Metamath Proof Explorer


Theorem poimirlem2

Description: Lemma for poimir - consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
poimirlem2.2 φ T : 1 N
poimirlem2.3 φ U : 1 N 1-1 onto 1 N
poimirlem2.4 φ V 1 N 1
poimirlem2.5 φ M 0 N V
Assertion poimirlem2 φ * n 1 N F V 1 n F V n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
3 poimirlem2.2 φ T : 1 N
4 poimirlem2.3 φ U : 1 N 1-1 onto 1 N
5 poimirlem2.4 φ V 1 N 1
6 poimirlem2.5 φ M 0 N V
7 dff1o3 U : 1 N 1-1 onto 1 N U : 1 N onto 1 N Fun U -1
8 7 simprbi U : 1 N 1-1 onto 1 N Fun U -1
9 4 8 syl φ Fun U -1
10 imadif Fun U -1 U 1 N V + 1 = U 1 N U V + 1
11 9 10 syl φ U 1 N V + 1 = U 1 N U V + 1
12 fzp1elp1 V 1 N 1 V + 1 1 N - 1 + 1
13 5 12 syl φ V + 1 1 N - 1 + 1
14 1 nncnd φ N
15 npcan1 N N - 1 + 1 = N
16 14 15 syl φ N - 1 + 1 = N
17 16 oveq2d φ 1 N - 1 + 1 = 1 N
18 13 17 eleqtrd φ V + 1 1 N
19 fzsplit V + 1 1 N 1 N = 1 V + 1 V + 1 + 1 N
20 18 19 syl φ 1 N = 1 V + 1 V + 1 + 1 N
21 20 difeq1d φ 1 N V + 1 = 1 V + 1 V + 1 + 1 N V + 1
22 difundir 1 V + 1 V + 1 + 1 N V + 1 = 1 V + 1 V + 1 V + 1 + 1 N V + 1
23 elfzuz V 1 N 1 V 1
24 5 23 syl φ V 1
25 fzsuc V 1 1 V + 1 = 1 V V + 1
26 24 25 syl φ 1 V + 1 = 1 V V + 1
27 26 difeq1d φ 1 V + 1 V + 1 = 1 V V + 1 V + 1
28 difun2 1 V V + 1 V + 1 = 1 V V + 1
29 elfzelz V 1 N 1 V
30 5 29 syl φ V
31 30 zred φ V
32 31 ltp1d φ V < V + 1
33 30 peano2zd φ V + 1
34 33 zred φ V + 1
35 31 34 ltnled φ V < V + 1 ¬ V + 1 V
36 32 35 mpbid φ ¬ V + 1 V
37 elfzle2 V + 1 1 V V + 1 V
38 36 37 nsyl φ ¬ V + 1 1 V
39 difsn ¬ V + 1 1 V 1 V V + 1 = 1 V
40 38 39 syl φ 1 V V + 1 = 1 V
41 28 40 syl5eq φ 1 V V + 1 V + 1 = 1 V
42 27 41 eqtrd φ 1 V + 1 V + 1 = 1 V
43 34 ltp1d φ V + 1 < V + 1 + 1
44 peano2re V + 1 V + 1 + 1
45 34 44 syl φ V + 1 + 1
46 34 45 ltnled φ V + 1 < V + 1 + 1 ¬ V + 1 + 1 V + 1
47 43 46 mpbid φ ¬ V + 1 + 1 V + 1
48 elfzle1 V + 1 V + 1 + 1 N V + 1 + 1 V + 1
49 47 48 nsyl φ ¬ V + 1 V + 1 + 1 N
50 difsn ¬ V + 1 V + 1 + 1 N V + 1 + 1 N V + 1 = V + 1 + 1 N
51 49 50 syl φ V + 1 + 1 N V + 1 = V + 1 + 1 N
52 42 51 uneq12d φ 1 V + 1 V + 1 V + 1 + 1 N V + 1 = 1 V V + 1 + 1 N
53 22 52 syl5eq φ 1 V + 1 V + 1 + 1 N V + 1 = 1 V V + 1 + 1 N
54 21 53 eqtrd φ 1 N V + 1 = 1 V V + 1 + 1 N
55 54 imaeq2d φ U 1 N V + 1 = U 1 V V + 1 + 1 N
56 11 55 eqtr3d φ U 1 N U V + 1 = U 1 V V + 1 + 1 N
57 imaundi U 1 V V + 1 + 1 N = U 1 V U V + 1 + 1 N
58 56 57 eqtrdi φ U 1 N U V + 1 = U 1 V U V + 1 + 1 N
59 58 eleq2d φ n U 1 N U V + 1 n U 1 V U V + 1 + 1 N
60 eldif n U 1 N U V + 1 n U 1 N ¬ n U V + 1
61 elun n U 1 V U V + 1 + 1 N n U 1 V n U V + 1 + 1 N
62 59 60 61 3bitr3g φ n U 1 N ¬ n U V + 1 n U 1 V n U V + 1 + 1 N
63 62 adantr φ M < V n U 1 N ¬ n U V + 1 n U 1 V n U V + 1 + 1 N
64 imassrn U 1 V ran U
