =  𝑉 ) | 
						
							| 227 |  | oveq2 | ⊢ ( 𝑗  =  𝑉  →  ( 1 ... 𝑗 )  =  ( 1 ... 𝑉 ) ) | 
						
							| 228 | 227 | imaeq2d | ⊢ ( 𝑗  =  𝑉  →  ( 𝑈  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... 𝑉 ) ) ) | 
						
							| 229 | 228 | xpeq1d | ⊢ ( 𝑗  =  𝑉  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } ) ) | 
						
							| 230 |  | oveq1 | ⊢ ( 𝑗  =  𝑉  →  ( 𝑗  +  1 )  =  ( 𝑉  +  1 ) ) | 
						
							| 231 | 230 | oveq1d | ⊢ ( 𝑗  =  𝑉  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( ( 𝑉  +  1 ) ... 𝑁 ) ) | 
						
							| 232 | 231 | imaeq2d | ⊢ ( 𝑗  =  𝑉  →  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 233 | 232 | xpeq1d | ⊢ ( 𝑗  =  𝑉  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 234 | 229 233 | uneq12d | ⊢ ( 𝑗  =  𝑉  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 235 | 234 | oveq2d | ⊢ ( 𝑗  =  𝑉  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 236 | 226 235 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  ∧  𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 237 | 200 236 | csbied | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 238 |  | elfzm1b | ⊢ ( ( 𝑉  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑉  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑉  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 239 | 29 89 238 | syl2anc | ⊢ ( 𝜑  →  ( 𝑉  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑉  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 240 | 97 239 | mpbid | ⊢ ( 𝜑  →  ( 𝑉  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 241 | 240 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( 𝑉  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 242 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V ) | 
						
							| 243 | 196 237 241 242 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( 𝐹 ‘ ( 𝑉  −  1 ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 244 | 243 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 245 | 244 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 246 | 199 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  𝑉 )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  V ) | 
						
							| 247 |  | breq1 | ⊢ ( 𝑦  =  𝑉  →  ( 𝑦  <  𝑀  ↔  𝑉  <  𝑀 ) ) | 
						
							| 248 |  | id | ⊢ ( 𝑦  =  𝑉  →  𝑦  =  𝑉 ) | 
						
							| 249 |  | oveq1 | ⊢ ( 𝑦  =  𝑉  →  ( 𝑦  +  1 )  =  ( 𝑉  +  1 ) ) | 
						
							| 250 | 247 248 249 | ifbieq12d | ⊢ ( 𝑦  =  𝑉  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( 𝑉  <  𝑀 ,  𝑉 ,  ( 𝑉  +  1 ) ) ) | 
						
							| 251 |  | ltnsym | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑉  ∈  ℝ )  →  ( 𝑀  <  𝑉  →  ¬  𝑉  <  𝑀 ) ) | 
						
							| 252 | 215 30 251 | syl2anc | ⊢ ( 𝜑  →  ( 𝑀  <  𝑉  →  ¬  𝑉  <  𝑀 ) ) | 
						
							| 253 | 252 | imp | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ¬  𝑉  <  𝑀 ) | 
						
							| 254 | 253 | iffalsed | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  if ( 𝑉  <  𝑀 ,  𝑉 ,  ( 𝑉  +  1 ) )  =  ( 𝑉  +  1 ) ) | 
						
							| 255 | 250 254 | sylan9eqr | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  𝑉 )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( 𝑉  +  1 ) ) | 
						
							| 256 | 255 | eqeq2d | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  𝑉 )  →  ( 𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ↔  𝑗  =  ( 𝑉  +  1 ) ) ) | 
						
							| 257 | 256 | biimpa | ⊢ ( ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  𝑉 )  ∧  𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  →  𝑗  =  ( 𝑉  +  1 ) ) | 
						
							| 258 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( 1 ... 𝑗 )  =  ( 1 ... ( 𝑉  +  1 ) ) ) | 
						
							| 259 | 258 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( 𝑈  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) ) ) | 
						
							| 260 | 259 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } ) ) | 
						
							| 261 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( 𝑗  +  1 )  =  ( ( 𝑉  +  1 )  +  1 ) ) | 
						
