Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem2.1 |
⊢ ( 𝜑 → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
3 |
|
poimirlem2.2 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ℤ ) |
4 |
|
poimirlem2.3 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) |
5 |
|
poimirlem2.4 |
⊢ ( 𝜑 → 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) |
6 |
|
poimirlem2.5 |
⊢ ( 𝜑 → 𝑀 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) ) |
7 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ◡ 𝑈 ) ) |
8 |
7
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ◡ 𝑈 ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → Fun ◡ 𝑈 ) |
10 |
|
imadif |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
12 |
|
fzp1elp1 |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑉 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
13 |
5 12
|
syl |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) ) |
14 |
1
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
15 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
16 |
14 15
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 1 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 1 ... 𝑁 ) ) |
18 |
13 17
|
eleqtrd |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
19 |
|
fzsplit |
⊢ ( ( 𝑉 + 1 ) ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
21 |
20
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∖ { ( 𝑉 + 1 ) } ) ) |
22 |
|
difundir |
⊢ ( ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) ∪ ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) |
23 |
|
elfzuz |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑉 ∈ ( ℤ≥ ‘ 1 ) ) |
24 |
5 23
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( ℤ≥ ‘ 1 ) ) |
25 |
|
fzsuc |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑉 + 1 ) ) = ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ) |
26 |
24 25
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑉 + 1 ) ) = ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ) |
27 |
26
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ∖ { ( 𝑉 + 1 ) } ) ) |
28 |
|
difun2 |
⊢ ( ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ∖ { ( 𝑉 + 1 ) } ) = ( ( 1 ... 𝑉 ) ∖ { ( 𝑉 + 1 ) } ) |
29 |
5
|
elfzelzd |
⊢ ( 𝜑 → 𝑉 ∈ ℤ ) |
30 |
29
|
zred |
⊢ ( 𝜑 → 𝑉 ∈ ℝ ) |
31 |
30
|
ltp1d |
⊢ ( 𝜑 → 𝑉 < ( 𝑉 + 1 ) ) |
32 |
29
|
peano2zd |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ℤ ) |
33 |
32
|
zred |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ℝ ) |
34 |
30 33
|
ltnled |
⊢ ( 𝜑 → ( 𝑉 < ( 𝑉 + 1 ) ↔ ¬ ( 𝑉 + 1 ) ≤ 𝑉 ) ) |
35 |
31 34
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝑉 + 1 ) ≤ 𝑉 ) |
36 |
|
elfzle2 |
⊢ ( ( 𝑉 + 1 ) ∈ ( 1 ... 𝑉 ) → ( 𝑉 + 1 ) ≤ 𝑉 ) |
37 |
35 36
|
nsyl |
⊢ ( 𝜑 → ¬ ( 𝑉 + 1 ) ∈ ( 1 ... 𝑉 ) ) |
38 |
|
difsn |
⊢ ( ¬ ( 𝑉 + 1 ) ∈ ( 1 ... 𝑉 ) → ( ( 1 ... 𝑉 ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
39 |
37 38
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
40 |
28 39
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑉 ) ∪ { ( 𝑉 + 1 ) } ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
41 |
27 40
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( 1 ... 𝑉 ) ) |
42 |
33
|
ltp1d |
⊢ ( 𝜑 → ( 𝑉 + 1 ) < ( ( 𝑉 + 1 ) + 1 ) ) |
43 |
|
peano2re |
⊢ ( ( 𝑉 + 1 ) ∈ ℝ → ( ( 𝑉 + 1 ) + 1 ) ∈ ℝ ) |
44 |
33 43
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 + 1 ) + 1 ) ∈ ℝ ) |
45 |
33 44
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑉 + 1 ) < ( ( 𝑉 + 1 ) + 1 ) ↔ ¬ ( ( 𝑉 + 1 ) + 1 ) ≤ ( 𝑉 + 1 ) ) ) |
46 |
42 45
|
mpbid |
⊢ ( 𝜑 → ¬ ( ( 𝑉 + 1 ) + 1 ) ≤ ( 𝑉 + 1 ) ) |
47 |
|
elfzle1 |
⊢ ( ( 𝑉 + 1 ) ∈ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) → ( ( 𝑉 + 1 ) + 1 ) ≤ ( 𝑉 + 1 ) ) |
48 |
46 47
|
nsyl |
⊢ ( 𝜑 → ¬ ( 𝑉 + 1 ) ∈ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
49 |
|
difsn |
⊢ ( ¬ ( 𝑉 + 1 ) ∈ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) → ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
50 |
48 49
|
syl |
⊢ ( 𝜑 → ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
51 |
41 50
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑉 + 1 ) ) ∖ { ( 𝑉 + 1 ) } ) ∪ ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
52 |
22 51
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∖ { ( 𝑉 + 1 ) } ) = ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
53 |
21 52
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) = ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
54 |
53
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { ( 𝑉 + 1 ) } ) ) = ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
55 |
11 54
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) = ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
56 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
57 |
55 56
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
58 |
57
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) ) |
59 |
|
eldif |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
60 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
61 |
58 59 60
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) ) |
63 |
|
imassrn |
⊢ ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ran 𝑈 |
64 |
|
f1of |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
65 |
4 64
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) ) |
66 |
65
|
frnd |
⊢ ( 𝜑 → ran 𝑈 ⊆ ( 1 ... 𝑁 ) ) |
67 |
63 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ( 1 ... 𝑁 ) ) |
68 |
67