65 f1of U : 1 N 1-1 onto 1 N U : 1 N 1 N
66 4 65 syl φ U : 1 N 1 N
67 66 frnd φ ran U 1 N
68 64 67 sstrid φ U 1 V 1 N
69 68 sselda φ n U 1 V n 1 N
70 3 ffnd φ T Fn 1 N
71 70 adantr φ n U 1 V T Fn 1 N
72 1ex 1 V
73 fnconstg 1 V U 1 V × 1 Fn U 1 V
74 72 73 ax-mp U 1 V × 1 Fn U 1 V
75 c0ex 0 V
76 fnconstg 0 V U V + 1 N × 0 Fn U V + 1 N
77 75 76 ax-mp U V + 1 N × 0 Fn U V + 1 N
78 74 77 pm3.2i U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N
79 imain Fun U -1 U 1 V V + 1 N = U 1 V U V + 1 N
80 9 79 syl φ U 1 V V + 1 N = U 1 V U V + 1 N
81 fzdisj V < V + 1 1 V V + 1 N =
82 32 81 syl φ 1 V V + 1 N =
83 82 imaeq2d φ U 1 V V + 1 N = U
84 ima0 U =
85 83 84 eqtrdi φ U 1 V V + 1 N =
86 80 85 eqtr3d φ U 1 V U V + 1 N =
87 fnun U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N
88 78 86 87 sylancr φ U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N
89 imaundi U 1 V V + 1 N = U 1 V U V + 1 N
90 1 nnzd φ N
91 peano2zm N N 1
92 90 91 syl φ N 1
93 uzid N 1 N 1 N 1
94 92 93 syl φ N 1 N 1
95 peano2uz N 1 N 1 N - 1 + 1 N 1
96 94 95 syl φ N - 1 + 1 N 1
97 16 96 eqeltrrd φ N N 1
98 fzss2 N N 1 1 N 1 1 N
99 97 98 syl φ 1 N 1 1 N
100 99 5 sseldd φ V 1 N
101 fzsplit V 1 N 1 N = 1 V V + 1 N
102 100 101 syl φ 1 N = 1 V V + 1 N
103 102 imaeq2d φ U 1 N = U 1 V V + 1 N
104 f1ofo U : 1 N 1-1 onto 1 N U : 1 N onto 1 N
105 4 104 syl φ U : 1 N onto 1 N
106 foima U : 1 N onto 1 N U 1 N = 1 N
107 105 106 syl φ U 1 N = 1 N
108 103 107 eqtr3d φ U 1 V V + 1 N = 1 N
109 89 108 syl5eqr φ U 1 V U V + 1 N = 1 N
110 109 fneq2d φ U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
111 88 110 mpbid φ U 1 V × 1 U V + 1 N × 0 Fn 1 N
112 111 adantr φ n U 1 V U 1 V × 1 U V + 1 N × 0 Fn 1 N
113 fzfid φ n U 1 V 1 N Fin
114 inidm 1 N 1 N = 1 N
115 eqidd φ n U 1 V n 1 N T n = T n
116 fvun1 U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
117 74 77 116 mp3an12 U 1 V U V + 1 N = n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
118 86 117 sylan φ n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
119 72 fvconst2 n U 1 V U 1 V × 1 n = 1
120 119 adantl φ n U 1 V U 1 V × 1 n = 1
121 118 120 eqtrd φ n U 1 V U 1 V × 1 U V + 1 N × 0 n = 1
122 121 adantr φ n U 1 V n 1 N U 1 V × 1 U V + 1 N × 0 n = 1
123 71 112 113 113 114 115 122 ofval φ n U 1 V n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 1
124 fnconstg 1 V U 1 V + 1 × 1 Fn U 1 V + 1
125 72 124 ax-mp U 1 V + 1 × 1 Fn U 1 V + 1
126 fnconstg 0 V U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
127 75 126 ax-mp U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
128 125 127 pm3.2i U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
129 imain Fun U -1 U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