							| 262 | 261 | oveq1d | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) | 
						
							| 263 | 262 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 264 | 263 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 265 | 260 264 | uneq12d | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 266 | 265 | oveq2d | ⊢ ( 𝑗  =  ( 𝑉  +  1 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 267 | 257 266 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  𝑉 )  ∧  𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 268 | 246 267 | csbied | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑦  =  𝑉 )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 269 |  | fz1ssfz0 | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... ( 𝑁  −  1 ) ) | 
						
							| 270 | 269 5 | sselid | ⊢ ( 𝜑  →  𝑉  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 271 | 270 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  𝑉  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 272 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V ) | 
						
							| 273 | 196 268 271 272 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( 𝐹 ‘ 𝑉 )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 274 | 273 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 275 | 274 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  +  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 276 | 195 245 275 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) | 
						
							| 277 | 276 | ex | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( ( 𝑉  +  1 )  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 278 | 62 277 | sylbid | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 279 | 278 | expdimp | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( ¬  𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 280 | 279 | necon1ad | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } ) ) ) | 
						
							| 281 |  | elimasni | ⊢ ( 𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } )  →  ( 𝑉  +  1 ) 𝑈 𝑛 ) | 
						
							| 282 |  | eqcom | ⊢ ( 𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) )  ↔  ( 𝑈 ‘ ( 𝑉  +  1 ) )  =  𝑛 ) | 
						
							| 283 |  | f1ofn | ⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 )  →  𝑈  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 284 | 4 283 | syl | ⊢ ( 𝜑  →  𝑈  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 285 |  | fnbrfvb | ⊢ ( ( 𝑈  Fn  ( 1 ... 𝑁 )  ∧  ( 𝑉  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑈 ‘ ( 𝑉  +  1 ) )  =  𝑛  ↔  ( 𝑉  +  1 ) 𝑈 𝑛 ) ) | 
						
							| 286 | 284 18 285 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ ( 𝑉  +  1 ) )  =  𝑛  ↔  ( 𝑉  +  1 ) 𝑈 𝑛 ) ) | 
						
							| 287 | 282 286 | bitrid | ⊢ ( 𝜑  →  ( 𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) )  ↔  ( 𝑉  +  1 ) 𝑈 𝑛 ) ) | 
						
							| 288 | 281 287 | imbitrrid | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } )  →  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) ) ) | 
						
							| 289 | 288 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( 𝑛  ∈  ( 𝑈  “  { ( 𝑉  +  1 ) } )  →  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) ) ) | 
						
							| 290 | 280 289 | syld | ⊢ ( ( ( 𝜑  ∧  𝑀  <  𝑉 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) ) ) | 
						
							| 291 | 290 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) ) ) | 
						
							| 292 |  | fvex | ⊢ ( 𝑈 ‘ ( 𝑉  +  1 ) )  ∈  V | 
						
							| 293 |  | eqeq2 | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑉  +  1 ) )  →  ( 𝑛  =  𝑚  ↔  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) ) ) | 
						
							| 294 | 293 | imbi2d | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑉  +  1 ) )  →  ( ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 )  ↔  ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) ) ) ) | 
						
							| 295 | 294 | ralbidv | ⊢ ( 𝑚  =  ( 𝑈 ‘ ( 𝑉  +  1 ) )  →  ( ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 )  ↔  ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) ) ) ) | 
						
							| 296 | 292 295 | spcev | ⊢ ( ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ ( 𝑉  +  1 ) ) )  →  ∃ 𝑚 ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 ) ) | 
						
							| 297 | 291 296 | syl | ⊢ ( ( 𝜑  ∧  𝑀  <  𝑉 )  →  ∃ 𝑚 ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 ) ) | 
						
							| 298 |  | imadif | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { 𝑉 } ) )  =  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑉 } ) ) ) | 
						
							| 299 | 9 298 | syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { 𝑉 } ) )  =  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑉 } ) ) ) | 
						
							| 300 | 99 | difeq1d | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { 𝑉 } )  =  ( ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ∖  { 𝑉 } ) ) | 
						
							| 301 |  | difundir | ⊢ ( ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ∖  { 𝑉 } )  =  ( ( ( 1 ... 𝑉 )  ∖  { 𝑉 } )  ∪  ( ( ( 𝑉  +  1 ) ... 𝑁 )  ∖  { 𝑉 } ) ) | 
						