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
69 |
3
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ( 1 ... 𝑁 ) ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
71 |
|
1ex |
⊢ 1 ∈ V |
72 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
73 |
71 72
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) |
74 |
|
c0ex |
⊢ 0 ∈ V |
75 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
76 |
74 75
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
77 |
73 76
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
78 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
79 |
9 78
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
80 |
|
fzdisj |
⊢ ( 𝑉 < ( 𝑉 + 1 ) → ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) = ∅ ) |
81 |
31 80
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) = ∅ ) |
82 |
81
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
83 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
84 |
82 83
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∩ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
85 |
79 84
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ) |
86 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
87 |
77 85 86
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
88 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
89 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
90 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
91 |
89 90
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ ) |
92 |
|
uzid |
⊢ ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
93 |
91 92
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
94 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
95 |
93 94
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
96 |
16 95
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
97 |
|
fzss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
98 |
96 97
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) ) |
99 |
98 5
|
sseldd |
⊢ ( 𝜑 → 𝑉 ∈ ( 1 ... 𝑁 ) ) |
100 |
|
fzsplit |
⊢ ( 𝑉 ∈ ( 1 ... 𝑁 ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
101 |
99 100
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
102 |
101
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
103 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
104 |
4 103
|
syl |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ) |
105 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
106 |
104 105
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) ) |
107 |
102 106
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
108 |
88 107
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
109 |
108
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
110 |
87 109
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
111 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
112 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
113 |
|
inidm |
⊢ ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) |
114 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
115 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) ) |
116 |
73 76 115
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) ) |
117 |
85 116
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) ) |
118 |
71
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
119 |
118
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
120 |
117 119
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
121 |
120
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
122 |
70 111 112 112 113 114 121
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
123 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
124 |
71 123
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) |
125 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
126 |
74 125
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
127 |
124 126
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
128 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
129 |
9 128
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
130 |
|
fzdisj |
⊢ ( ( 𝑉 + 1 ) < ( ( 𝑉 + 1 ) + 1 ) → ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
131 |
42 130
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ ) |
132 |
131
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
133 |
132 83
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∩ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
134 |
129 133
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) |
135 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
136 |
127 134 135
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
137 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
138 |
20
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) |
139 |
138 106
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 + 1 ) ) ∪ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
140 |
137 139
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
141 |
140
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∪ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
142 |
136 141
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
143 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
144 |
|
uzid |
⊢ ( 𝑉 ∈ ℤ → 𝑉 ∈ ( ℤ≥ ‘ 𝑉 ) ) |
145 |
29 144
|
syl |
⊢ ( 𝜑 → 𝑉 ∈ ( ℤ≥ ‘ 𝑉 ) ) |
146 |
|
peano2uz |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ 𝑉 ) → ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) ) |
147 |
145 146
|
syl |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) ) |