130 9 129 syl φ U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
131 fzdisj V + 1 < V + 1 + 1 1 V + 1 V + 1 + 1 N =
132 43 131 syl φ 1 V + 1 V + 1 + 1 N =
133 132 imaeq2d φ U 1 V + 1 V + 1 + 1 N = U
134 133 84 eqtrdi φ U 1 V + 1 V + 1 + 1 N =
135 130 134 eqtr3d φ U 1 V + 1 U V + 1 + 1 N =
136 fnun U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N
137 128 135 136 sylancr φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N
138 imaundi U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
139 20 imaeq2d φ U 1 N = U 1 V + 1 V + 1 + 1 N
140 139 107 eqtr3d φ U 1 V + 1 V + 1 + 1 N = 1 N
141 138 140 syl5eqr φ U 1 V + 1 U V + 1 + 1 N = 1 N
142 141 fneq2d φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
143 137 142 mpbid φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
144 143 adantr φ n U 1 V U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
145 uzid V V V
146 30 145 syl φ V V
147 peano2uz V V V + 1 V
148 146 147 syl φ V + 1 V
149 fzss2 V + 1 V 1 V 1 V + 1
150 148 149 syl φ 1 V 1 V + 1
151 imass2 1 V 1 V + 1 U 1 V U 1 V + 1
152 150 151 syl φ U 1 V U 1 V + 1
153 152 sselda φ n U 1 V n U 1 V + 1
154 fvun1 U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
155 125 127 154 mp3an12 U 1 V + 1 U V + 1 + 1 N = n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
156 135 155 sylan φ n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
157 72 fvconst2 n U 1 V + 1 U 1 V + 1 × 1 n = 1
158 157 adantl φ n U 1 V + 1 U 1 V + 1 × 1 n = 1
159 156 158 eqtrd φ n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
160 153 159 syldan φ n U 1 V U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
161 160 adantr φ n U 1 V n 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
162 71 144 113 113 114 115 161 ofval φ n U 1 V n 1 N T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = T n + 1
163 123 162 eqtr4d φ n U 1 V n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
164 69 163 mpdan φ n U 1 V T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
165 imassrn U V + 1 + 1 N ran U
166 165 67 sstrid φ U V + 1 + 1 N 1 N
167 166 sselda φ n U V + 1 + 1 N n 1 N
168 70 adantr φ n U V + 1 + 1 N T Fn 1 N
169 111 adantr φ n U V + 1 + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
170 fzfid φ n U V + 1 + 1 N 1 N Fin
171 eqidd φ n U V + 1 + 1 N n 1 N T n = T n
172 uzid V + 1 V + 1 V + 1
173 33 172 syl φ V + 1 V + 1
174 peano2uz V + 1 V + 1 V + 1 + 1 V + 1
175 173 174 syl φ V + 1 + 1 V + 1
176 fzss1 V + 1 + 1 V + 1 V + 1 + 1 N V + 1 N
177 175 176 syl φ V + 1 + 1 N V + 1 N
178 imass2 V + 1 + 1 N V + 1 N U V + 1 + 1 N U V + 1 N
179 177 178 syl φ U V + 1 + 1 N U V + 1 N
180 179 sselda φ n U V + 1 + 1 N n U V + 1 N
181 fvun2 U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