							| 302 | 207 24 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑉  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 303 |  | uzid | ⊢ ( ( 𝑉  −  1 )  ∈  ℤ  →  ( 𝑉  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 304 |  | peano2uz | ⊢ ( ( 𝑉  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) )  →  ( ( 𝑉  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 305 | 29 216 303 304 | 4syl | ⊢ ( 𝜑  →  ( ( 𝑉  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 306 | 207 305 | eqeltrrd | ⊢ ( 𝜑  →  𝑉  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 307 |  | fzsplit2 | ⊢ ( ( ( ( 𝑉  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑉  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) )  →  ( 1 ... 𝑉 )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑉 ) ) ) | 
						
							| 308 | 302 306 307 | syl2anc | ⊢ ( 𝜑  →  ( 1 ... 𝑉 )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑉 ) ) ) | 
						
							| 309 | 207 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑉 )  =  ( 𝑉 ... 𝑉 ) ) | 
						
							| 310 |  | fzsn | ⊢ ( 𝑉  ∈  ℤ  →  ( 𝑉 ... 𝑉 )  =  { 𝑉 } ) | 
						
							| 311 | 29 310 | syl | ⊢ ( 𝜑  →  ( 𝑉 ... 𝑉 )  =  { 𝑉 } ) | 
						
							| 312 | 309 311 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑉 )  =  { 𝑉 } ) | 
						
							| 313 | 312 | uneq2d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑉 ) )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  { 𝑉 } ) ) | 
						
							| 314 | 308 313 | eqtrd | ⊢ ( 𝜑  →  ( 1 ... 𝑉 )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  { 𝑉 } ) ) | 
						
							| 315 | 314 | difeq1d | ⊢ ( 𝜑  →  ( ( 1 ... 𝑉 )  ∖  { 𝑉 } )  =  ( ( ( 1 ... ( 𝑉  −  1 ) )  ∪  { 𝑉 } )  ∖  { 𝑉 } ) ) | 
						
							| 316 |  | difun2 | ⊢ ( ( ( 1 ... ( 𝑉  −  1 ) )  ∪  { 𝑉 } )  ∖  { 𝑉 } )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∖  { 𝑉 } ) | 
						
							| 317 | 30 | ltm1d | ⊢ ( 𝜑  →  ( 𝑉  −  1 )  <  𝑉 ) | 
						
							| 318 | 218 30 | ltnled | ⊢ ( 𝜑  →  ( ( 𝑉  −  1 )  <  𝑉  ↔  ¬  𝑉  ≤  ( 𝑉  −  1 ) ) ) | 
						
							| 319 | 317 318 | mpbid | ⊢ ( 𝜑  →  ¬  𝑉  ≤  ( 𝑉  −  1 ) ) | 
						
							| 320 |  | elfzle2 | ⊢ ( 𝑉  ∈  ( 1 ... ( 𝑉  −  1 ) )  →  𝑉  ≤  ( 𝑉  −  1 ) ) | 
						
							| 321 | 319 320 | nsyl | ⊢ ( 𝜑  →  ¬  𝑉  ∈  ( 1 ... ( 𝑉  −  1 ) ) ) | 
						
							| 322 |  | difsn | ⊢ ( ¬  𝑉  ∈  ( 1 ... ( 𝑉  −  1 ) )  →  ( ( 1 ... ( 𝑉  −  1 ) )  ∖  { 𝑉 } )  =  ( 1 ... ( 𝑉  −  1 ) ) ) | 
						
							| 323 | 321 322 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑉  −  1 ) )  ∖  { 𝑉 } )  =  ( 1 ... ( 𝑉  −  1 ) ) ) | 
						
							| 324 | 316 323 | eqtrid | ⊢ ( 𝜑  →  ( ( ( 1 ... ( 𝑉  −  1 ) )  ∪  { 𝑉 } )  ∖  { 𝑉 } )  =  ( 1 ... ( 𝑉  −  1 ) ) ) | 
						
							| 325 | 315 324 | eqtrd | ⊢ ( 𝜑  →  ( ( 1 ... 𝑉 )  ∖  { 𝑉 } )  =  ( 1 ... ( 𝑉  −  1 ) ) ) | 
						