148 |
|
fzss2 |
⊢ ( ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) → ( 1 ... 𝑉 ) ⊆ ( 1 ... ( 𝑉 + 1 ) ) ) |
149 |
147 148
|
syl |
⊢ ( 𝜑 → ( 1 ... 𝑉 ) ⊆ ( 1 ... ( 𝑉 + 1 ) ) ) |
150 |
|
imass2 |
⊢ ( ( 1 ... 𝑉 ) ⊆ ( 1 ... ( 𝑉 + 1 ) ) → ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
151 |
149 150
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑉 ) ) ⊆ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
152 |
151
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
153 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
154 |
124 126 153
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
155 |
134 154
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
156 |
71
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
157 |
156
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
158 |
155 157
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
159 |
152 158
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
160 |
159
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
161 |
70 143 112 112 113 114 160
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
162 |
122 161
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
163 |
68 162
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
164 |
|
imassrn |
⊢ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ran 𝑈 |
165 |
164 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) ) |
166 |
165
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
167 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
168 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
169 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
170 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
171 |
|
uzid |
⊢ ( ( 𝑉 + 1 ) ∈ ℤ → ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) ) |
172 |
32 171
|
syl |
⊢ ( 𝜑 → ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) ) |
173 |
|
peano2uz |
⊢ ( ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) → ( ( 𝑉 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) ) |
174 |
172 173
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) ) |
175 |
|
fzss1 |
⊢ ( ( ( 𝑉 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 + 1 ) ) → ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ⊆ ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
176 |
174 175
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ⊆ ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
177 |
|
imass2 |
⊢ ( ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ⊆ ( ( 𝑉 + 1 ) ... 𝑁 ) → ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
178 |
176 177
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
179 |
178
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
180 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑉 ) ) ∧ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
181 |
73 76 180
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) ∩ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
182 |
85 181
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
183 |
74
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) → ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
184 |
183
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
185 |
182 184
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
186 |
179 185
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
187 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
188 |
167 168 169 169 113 170 187
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
189 |
142
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
190 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∧ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
191 |
124 126 190
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ∩ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
192 |
134 191
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
193 |
74
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) → ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
194 |
193
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
195 |
192 194
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
196 |
195
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
197 |
167 189 169 169 113 170 196
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
198 |
188 197
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
199 |
166 198
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
200 |
163 199
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
201 |
200
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
202 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
203 |
|
vex |
⊢ 𝑦 ∈ V |
204 |
|
ovex |
⊢ ( 𝑦 + 1 ) ∈ V |
205 |
203 204
|
ifex |
⊢ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V |
206 |
205
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
207 |
|
breq1 |
⊢ ( 𝑦 = ( 𝑉 − 1 ) → ( 𝑦 < 𝑀 ↔ ( 𝑉 − 1 ) < 𝑀 ) ) |
208 |
207
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → ( 𝑦 < 𝑀 ↔ ( 𝑉 − 1 ) < 𝑀 ) ) |
209 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → 𝑦 = ( 𝑉 − 1 ) ) |
210 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑉 − 1 ) → ( 𝑦 + 1 ) = ( ( 𝑉 − 1 ) + 1 ) ) |
211 |
29
|
zcnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
212 |
|
npcan1 |
⊢ ( 𝑉 ∈ ℂ → ( ( 𝑉 − 1 ) + 1 ) = 𝑉 ) |
213 |
211 212
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) + 1 ) = 𝑉 ) |
214 |
210 213
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → ( 𝑦 + 1 ) = 𝑉 ) |
215 |