182 74 77 181 mp3an12 U 1 V U V + 1 N = n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
183 86 182 sylan φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
184 75 fvconst2 n U V + 1 N U V + 1 N × 0 n = 0
185 184 adantl φ n U V + 1 N U V + 1 N × 0 n = 0
186 183 185 eqtrd φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = 0
187 180 186 syldan φ n U V + 1 + 1 N U 1 V × 1 U V + 1 N × 0 n = 0
188 187 adantr φ n U V + 1 + 1 N n 1 N U 1 V × 1 U V + 1 N × 0 n = 0
189 168 169 170 170 114 171 188 ofval φ n U V + 1 + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 0
190 143 adantr φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
191 fvun2 U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
192 125 127 191 mp3an12 U 1 V + 1 U V + 1 + 1 N = n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
193 135 192 sylan φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
194 75 fvconst2 n U V + 1 + 1 N U V + 1 + 1 N × 0 n = 0
195 194 adantl φ n U V + 1 + 1 N U V + 1 + 1 N × 0 n = 0
196 193 195 eqtrd φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 0
197 196 adantr φ n U V + 1 + 1 N n 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 0
198 168 190 170 170 114 171 197 ofval φ n U V + 1 + 1 N n 1 N T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = T n + 0
199 189 198 eqtr4d φ n U V + 1 + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
200 167 199 mpdan φ n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
201 164 200 jaodan φ n U 1 V n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
202 201 adantlr φ M < V n U 1 V n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
203 2 adantr φ M < V F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
204 vex y V
205 ovex y + 1 V
206 204 205 ifex if y < M y y + 1 V
207 206 a1i φ M < V y = V 1 if y < M y y + 1 V
208 breq1 y = V 1 y < M V 1 < M
209 208 adantl φ y = V 1 y < M V 1 < M
210 simpr φ y = V 1 y = V 1
211 oveq1 y = V 1 y + 1 = V - 1 + 1
212 30 zcnd φ V
213 npcan1 V V - 1 + 1 = V
214 212 213 syl φ V - 1 + 1 = V
215 211 214 sylan9eqr φ y = V 1 y + 1 = V
216 209 210 215 ifbieq12d φ y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
217 216 adantlr φ M < V y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
218 6 eldifad φ M 0 N
219 elfzelz M 0 N M
220 218 219 syl φ M
221 zltlem1 M V M < V M V 1
222 220 30 221 syl2anc φ M < V M V 1
223 220 zred φ M
224 peano2zm V V 1
225 30 224 syl φ V 1
226 225 zred φ V 1
227 223 226 lenltd φ M V 1 ¬ V 1 < M
228 222 227 bitrd φ M < V ¬ V 1 < M
229 228 biimpa φ M < V ¬ V 1 < M
230 229 iffalsed φ M < V if V 1 < M V 1 V = V
231 230 adantr φ M < V y = V 1 if V 1 < M V 1 V = V
232 217 231 eqtrd φ M < V y = V 1 if y < M y y + 1 = V