							| 326 |  | elfzle1 | ⊢ ( 𝑉  ∈  ( ( 𝑉  +  1 ) ... 𝑁 )  →  ( 𝑉  +  1 )  ≤  𝑉 ) | 
						
							| 327 | 35 326 | nsyl | ⊢ ( 𝜑  →  ¬  𝑉  ∈  ( ( 𝑉  +  1 ) ... 𝑁 ) ) | 
						
							| 328 |  | difsn | ⊢ ( ¬  𝑉  ∈  ( ( 𝑉  +  1 ) ... 𝑁 )  →  ( ( ( 𝑉  +  1 ) ... 𝑁 )  ∖  { 𝑉 } )  =  ( ( 𝑉  +  1 ) ... 𝑁 ) ) | 
						
							| 329 | 327 328 | syl | ⊢ ( 𝜑  →  ( ( ( 𝑉  +  1 ) ... 𝑁 )  ∖  { 𝑉 } )  =  ( ( 𝑉  +  1 ) ... 𝑁 ) ) | 
						
							| 330 | 325 329 | uneq12d | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑉 )  ∖  { 𝑉 } )  ∪  ( ( ( 𝑉  +  1 ) ... 𝑁 )  ∖  { 𝑉 } ) )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 331 | 301 330 | eqtrid | ⊢ ( 𝜑  →  ( ( ( 1 ... 𝑉 )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ∖  { 𝑉 } )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 332 | 300 331 | eqtrd | ⊢ ( 𝜑  →  ( ( 1 ... 𝑁 )  ∖  { 𝑉 } )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 333 | 332 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... 𝑁 )  ∖  { 𝑉 } ) )  =  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 334 | 299 333 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑉 } ) )  =  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 335 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) | 
						
							| 336 | 334 335 | eqtrdi | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑉 } ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 337 | 336 | eleq2d | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑉 } ) )  ↔  𝑛  ∈  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) ) | 
						
							| 338 |  | eldif | ⊢ ( 𝑛  ∈  ( ( 𝑈  “  ( 1 ... 𝑁 ) )  ∖  ( 𝑈  “  { 𝑉 } ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { 𝑉 } ) ) ) | 
						
							| 339 |  | elun | ⊢ ( 𝑛  ∈  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) | 
						
							| 340 | 337 338 339 | 3bitr3g | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { 𝑉 } ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) ) | 
						
							| 341 | 340 | adantr | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { 𝑉 } ) )  ↔  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) ) ) | 
						
							| 342 |  | imassrn | ⊢ ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ⊆  ran  𝑈 | 
						
							| 343 | 342 66 | sstrid | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 344 | 343 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 345 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 346 |  | fnconstg | ⊢ ( 1  ∈  V  →  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) ) | 
						
							| 347 | 71 346 | ax-mp | ⊢ ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) | 
						
							| 348 |  | fnconstg | ⊢ ( 0  ∈  V  →  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 349 | 74 348 | ax-mp | ⊢ ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) | 
						
							| 350 | 347 349 | pm3.2i | ⊢ ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∧  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 351 |  | imain | ⊢ ( Fun  ◡ 𝑈  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∩  ( 𝑉 ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) ) | 
						
							| 352 | 9 351 | syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∩  ( 𝑉 ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) ) | 
						
							| 353 |  | fzdisj | ⊢ ( ( 𝑉  −  1 )  <  𝑉  →  ( ( 1 ... ( 𝑉  −  1 ) )  ∩  ( 𝑉 ... 𝑁 ) )  =  ∅ ) | 
						
							| 354 | 317 353 | syl | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑉  −  1 ) )  ∩  ( 𝑉 ... 𝑁 ) )  =  ∅ ) | 
						
							| 355 | 354 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∩  ( 𝑉 ... 𝑁 ) ) )  =  ( 𝑈  “  ∅ ) ) | 
						
							| 356 | 355 83 | eqtrdi | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∩  ( 𝑉 ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 357 | 352 356 | eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  =  ∅ ) | 
						
							| 358 |  | fnun | ⊢ ( ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∧  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  ∧  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  =  ∅ )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) ) | 
						
							| 359 | 350 357 358 | sylancr | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) ) | 
						