208 209 214
|
ifbieq12d |
⊢ ( ( 𝜑 ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) ) |
216 |
215
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) ) |
217 |
6
|
eldifad |
⊢ ( 𝜑 → 𝑀 ∈ ( 0 ... 𝑁 ) ) |
218 |
217
|
elfzelzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
219 |
|
zltlem1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑉 ∈ ℤ ) → ( 𝑀 < 𝑉 ↔ 𝑀 ≤ ( 𝑉 − 1 ) ) ) |
220 |
218 29 219
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 ↔ 𝑀 ≤ ( 𝑉 − 1 ) ) ) |
221 |
218
|
zred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
222 |
|
peano2zm |
⊢ ( 𝑉 ∈ ℤ → ( 𝑉 − 1 ) ∈ ℤ ) |
223 |
29 222
|
syl |
⊢ ( 𝜑 → ( 𝑉 − 1 ) ∈ ℤ ) |
224 |
223
|
zred |
⊢ ( 𝜑 → ( 𝑉 − 1 ) ∈ ℝ ) |
225 |
221 224
|
lenltd |
⊢ ( 𝜑 → ( 𝑀 ≤ ( 𝑉 − 1 ) ↔ ¬ ( 𝑉 − 1 ) < 𝑀 ) ) |
226 |
220 225
|
bitrd |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 ↔ ¬ ( 𝑉 − 1 ) < 𝑀 ) ) |
227 |
226
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ¬ ( 𝑉 − 1 ) < 𝑀 ) |
228 |
227
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = 𝑉 ) |
229 |
228
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = 𝑉 ) |
230 |
216 229
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑉 ) |
231 |
230
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → ( 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ↔ 𝑗 = 𝑉 ) ) |
232 |
231
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → 𝑗 = 𝑉 ) |
233 |
|
oveq2 |
⊢ ( 𝑗 = 𝑉 → ( 1 ... 𝑗 ) = ( 1 ... 𝑉 ) ) |
234 |
233
|
imaeq2d |
⊢ ( 𝑗 = 𝑉 → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
235 |
234
|
xpeq1d |
⊢ ( 𝑗 = 𝑉 → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ) |
236 |
|
oveq1 |
⊢ ( 𝑗 = 𝑉 → ( 𝑗 + 1 ) = ( 𝑉 + 1 ) ) |
237 |
236
|
oveq1d |
⊢ ( 𝑗 = 𝑉 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
238 |
237
|
imaeq2d |
⊢ ( 𝑗 = 𝑉 → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
239 |
238
|
xpeq1d |
⊢ ( 𝑗 = 𝑉 → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
240 |
235 239
|
uneq12d |
⊢ ( 𝑗 = 𝑉 → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
241 |
240
|
oveq2d |
⊢ ( 𝑗 = 𝑉 → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
242 |
232 241
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
243 |
206 242
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
244 |
|
elfzm1b |
⊢ ( ( 𝑉 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑉 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
245 |
29 89 244
|
syl2anc |
⊢ ( 𝜑 → ( 𝑉 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
246 |
99 245
|
mpbid |
⊢ ( 𝜑 → ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
247 |
246
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
248 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
249 |
202 243 247 248
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝐹 ‘ ( 𝑉 − 1 ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
250 |
249
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
251 |
250
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
252 |
205
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
253 |
|
breq1 |
⊢ ( 𝑦 = 𝑉 → ( 𝑦 < 𝑀 ↔ 𝑉 < 𝑀 ) ) |
254 |
|
id |
⊢ ( 𝑦 = 𝑉 → 𝑦 = 𝑉 ) |
255 |
|
oveq1 |
⊢ ( 𝑦 = 𝑉 → ( 𝑦 + 1 ) = ( 𝑉 + 1 ) ) |
256 |
253 254 255
|
ifbieq12d |
⊢ ( 𝑦 = 𝑉 → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑉 < 𝑀 , 𝑉 , ( 𝑉 + 1 ) ) ) |
257 |
|
ltnsym |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑉 ∈ ℝ ) → ( 𝑀 < 𝑉 → ¬ 𝑉 < 𝑀 ) ) |
258 |
221 30 257
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 → ¬ 𝑉 < 𝑀 ) ) |
259 |
258
|
imp |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ¬ 𝑉 < 𝑀 ) |
260 |
259
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → if ( 𝑉 < 𝑀 , 𝑉 , ( 𝑉 + 1 ) ) = ( 𝑉 + 1 ) ) |
261 |
256 260
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑉 + 1 ) ) |
262 |
261
|
eqeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → ( 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ↔ 𝑗 = ( 𝑉 + 1 ) ) ) |
263 |
262
|
biimpa |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → 𝑗 = ( 𝑉 + 1 ) ) |
264 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑉 + 1 ) ) ) |
265 |
264
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) ) |
266 |
265
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ) |
267 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑉 + 1 ) + 1 ) ) |
268 |
267
|
oveq1d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) |
269 |
268
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) |
270 |
269
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
271 |
266 270
|
uneq12d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
272 |
271
|
oveq2d |
⊢ ( 𝑗 = ( 𝑉 + 1 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
273 |
263 272
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
274 |
252 273
|
csbied |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑦 = 𝑉 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
275 |
|
fz1ssfz0 |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( 𝑁 − 1 ) ) |
276 |
275 5
|
sselid |
⊢ ( 𝜑 → 𝑉 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
277 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → 𝑉 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
278 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
279 |
202 274 277 278
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( 𝐹 ‘ 𝑉 ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
280 |
279
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
281 |
280