233 232 eqeq2d φ M < V y = V 1 j = if y < M y y + 1 j = V
234 233 biimpa φ M < V y = V 1 j = if y < M y y + 1 j = V
235 oveq2 j = V 1 j = 1 V
236 235 imaeq2d j = V U 1 j = U 1 V
237 236 xpeq1d j = V U 1 j × 1 = U 1 V × 1
238 oveq1 j = V j + 1 = V + 1
239 238 oveq1d j = V j + 1 N = V + 1 N
240 239 imaeq2d j = V U j + 1 N = U V + 1 N
241 240 xpeq1d j = V U j + 1 N × 0 = U V + 1 N × 0
242 237 241 uneq12d j = V U 1 j × 1 U j + 1 N × 0 = U 1 V × 1 U V + 1 N × 0
243 242 oveq2d j = V T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
244 234 243 syl φ M < V y = V 1 j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
245 207 244 csbied φ M < V y = V 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
246 elfzm1b V N V 1 N V 1 0 N 1
247 30 90 246 syl2anc φ V 1 N V 1 0 N 1
248 100 247 mpbid φ V 1 0 N 1
249 248 adantr φ M < V V 1 0 N 1
250 ovexd φ M < V T + f U 1 V × 1 U V + 1 N × 0 V
251 203 245 249 250 fvmptd φ M < V F V 1 = T + f U 1 V × 1 U V + 1 N × 0
252 251 fveq1d φ M < V F V 1 n = T + f U 1 V × 1 U V + 1 N × 0 n
253 252 adantr φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = T + f U 1 V × 1 U V + 1 N × 0 n
254 206 a1i φ M < V y = V if y < M y y + 1 V
255 breq1 y = V y < M V < M
256 id y = V y = V
257 oveq1 y = V y + 1 = V + 1
258 255 256 257 ifbieq12d y = V if y < M y y + 1 = if V < M V V + 1
259 ltnsym M V M < V ¬ V < M
260 223 31 259 syl2anc φ M < V ¬ V < M
261 260 imp φ M < V ¬ V < M
262 261 iffalsed φ M < V if V < M V V + 1 = V + 1
263 258 262 sylan9eqr φ M < V y = V if y < M y y + 1 = V + 1
264 263 eqeq2d φ M < V y = V j = if y < M y y + 1 j = V + 1
265 264 biimpa φ M < V y = V j = if y < M y y + 1 j = V + 1
266 oveq2 j = V + 1 1 j = 1 V + 1
267 266 imaeq2d j = V + 1 U 1 j = U 1 V + 1
268 267 xpeq1d j = V + 1 U 1 j × 1 = U 1 V + 1 × 1
269 oveq1 j = V + 1 j + 1 = V + 1 + 1
270 269 oveq1d j = V + 1 j + 1 N = V + 1 + 1 N
271 270 imaeq2d j = V + 1 U j + 1 N = U V + 1 + 1 N
272 271 xpeq1d j = V + 1 U j + 1 N × 0 = U V + 1 + 1 N × 0
273 268 272 uneq12d j = V + 1 U 1 j × 1 U j + 1 N × 0 = U 1 V + 1 × 1 U V + 1 + 1 N × 0
274 273 oveq2d j = V + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
275 265 274 syl φ M < V y = V j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
276 254 275 csbied φ M < V y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
277 fz1ssfz0 1 N 1 0 N 1
278 277 5 sseldi φ V 0 N 1
279 278 adantr φ M < V V 0 N 1
280 ovexd φ M < V T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 V
281 203 276 279 280 fvmptd φ M < V F V = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
282 281 fveq1d φ M < V F V n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