							| 360 |  | imaundi | ⊢ ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( 𝑉 ... 𝑁 ) ) )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 361 |  | uzss | ⊢ ( 𝑉  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) )  →  ( ℤ≥ ‘ 𝑉 )  ⊆  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 362 | 306 361 | syl | ⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝑉 )  ⊆  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 363 |  | elfzuz3 | ⊢ ( 𝑉  ∈  ( 1 ... ( 𝑁  −  1 ) )  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑉 ) ) | 
						
							| 364 | 5 363 | syl | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ 𝑉 ) ) | 
						
							| 365 | 362 364 | sseldd | ⊢ ( 𝜑  →  ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 366 |  | peano2uz | ⊢ ( ( 𝑁  −  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) )  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 367 | 365 366 | syl | ⊢ ( 𝜑  →  ( ( 𝑁  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 368 | 16 367 | eqeltrrd | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) ) | 
						
							| 369 |  | fzsplit2 | ⊢ ( ( ( ( 𝑉  −  1 )  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑁  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) ) )  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 370 | 302 368 369 | syl2anc | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑁 ) ) ) | 
						
							| 371 | 207 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑁 )  =  ( 𝑉 ... 𝑁 ) ) | 
						
							| 372 | 371 | uneq2d | ⊢ ( 𝜑  →  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( ( ( 𝑉  −  1 )  +  1 ) ... 𝑁 ) )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 373 | 370 372 | eqtrd | ⊢ ( 𝜑  →  ( 1 ... 𝑁 )  =  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 374 | 373 | imaeq2d | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( 𝑉 ... 𝑁 ) ) ) ) | 
						
							| 375 | 374 104 | eqtr3d | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 1 ... ( 𝑉  −  1 ) )  ∪  ( 𝑉 ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 376 | 360 375 | eqtr3id | ⊢ ( 𝜑  →  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  =  ( 1 ... 𝑁 ) ) | 
						
							| 377 | 376 | fneq2d | ⊢ ( 𝜑  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∪  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  ↔  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) ) | 
						
							| 378 | 359 377 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 379 | 378 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 380 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 381 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 382 |  | fvun1 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∧  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 383 | 347 349 382 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 384 | 357 383 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } ) ‘ 𝑛 ) ) | 
						
							| 385 | 71 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 386 | 385 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } ) ‘ 𝑛 )  =  1 ) | 
						
							| 387 | 384 386 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 388 | 387 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 389 | 345 379 380 380 111 381 388 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 390 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 391 |  | fzss2 | ⊢ ( 𝑉  ∈  ( ℤ≥ ‘ ( 𝑉  −  1 ) )  →  ( 1 ... ( 𝑉  −  1 ) )  ⊆  ( 1 ... 𝑉 ) ) | 
						
							| 392 | 306 391 | syl | ⊢ ( 𝜑  →  ( 1 ... ( 𝑉  −  1 ) )  ⊆  ( 1 ... 𝑉 ) ) | 
						
							| 393 |  | imass2 | ⊢ ( ( 1 ... ( 𝑉  −  1 ) )  ⊆  ( 1 ... 𝑉 )  →  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ⊆  ( 𝑈  “  ( 1 ... 𝑉 ) ) ) | 
						
							| 394 | 392 393 | syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ⊆  ( 𝑈  “  ( 1 ... 𝑉 ) ) ) | 
						
							| 395 | 394 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑉 ) ) ) | 
						
							| 396 | 395 118 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 397 | 396 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  1 ) | 
						
							| 398 | 345 390 380 380 111 381 397 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  1 ) ) | 
						
							| 399 | 389 398 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 400 | 344 399 | mpdan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 401 |  | imassrn | ⊢ ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ⊆  ran  𝑈 | 
						
							| 402 | 401 66 | sstrid | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 403 | 402 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 404 | 69 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  𝑇  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 405 | 378 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 406 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 407 |  | eqidd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑇 ‘ 𝑛 )  =  ( 𝑇 ‘ 𝑛 ) ) | 
						
							| 408 |  | fzss1 | ⊢ ( ( 𝑉  +  1 )  ∈  ( ℤ≥ ‘ 𝑉 )  →  ( ( 𝑉  +  1 ) ... 𝑁 )  ⊆  ( 𝑉 ... 𝑁 ) ) | 
						