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 + 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
282 |
201 251 281
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) |
283 |
282
|
ex |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( ( 𝑉 + 1 ) + 1 ) ... 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
284 |
62 283
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
285 |
284
|
expdimp |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ¬ 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
286 |
285
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) ) ) |
287 |
|
elimasni |
⊢ ( 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → ( 𝑉 + 1 ) 𝑈 𝑛 ) |
288 |
|
eqcom |
⊢ ( 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ↔ ( 𝑈 ‘ ( 𝑉 + 1 ) ) = 𝑛 ) |
289 |
|
f1ofn |
⊢ ( 𝑈 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → 𝑈 Fn ( 1 ... 𝑁 ) ) |
290 |
4 289
|
syl |
⊢ ( 𝜑 → 𝑈 Fn ( 1 ... 𝑁 ) ) |
291 |
|
fnbrfvb |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ ( 𝑉 + 1 ) ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑈 ‘ ( 𝑉 + 1 ) ) = 𝑛 ↔ ( 𝑉 + 1 ) 𝑈 𝑛 ) ) |
292 |
290 18 291
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ ( 𝑉 + 1 ) ) = 𝑛 ↔ ( 𝑉 + 1 ) 𝑈 𝑛 ) ) |
293 |
288 292
|
syl5bb |
⊢ ( 𝜑 → ( 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ↔ ( 𝑉 + 1 ) 𝑈 𝑛 ) ) |
294 |
287 293
|
syl5ibr |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
295 |
294
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( 𝑛 ∈ ( 𝑈 “ { ( 𝑉 + 1 ) } ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
296 |
286 295
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑀 < 𝑉 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
297 |
296
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
298 |
|
fvex |
⊢ ( 𝑈 ‘ ( 𝑉 + 1 ) ) ∈ V |
299 |
|
eqeq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) → ( 𝑛 = 𝑚 ↔ 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) |
300 |
299
|
imbi2d |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) → ( ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) ) |
301 |
300
|
ralbidv |
⊢ ( 𝑚 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) → ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) ) ) |
302 |
298 301
|
spcev |
⊢ ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ ( 𝑉 + 1 ) ) ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
303 |
297 302
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 < 𝑉 ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
304 |
|
imadif |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ) |
305 |
9 304
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) ) = ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ) |
306 |
101
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) = ( ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∖ { 𝑉 } ) ) |
307 |
|
difundir |
⊢ ( ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∖ { 𝑉 } ) = ( ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) ∪ ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) ) |
308 |
213 24
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
309 |
|
uzid |
⊢ ( ( 𝑉 − 1 ) ∈ ℤ → ( 𝑉 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
310 |
223 309
|
syl |
⊢ ( 𝜑 → ( 𝑉 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
311 |
|
peano2uz |
⊢ ( ( 𝑉 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
312 |
310 311
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
313 |
213 312
|
eqeltrrd |
⊢ ( 𝜑 → 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
314 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) → ( 1 ... 𝑉 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) ) ) |
315 |
308 313 314
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑉 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) ) ) |
316 |
213
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) = ( 𝑉 ... 𝑉 ) ) |
317 |
|
fzsn |
⊢ ( 𝑉 ∈ ℤ → ( 𝑉 ... 𝑉 ) = { 𝑉 } ) |
318 |
29 317
|
syl |
⊢ ( 𝜑 → ( 𝑉 ... 𝑉 ) = { 𝑉 } ) |
319 |
316 318
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) = { 𝑉 } ) |
320 |
319
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑉 ) ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ) |
321 |
315 320
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑉 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ) |
322 |
321
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) = ( ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ∖ { 𝑉 } ) ) |
323 |
|
difun2 |
⊢ ( ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ∖ { 𝑉 } ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∖ { 𝑉 } ) |
324 |
30
|
ltm1d |
⊢ ( 𝜑 → ( 𝑉 − 1 ) < 𝑉 ) |
325 |
224 30
|
ltnled |
⊢ ( 𝜑 → ( ( 𝑉 − 1 ) < 𝑉 ↔ ¬ 𝑉 ≤ ( 𝑉 − 1 ) ) ) |
326 |
324 325
|
mpbid |
⊢ ( 𝜑 → ¬ 𝑉 ≤ ( 𝑉 − 1 ) ) |
327 |
|
elfzle2 |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑉 − 1 ) ) → 𝑉 ≤ ( 𝑉 − 1 ) ) |
328 |
326 327
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑉 ∈ ( 1 ... ( 𝑉 − 1 ) ) ) |
329 |
|
difsn |
⊢ ( ¬ 𝑉 ∈ ( 1 ... ( 𝑉 − 1 ) ) → ( ( 1 ... ( 𝑉 − 1 ) ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
330 |
328 329
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
331 |
323 330
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 1 ... ( 𝑉 − 1 ) ) ∪ { 𝑉 } ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
332 |
322 331
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
333 |
|
elfzle1 |
⊢ ( 𝑉 ∈ ( ( 𝑉 + 1 ) ... 𝑁 ) → ( 𝑉 + 1 ) ≤ 𝑉 ) |
334 |
35 333
|