283 282 adantr φ M < V n U 1 V n U V + 1 + 1 N F V n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
284 202 253 283 3eqtr4d φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = F V n
285 284 ex φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = F V n
286 63 285 sylbid φ M < V n U 1 N ¬ n U V + 1 F V 1 n = F V n
287 286 expdimp φ M < V n U 1 N ¬ n U V + 1 F V 1 n = F V n
288 287 necon1ad φ M < V n U 1 N F V 1 n F V n n U V + 1
289 elimasni n U V + 1 V + 1 U n
290 eqcom n = U V + 1 U V + 1 = n
291 f1ofn U : 1 N 1-1 onto 1 N U Fn 1 N
292 4 291 syl φ U Fn 1 N
293 fnbrfvb U Fn 1 N V + 1 1 N U V + 1 = n V + 1 U n
294 292 18 293 syl2anc φ U V + 1 = n V + 1 U n
295 290 294 syl5bb φ n = U V + 1 V + 1 U n
296 289 295 syl5ibr φ n U V + 1 n = U V + 1
297 296 ad2antrr φ M < V n U 1 N n U V + 1 n = U V + 1
298 288 297 syld φ M < V n U 1 N F V 1 n F V n n = U V + 1
299 298 ralrimiva φ M < V n U 1 N F V 1 n F V n n = U V + 1
300 fvex U V + 1 V
301 eqeq2 m = U V + 1 n = m n = U V + 1
302 301 imbi2d m = U V + 1 F V 1 n F V n n = m F V 1 n F V n n = U V + 1
303 302 ralbidv m = U V + 1 n U 1 N F V 1 n F V n n = m n U 1 N F V 1 n F V n n = U V + 1
304 300 303 spcev n U 1 N F V 1 n F V n n = U V + 1 m n U 1 N F V 1 n F V n n = m
305 299 304 syl φ M < V m n U 1 N F V 1 n F V n n = m
306 imadif Fun U -1 U 1 N V = U 1 N U V
307 9 306 syl φ U 1 N V = U 1 N U V
308 102 difeq1d φ 1 N V = 1 V V + 1 N V
309 difundir 1 V V + 1 N V = 1 V V V + 1 N V
310 214 24 eqeltrd φ V - 1 + 1 1
311 uzid V 1 V 1 V 1
312 225 311 syl φ V 1 V 1
313 peano2uz V 1 V 1 V - 1 + 1 V 1
314 312 313 syl φ V - 1 + 1 V 1
315 214 314 eqeltrrd φ V V 1
316 fzsplit2 V - 1 + 1 1 V V 1 1 V = 1 V 1 V - 1 + 1 V
317 310 315 316 syl2anc φ 1 V = 1 V 1 V - 1 + 1 V
318 214 oveq1d φ V - 1 + 1 V = V V
319 fzsn V V V = V
320 30 319 syl φ V V = V
321 318 320 eqtrd φ V - 1 + 1 V = V
322 321 uneq2d φ 1 V 1 V - 1 + 1 V = 1 V 1 V
323 317 322 eqtrd φ 1 V = 1 V 1 V
324 323 difeq1d φ 1 V V = 1 V 1 V V
325 difun2 1 V 1 V V = 1 V 1 V
326 31 ltm1d φ V 1 < V
327 226 31 ltnled φ V 1 < V ¬ V V 1
328 326 327 mpbid φ ¬ V V 1
329 elfzle2 V 1 V 1 V V 1
330 328 329 nsyl φ ¬ V 1 V 1
331 difsn ¬ V 1 V 1 1 V 1 V = 1 V 1
332 330 331 syl φ 1 V 1 V = 1 V 1
333 325 332 syl5eq φ 1 V 1 V V = 1 V 1
334 324 333 eqtrd φ 1 V V = 1 V 1
335 elfzle1 V V + 1 N V + 1 V
336 36 335 nsyl φ ¬ V V + 1 N
337 difsn ¬ V V + 1 N V + 1 N V = V + 1 N
338 336 337 syl φ V + 1 N V = V + 1 N
339 334 338 uneq12d φ 1 V V V + 1 N V = 1 V 1 V + 1 N
340 309 339 syl5eq φ 1 V V + 1 N V = 1 V 1 V + 1 N
341 308 340 eqtrd φ 1 N V = 1 V 1 V + 1 N
342 341 imaeq2d φ U 1 N V = U 1 V 1 V + 1 N
343 307 342 eqtr3d φ U 1 N U V = U 1 V 1 V + 1 N
344 imaundi U 1 V 1 V + 1 N = U 1 V 1 U V + 1 N
345 343 344 eqtrdi φ U 1 N U V = U 1 V 1 U V + 1 N