							| 409 |  | imass2 | ⊢ ( ( ( 𝑉  +  1 ) ... 𝑁 )  ⊆  ( 𝑉 ... 𝑁 )  →  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ⊆  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 410 | 143 144 408 409 | 4syl | ⊢ ( 𝜑  →  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ⊆  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 411 | 410 | sselda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  𝑛  ∈  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 412 |  | fvun2 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  Fn  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∧  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } )  Fn  ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ∧  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 413 | 347 349 412 | mp3an12 | ⊢ ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∩  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  =  ∅  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 414 | 357 413 | sylan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  ( ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 ) ) | 
						
							| 415 | 74 | fvconst2 | ⊢ ( 𝑛  ∈  ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  →  ( ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 416 | 415 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  →  ( ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ‘ 𝑛 )  =  0 ) | 
						
							| 417 | 414 416 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 418 | 411 417 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 419 | 418 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 420 | 404 405 406 406 111 407 419 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  0 ) ) | 
						
							| 421 | 108 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  Fn  ( 1 ... 𝑁 ) ) | 
						
							| 422 | 179 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ‘ 𝑛 )  =  0 ) | 
						
							| 423 | 404 421 406 406 111 407 422 | ofval | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇 ‘ 𝑛 )  +  0 ) ) | 
						
							| 424 | 420 423 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 425 | 403 424 | mpdan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 426 | 400 425 | jaodan | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 427 | 426 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 428 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  𝐹  =  ( 𝑦  ∈  ( 0 ... ( 𝑁  −  1 ) )  ↦  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) ) | 
						
							| 429 | 199 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  V ) | 
						
							| 430 | 209 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  if ( ( 𝑉  −  1 )  <  𝑀 ,  ( 𝑉  −  1 ) ,  𝑉 ) ) | 
						
							| 431 |  | lttr | ⊢ ( ( ( 𝑉  −  1 )  ∈  ℝ  ∧  𝑉  ∈  ℝ  ∧  𝑀  ∈  ℝ )  →  ( ( ( 𝑉  −  1 )  <  𝑉  ∧  𝑉  <  𝑀 )  →  ( 𝑉  −  1 )  <  𝑀 ) ) | 
						
							| 432 | 218 30 215 431 | syl3anc | ⊢ ( 𝜑  →  ( ( ( 𝑉  −  1 )  <  𝑉  ∧  𝑉  <  𝑀 )  →  ( 𝑉  −  1 )  <  𝑀 ) ) | 
						
							| 433 | 317 432 | mpand | ⊢ ( 𝜑  →  ( 𝑉  <  𝑀  →  ( 𝑉  −  1 )  <  𝑀 ) ) | 
						
							| 434 | 433 | imp | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( 𝑉  −  1 )  <  𝑀 ) | 
						
							| 435 | 434 | iftrued | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  if ( ( 𝑉  −  1 )  <  𝑀 ,  ( 𝑉  −  1 ) ,  𝑉 )  =  ( 𝑉  −  1 ) ) | 
						
							| 436 | 435 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( ( 𝑉  −  1 )  <  𝑀 ,  ( 𝑉  −  1 ) ,  𝑉 )  =  ( 𝑉  −  1 ) ) | 
						
							| 437 | 430 436 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  ( 𝑉  −  1 ) ) | 
						
							| 438 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  𝜑 ) | 
						
							| 439 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑉  −  1 )  →  ( 1 ... 𝑗 )  =  ( 1 ... ( 𝑉  −  1 ) ) ) | 
						
							| 440 | 439 | imaeq2d | ⊢ ( 𝑗  =  ( 𝑉  −  1 )  →  ( 𝑈  “  ( 1 ... 𝑗 ) )  =  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) ) ) | 
						
							| 441 | 440 | xpeq1d | ⊢ ( 𝑗  =  ( 𝑉  −  1 )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } ) ) | 
						
							| 442 | 441 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  =  ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } ) ) | 
						
							| 443 |  | oveq1 | ⊢ ( 𝑗  =  ( 𝑉  −  1 )  →  ( 𝑗  +  1 )  =  ( ( 𝑉  −  1 )  +  1 ) ) | 
						
							| 444 | 443 207 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( 𝑗  +  1 )  =  𝑉 ) | 
						