nsyl |
⊢ ( 𝜑 → ¬ 𝑉 ∈ ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
335 |
|
difsn |
⊢ ( ¬ 𝑉 ∈ ( ( 𝑉 + 1 ) ... 𝑁 ) → ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) = ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
336 |
334 335
|
syl |
⊢ ( 𝜑 → ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) = ( ( 𝑉 + 1 ) ... 𝑁 ) ) |
337 |
332 336
|
uneq12d |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑉 ) ∖ { 𝑉 } ) ∪ ( ( ( 𝑉 + 1 ) ... 𝑁 ) ∖ { 𝑉 } ) ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
338 |
307 337
|
syl5eq |
⊢ ( 𝜑 → ( ( ( 1 ... 𝑉 ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ∖ { 𝑉 } ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
339 |
306 338
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
340 |
339
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑁 ) ∖ { 𝑉 } ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
341 |
305 340
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
342 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) |
343 |
341 342
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
344 |
343
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ↔ 𝑛 ∈ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) ) |
345 |
|
eldif |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) ∖ ( 𝑈 “ { 𝑉 } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ) |
346 |
|
elun |
⊢ ( 𝑛 ∈ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) |
347 |
344 345 346
|
3bitr3g |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) ) |
348 |
347
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ↔ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) ) |
349 |
|
imassrn |
⊢ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ran 𝑈 |
350 |
349 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ( 1 ... 𝑁 ) ) |
351 |
350
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
352 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
353 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) |
354 |
71 353
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) |
355 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
356 |
74 355
|
ax-mp |
⊢ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) |
357 |
354 356
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
358 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
359 |
9 358
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
360 |
|
fzdisj |
⊢ ( ( 𝑉 − 1 ) < 𝑉 → ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) = ∅ ) |
361 |
324 360
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) = ∅ ) |
362 |
361
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ( 𝑈 “ ∅ ) ) |
363 |
362 83
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∩ ( 𝑉 ... 𝑁 ) ) ) = ∅ ) |
364 |
359 363
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ) |
365 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
366 |
357 364 365
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) |
367 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
368 |
|
uzss |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( ℤ≥ ‘ 𝑉 ) ⊆ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
369 |
313 368
|
syl |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑉 ) ⊆ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
370 |
|
elfzuz3 |
⊢ ( 𝑉 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) ) |
371 |
5 370
|
syl |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) ) |
372 |
369 371
|
sseldd |
⊢ ( 𝜑 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
373 |
|
peano2uz |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
374 |
372 373
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
375 |
16 374
|
eqeltrrd |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) |
376 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑉 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) ) ) |
377 |
308 375 376
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) ) ) |
378 |
213
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑉 ... 𝑁 ) ) |
379 |
378
|
uneq2d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( ( ( 𝑉 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) |
380 |
377 379
|
eqtrd |
⊢ ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) |
381 |
380
|
imaeq2d |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) ) |
382 |
381 106
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... ( 𝑉 − 1 ) ) ∪ ( 𝑉 ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
383 |
367 382
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) ) |
384 |
383
|
fneq2d |
⊢ ( 𝜑 → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∪ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) ) |
385 |
366 384
|
mpbid |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
386 |
385
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
387 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
388 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
389 |
|
fvun1 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
390 |
354 356 389
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
391 |
364 390
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) ) |
392 |
71
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
393 |
392
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ‘ 𝑛 ) = 1 ) |
394 |
391 393
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
395 |
394
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
396 |