346 345 eleq2d φ n U 1 N U V n U 1 V 1 U V + 1 N
347 eldif n U 1 N U V n U 1 N ¬ n U V
348 elun n U 1 V 1 U V + 1 N n U 1 V 1 n U V + 1 N
349 346 347 348 3bitr3g φ n U 1 N ¬ n U V n U 1 V 1 n U V + 1 N
350 349 adantr φ V < M n U 1 N ¬ n U V n U 1 V 1 n U V + 1 N
351 imassrn U 1 V 1 ran U
352 351 67 sstrid φ U 1 V 1 1 N
353 352 sselda φ n U 1 V 1 n 1 N
354 70 adantr φ n U 1 V 1 T Fn 1 N
355 fnconstg 1 V U 1 V 1 × 1 Fn U 1 V 1
356 72 355 ax-mp U 1 V 1 × 1 Fn U 1 V 1
357 fnconstg 0 V U V N × 0 Fn U V N
358 75 357 ax-mp U V N × 0 Fn U V N
359 356 358 pm3.2i U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N
360 imain Fun U -1 U 1 V 1 V N = U 1 V 1 U V N
361 9 360 syl φ U 1 V 1 V N = U 1 V 1 U V N
362 fzdisj V 1 < V 1 V 1 V N =
363 326 362 syl φ 1 V 1 V N =
364 363 imaeq2d φ U 1 V 1 V N = U
365 364 84 eqtrdi φ U 1 V 1 V N =
366 361 365 eqtr3d φ U 1 V 1 U V N =
367 fnun U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N
368 359 366 367 sylancr φ U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N
369 imaundi U 1 V 1 V N = U 1 V 1 U V N
370 uzss V V 1 V V 1
371 315 370 syl φ V V 1
372 elfzuz3 V 1 N 1 N 1 V
373 5 372 syl φ N 1 V
374 371 373 sseldd φ N 1 V 1
375 peano2uz N 1 V 1 N - 1 + 1 V 1
376 374 375 syl φ N - 1 + 1 V 1
377 16 376 eqeltrrd φ N V 1
378 fzsplit2 V - 1 + 1 1 N V 1 1 N = 1 V 1 V - 1 + 1 N
379 310 377 378 syl2anc φ 1 N = 1 V 1 V - 1 + 1 N
380 214 oveq1d φ V - 1 + 1 N = V N
381 380 uneq2d φ 1 V 1 V - 1 + 1 N = 1 V 1 V N
382 379 381 eqtrd φ 1 N = 1 V 1 V N
383 382 imaeq2d φ U 1 N = U 1 V 1 V N
384 383 107 eqtr3d φ U 1 V 1 V N = 1 N
385 369 384 syl5eqr φ U 1 V 1 U V N = 1 N
386 385 fneq2d φ U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N U 1 V 1 × 1 U V N × 0 Fn 1 N
387 368 386 mpbid φ U 1 V 1 × 1 U V N × 0 Fn 1 N
388 387 adantr φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 Fn 1 N
389 fzfid φ n U 1 V 1 1 N Fin
390 eqidd φ n U 1 V 1 n 1 N T n = T n
391 fvun1 U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
392 356 358 391 mp3an12 U 1 V 1 U V N = n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
393 366 392 sylan φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
394 72 fvconst2 n U 1 V 1 U 1 V 1 × 1 n = 1
395 394 adantl φ n U 1 V 1 U 1 V 1 × 1 n = 1
396 393 395 eqtrd φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = 1
397 396 adantr φ n U 1 V 1 n 1 N U 1 V 1 × 1 U V N × 0 n = 1
398 354 388 389 389 114 390 397 ofval φ n U 1 V 1 n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T n + 1
399 111 adantr φ n U 1 V 1 U 1 V × 1 U V + 1 N × 0 Fn 1 N
400 fzss2 V V 1 1 V 1 1 V
401 315 400 syl φ 1 V 1 1 V
402 imass2 1 V 1 1 V U 1 V 1 U 1 V
403 401 402 syl φ U 1 V 1 U 1 V
404 403 sselda φ n U 1 V 1 n U 1 V