							| 445 | 444 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( ( 𝑗  +  1 ) ... 𝑁 )  =  ( 𝑉 ... 𝑁 ) ) | 
						
							| 446 | 445 | imaeq2d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  =  ( 𝑈  “  ( 𝑉 ... 𝑁 ) ) ) | 
						
							| 447 | 446 | xpeq1d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } )  =  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) | 
						
							| 448 | 442 447 | uneq12d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) )  =  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) | 
						
							| 449 | 448 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 450 | 438 449 | sylan | ⊢ ( ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  ∧  𝑗  =  ( 𝑉  −  1 ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 451 | 429 437 450 | csbied2 | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  ( 𝑉  −  1 ) )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 452 | 240 | adantr | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( 𝑉  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 453 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V ) | 
						
							| 454 | 428 451 452 453 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( 𝐹 ‘ ( 𝑉  −  1 ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 455 | 454 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 456 | 455 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( 𝑉 ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 457 | 199 | a1i | ⊢ ( ( 𝑉  <  𝑀  ∧  𝑦  =  𝑉 )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ∈  V ) | 
						
							| 458 |  | iftrue | ⊢ ( 𝑉  <  𝑀  →  if ( 𝑉  <  𝑀 ,  𝑉 ,  ( 𝑉  +  1 ) )  =  𝑉 ) | 
						
							| 459 | 250 458 | sylan9eqr | ⊢ ( ( 𝑉  <  𝑀  ∧  𝑦  =  𝑉 )  →  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  =  𝑉 ) | 
						
							| 460 | 459 | eqeq2d | ⊢ ( ( 𝑉  <  𝑀  ∧  𝑦  =  𝑉 )  →  ( 𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  ↔  𝑗  =  𝑉 ) ) | 
						
							| 461 | 460 | biimpa | ⊢ ( ( ( 𝑉  <  𝑀  ∧  𝑦  =  𝑉 )  ∧  𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  →  𝑗  =  𝑉 ) | 
						
							| 462 | 461 235 | syl | ⊢ ( ( ( 𝑉  <  𝑀  ∧  𝑦  =  𝑉 )  ∧  𝑗  =  if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) ) )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 463 | 457 462 | csbied | ⊢ ( ( 𝑉  <  𝑀  ∧  𝑦  =  𝑉 )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 464 | 463 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑦  =  𝑉 )  →  ⦋ if ( 𝑦  <  𝑀 ,  𝑦 ,  ( 𝑦  +  1 ) )  /  𝑗 ⦌ ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑗 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑗  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 465 | 270 | adantr | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  𝑉  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 466 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) )  ∈  V ) | 
						
							| 467 | 428 464 465 466 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( 𝐹 ‘ 𝑉 )  =  ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ) | 
						
							| 468 | 467 | fveq1d | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 469 | 468 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  =  ( ( 𝑇  ∘f   +  ( ( ( 𝑈  “  ( 1 ... 𝑉 ) )  ×  { 1 } )  ∪  ( ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) )  ×  { 0 } ) ) ) ‘ 𝑛 ) ) | 
						
							| 470 | 427 456 469 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) | 
						
							| 471 | 470 | ex | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... ( 𝑉  −  1 ) ) )  ∨  𝑛  ∈  ( 𝑈  “  ( ( 𝑉  +  1 ) ... 𝑁 ) ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 472 | 341 471 | sylbid | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ( ( 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) )  ∧  ¬  𝑛  ∈  ( 𝑈  “  { 𝑉 } ) )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 473 | 472 | expdimp | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( ¬  𝑛  ∈  ( 𝑈  “  { 𝑉 } )  →  ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  =  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 474 | 473 | necon1ad | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  ∈  ( 𝑈  “  { 𝑉 } ) ) ) | 
						
							| 475 |  | elimasni | ⊢ ( 𝑛  ∈  ( 𝑈  “  { 𝑉 } )  →  𝑉 𝑈 𝑛 ) | 
						
							| 476 |  | eqcom | ⊢ ( 𝑛  =  ( 𝑈 ‘ 𝑉 )  ↔  ( 𝑈 ‘ 𝑉 )  =  𝑛 ) | 
						
							| 477 |  | fnbrfvb | ⊢ ( ( 𝑈  Fn  ( 1 ... 𝑁 )  ∧  𝑉  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑈 ‘ 𝑉 )  =  𝑛  ↔  𝑉 𝑈 𝑛 ) ) | 
						