352 386 387 387 113 388 395
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
397 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
398 |
|
fzss2 |
⊢ ( 𝑉 ∈ ( ℤ≥ ‘ ( 𝑉 − 1 ) ) → ( 1 ... ( 𝑉 − 1 ) ) ⊆ ( 1 ... 𝑉 ) ) |
399 |
313 398
|
syl |
⊢ ( 𝜑 → ( 1 ... ( 𝑉 − 1 ) ) ⊆ ( 1 ... 𝑉 ) ) |
400 |
|
imass2 |
⊢ ( ( 1 ... ( 𝑉 − 1 ) ) ⊆ ( 1 ... 𝑉 ) → ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
401 |
399 400
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ⊆ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
402 |
401
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑉 ) ) ) |
403 |
402 120
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
404 |
403
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 1 ) |
405 |
352 397 387 387 113 388 404
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 1 ) ) |
406 |
396 405
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
407 |
351 406
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
408 |
|
imassrn |
⊢ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ran 𝑈 |
409 |
408 66
|
sstrid |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) ) |
410 |
409
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 1 ... 𝑁 ) ) |
411 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → 𝑇 Fn ( 1 ... 𝑁 ) ) |
412 |
385
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
413 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( 1 ... 𝑁 ) ∈ Fin ) |
414 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
415 |
|
fzss1 |
⊢ ( ( 𝑉 + 1 ) ∈ ( ℤ≥ ‘ 𝑉 ) → ( ( 𝑉 + 1 ) ... 𝑁 ) ⊆ ( 𝑉 ... 𝑁 ) ) |
416 |
147 415
|
syl |
⊢ ( 𝜑 → ( ( 𝑉 + 1 ) ... 𝑁 ) ⊆ ( 𝑉 ... 𝑁 ) ) |
417 |
|
imass2 |
⊢ ( ( ( 𝑉 + 1 ) ... 𝑁 ) ⊆ ( 𝑉 ... 𝑁 ) → ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
418 |
416 417
|
syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ⊆ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
419 |
418
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
420 |
|
fvun2 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∧ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) Fn ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ∧ ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
421 |
354 356 420
|
mp3an12 |
⊢ ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∩ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) = ∅ ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
422 |
364 421
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) ) |
423 |
74
|
fvconst2 |
⊢ ( 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) → ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
424 |
423
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ‘ 𝑛 ) = 0 ) |
425 |
422 424
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
426 |
419 425
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
427 |
426
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
428 |
411 412 413 413 113 414 427
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
429 |
110
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) |
430 |
185
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
431 |
411 429 413 413 113 414 430
|
ofval |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ‘ 𝑛 ) + 0 ) ) |
432 |
428 431
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
433 |
410 432
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
434 |
407 433
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
435 |
434
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
436 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) |
437 |
205
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
438 |
215
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) ) |
439 |
|
lttr |
⊢ ( ( ( 𝑉 − 1 ) ∈ ℝ ∧ 𝑉 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( ( 𝑉 − 1 ) < 𝑉 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) < 𝑀 ) ) |
440 |
224 30 221 439
|
syl3anc |
⊢ ( 𝜑 → ( ( ( 𝑉 − 1 ) < 𝑉 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) < 𝑀 ) ) |
441 |
324 440
|
mpand |
⊢ ( 𝜑 → ( 𝑉 < 𝑀 → ( 𝑉 − 1 ) < 𝑀 ) ) |
442 |
441
|
imp |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) < 𝑀 ) |
443 |
442
|
iftrued |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = ( 𝑉 − 1 ) ) |
444 |
443
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( ( 𝑉 − 1 ) < 𝑀 , ( 𝑉 − 1 ) , 𝑉 ) = ( 𝑉 − 1 ) ) |
445 |
438 444
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑉 − 1 ) ) |
446 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → 𝜑 ) |
447 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑉 − 1 ) ) ) |
448 |
447
|
imaeq2d |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( 𝑈 “ ( 1 ... 𝑗 ) ) = ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ) |
449 |
448
|
xpeq1d |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ) |
450 |
449
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ) |
451 |
|
oveq1 |
⊢ ( 𝑗 = ( 𝑉 − 1 ) → ( 𝑗 + 1 ) = ( ( 𝑉 − 1 ) + 1 ) ) |
452 |
451 213
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑗 + 1 ) = 𝑉 ) |
453 |
452
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( 𝑉 ... 𝑁 ) ) |
454 |
453
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) ) |
455 |
454
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) |
456 |
450 455
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) |
457 |
456
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
458 |
446 457
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) ∧ 𝑗 = ( 𝑉 − 1 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