							| 478 | 284 97 477 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑈 ‘ 𝑉 )  =  𝑛  ↔  𝑉 𝑈 𝑛 ) ) | 
						
							| 479 | 476 478 | bitrid | ⊢ ( 𝜑  →  ( 𝑛  =  ( 𝑈 ‘ 𝑉 )  ↔  𝑉 𝑈 𝑛 ) ) | 
						
							| 480 | 475 479 | imbitrrid | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 𝑈  “  { 𝑉 } )  →  𝑛  =  ( 𝑈 ‘ 𝑉 ) ) ) | 
						
							| 481 | 480 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( 𝑛  ∈  ( 𝑈  “  { 𝑉 } )  →  𝑛  =  ( 𝑈 ‘ 𝑉 ) ) ) | 
						
							| 482 | 474 481 | syld | ⊢ ( ( ( 𝜑  ∧  𝑉  <  𝑀 )  ∧  𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) )  →  ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ 𝑉 ) ) ) | 
						
							| 483 | 482 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ 𝑉 ) ) ) | 
						
							| 484 |  | fvex | ⊢ ( 𝑈 ‘ 𝑉 )  ∈  V | 
						
							| 485 |  | eqeq2 | ⊢ ( 𝑚  =  ( 𝑈 ‘ 𝑉 )  →  ( 𝑛  =  𝑚  ↔  𝑛  =  ( 𝑈 ‘ 𝑉 ) ) ) | 
						
							| 486 | 485 | imbi2d | ⊢ ( 𝑚  =  ( 𝑈 ‘ 𝑉 )  →  ( ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 )  ↔  ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ 𝑉 ) ) ) ) | 
						
							| 487 | 486 | ralbidv | ⊢ ( 𝑚  =  ( 𝑈 ‘ 𝑉 )  →  ( ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 )  ↔  ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ 𝑉 ) ) ) ) | 
						
							| 488 | 484 487 | spcev | ⊢ ( ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  ( 𝑈 ‘ 𝑉 ) )  →  ∃ 𝑚 ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 ) ) | 
						
							| 489 | 483 488 | syl | ⊢ ( ( 𝜑  ∧  𝑉  <  𝑀 )  →  ∃ 𝑚 ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 ) ) | 
						
							| 490 |  | eldifsni | ⊢ ( 𝑀  ∈  ( ( 0 ... 𝑁 )  ∖  { 𝑉 } )  →  𝑀  ≠  𝑉 ) | 
						
							| 491 | 6 490 | syl | ⊢ ( 𝜑  →  𝑀  ≠  𝑉 ) | 
						
							| 492 | 215 30 | lttri2d | ⊢ ( 𝜑  →  ( 𝑀  ≠  𝑉  ↔  ( 𝑀  <  𝑉  ∨  𝑉  <  𝑀 ) ) ) | 
						
							| 493 | 491 492 | mpbid | ⊢ ( 𝜑  →  ( 𝑀  <  𝑉  ∨  𝑉  <  𝑀 ) ) | 
						
							| 494 | 297 489 493 | mpjaodan | ⊢ ( 𝜑  →  ∃ 𝑚 ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 ) ) | 
						
							| 495 |  | nfv | ⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) | 
						
							| 496 | 495 | rmo2 | ⊢ ( ∃* 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  ↔  ∃ 𝑚 ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 ) ) | 
						
							| 497 |  | rmoeq1 | ⊢ ( ( 𝑈  “  ( 1 ... 𝑁 ) )  =  ( 1 ... 𝑁 )  →  ( ∃* 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  ↔  ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 498 | 4 101 103 497 | 4syl | ⊢ ( 𝜑  →  ( ∃* 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  ↔  ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 499 | 496 498 | bitr3id | ⊢ ( 𝜑  →  ( ∃ 𝑚 ∀ 𝑛  ∈  ( 𝑈  “  ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 )  →  𝑛  =  𝑚 )  ↔  ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) | 
						
							| 500 | 494 499 | mpbid | ⊢ ( 𝜑  →  ∃* 𝑛  ∈  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉  −  1 ) ) ‘ 𝑛 )  ≠  ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) |