459 |
437 445 458
|
csbied2 |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = ( 𝑉 − 1 ) ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
460 |
246
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑉 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
461 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
462 |
436 459 460 461
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝐹 ‘ ( 𝑉 − 1 ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ) |
463 |
462
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
464 |
463
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( 𝑉 ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
465 |
205
|
a1i |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ∈ V ) |
466 |
|
iftrue |
⊢ ( 𝑉 < 𝑀 → if ( 𝑉 < 𝑀 , 𝑉 , ( 𝑉 + 1 ) ) = 𝑉 ) |
467 |
256 466
|
sylan9eqr |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) = 𝑉 ) |
468 |
467
|
eqeq2d |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → ( 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ↔ 𝑗 = 𝑉 ) ) |
469 |
468
|
biimpa |
⊢ ( ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → 𝑗 = 𝑉 ) |
470 |
469 241
|
syl |
⊢ ( ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) ∧ 𝑗 = if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
471 |
465 470
|
csbied |
⊢ ( ( 𝑉 < 𝑀 ∧ 𝑦 = 𝑉 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
472 |
471
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑦 = 𝑉 ) → ⦋ if ( 𝑦 < 𝑀 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ⦌ ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
473 |
276
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → 𝑉 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
474 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V ) |
475 |
436 472 473 474
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( 𝐹 ‘ 𝑉 ) = ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) |
476 |
475
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
477 |
476
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) = ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑉 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ 𝑛 ) ) |
478 |
435 464 477
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) |
479 |
478
|
ex |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... ( 𝑉 − 1 ) ) ) ∨ 𝑛 ∈ ( 𝑈 “ ( ( 𝑉 + 1 ) ... 𝑁 ) ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
480 |
348 479
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ( ( 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
481 |
480
|
expdimp |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ¬ 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) = ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
482 |
481
|
necon1ad |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) ) ) |
483 |
|
elimasni |
⊢ ( 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → 𝑉 𝑈 𝑛 ) |
484 |
|
eqcom |
⊢ ( 𝑛 = ( 𝑈 ‘ 𝑉 ) ↔ ( 𝑈 ‘ 𝑉 ) = 𝑛 ) |
485 |
|
fnbrfvb |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑁 ) ∧ 𝑉 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑈 ‘ 𝑉 ) = 𝑛 ↔ 𝑉 𝑈 𝑛 ) ) |
486 |
290 99 485
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 ‘ 𝑉 ) = 𝑛 ↔ 𝑉 𝑈 𝑛 ) ) |
487 |
484 486
|
syl5bb |
⊢ ( 𝜑 → ( 𝑛 = ( 𝑈 ‘ 𝑉 ) ↔ 𝑉 𝑈 𝑛 ) ) |
488 |
483 487
|
syl5ibr |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
489 |
488
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( 𝑛 ∈ ( 𝑈 “ { 𝑉 } ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
490 |
482 489
|
syld |
⊢ ( ( ( 𝜑 ∧ 𝑉 < 𝑀 ) ∧ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
491 |
490
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
492 |
|
fvex |
⊢ ( 𝑈 ‘ 𝑉 ) ∈ V |
493 |
|
eqeq2 |
⊢ ( 𝑚 = ( 𝑈 ‘ 𝑉 ) → ( 𝑛 = 𝑚 ↔ 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) |
494 |
493
|
imbi2d |
⊢ ( 𝑚 = ( 𝑈 ‘ 𝑉 ) → ( ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) ) |
495 |
494
|
ralbidv |
⊢ ( 𝑚 = ( 𝑈 ‘ 𝑉 ) → ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) ) ) |
496 |
492 495
|
spcev |
⊢ ( ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = ( 𝑈 ‘ 𝑉 ) ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
497 |
491 496
|
syl |
⊢ ( ( 𝜑 ∧ 𝑉 < 𝑀 ) → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
498 |
|
eldifsni |
⊢ ( 𝑀 ∈ ( ( 0 ... 𝑁 ) ∖ { 𝑉 } ) → 𝑀 ≠ 𝑉 ) |
499 |
6 498
|
syl |
⊢ ( 𝜑 → 𝑀 ≠ 𝑉 ) |
500 |
221 30
|
lttri2d |
⊢ ( 𝜑 → ( 𝑀 ≠ 𝑉 ↔ ( 𝑀 < 𝑉 ∨ 𝑉 < 𝑀 ) ) ) |
501 |
499 500
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 < 𝑉 ∨ 𝑉 < 𝑀 ) ) |
502 |
303 497 501
|
mpjaodan |
⊢ ( 𝜑 → ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
503 |
|
nfv |
⊢ Ⅎ 𝑚 ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) |
504 |
503
|
rmo2 |
⊢ ( ∃* 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ↔ ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ) |
505 |
|
rmoeq1 |
⊢ ( ( 𝑈 “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) → ( ∃* 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ↔ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
506 |
106 505
|
syl |
⊢ ( 𝜑 → ( ∃* 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ↔ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
507 |
504 506
|
bitr3id |
⊢ ( 𝜑 → ( ∃ 𝑚 ∀ 𝑛 ∈ ( 𝑈 “ ( 1 ... 𝑁 ) ) ( ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) → 𝑛 = 𝑚 ) ↔ ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) ) |
508 |
502 507
|
mpbid |
⊢ ( 𝜑 → ∃* 𝑛 ∈ ( 1 ... 𝑁 ) ( ( 𝐹 ‘ ( 𝑉 − 1 ) ) ‘ 𝑛 ) ≠ ( ( 𝐹 ‘ 𝑉 ) ‘ 𝑛 ) ) |