405 404 121 syldan φ n U 1 V 1 U 1 V × 1 U V + 1 N × 0 n = 1
406 405 adantr φ n U 1 V 1 n 1 N U 1 V × 1 U V + 1 N × 0 n = 1
407 354 399 389 389 114 390 406 ofval φ n U 1 V 1 n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 1
408 398 407 eqtr4d φ n U 1 V 1 n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
409 353 408 mpdan φ n U 1 V 1 T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
410 imassrn U V + 1 N ran U
411 410 67 sstrid φ U V + 1 N 1 N
412 411 sselda φ n U V + 1 N n 1 N
413 70 adantr φ n U V + 1 N T Fn 1 N
414 387 adantr φ n U V + 1 N U 1 V 1 × 1 U V N × 0 Fn 1 N
415 fzfid φ n U V + 1 N 1 N Fin
416 eqidd φ n U V + 1 N n 1 N T n = T n
417 fzss1 V + 1 V V + 1 N V N
418 148 417 syl φ V + 1 N V N
419 imass2 V + 1 N V N U V + 1 N U V N
420 418 419 syl φ U V + 1 N U V N
421 420 sselda φ n U V + 1 N n U V N
422 fvun2 U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
423 356 358 422 mp3an12 U 1 V 1 U V N = n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
424 366 423 sylan φ n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
425 75 fvconst2 n U V N U V N × 0 n = 0
426 425 adantl φ n U V N U V N × 0 n = 0
427 424 426 eqtrd φ n U V N U 1 V 1 × 1 U V N × 0 n = 0
428 421 427 syldan φ n U V + 1 N U 1 V 1 × 1 U V N × 0 n = 0
429 428 adantr φ n U V + 1 N n 1 N U 1 V 1 × 1 U V N × 0 n = 0
430 413 414 415 415 114 416 429 ofval φ n U V + 1 N n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T n + 0
431 111 adantr φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
432 186 adantr φ n U V + 1 N n 1 N U 1 V × 1 U V + 1 N × 0 n = 0
433 413 431 415 415 114 416 432 ofval φ n U V + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 0
434 430 433 eqtr4d φ n U V + 1 N n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
435 412 434 mpdan φ n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
436 409 435 jaodan φ n U 1 V 1 n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
437 436 adantlr φ V < M n U 1 V 1 n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
438 2 adantr φ V < M F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
439 206 a1i φ V < M y = V 1 if y < M y y + 1 V
440 216 adantlr φ V < M y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
441 lttr V 1 V M V 1 < V V < M V 1 < M
442 226 31 223 441 syl3anc φ V 1 < V V < M V 1 < M
443 326 442 mpand φ V < M V 1 < M
444 443 imp φ V < M V 1 < M
445 444 iftrued φ V < M if V 1 < M V 1 V = V 1
446 445 adantr φ V < M y = V 1 if V 1 < M V 1 V = V 1
447 440 446 eqtrd φ V < M y = V 1 if y < M y y + 1 = V 1
448 simpll φ V < M y = V 1 φ
449 oveq2 j = V 1 1 j = 1 V 1
450 449 imaeq2d j = V 1 U 1 j = U 1 V 1
451 450 xpeq1d j = V 1 U 1 j × 1 = U 1 V 1 × 1
452 451 adantl φ j = V 1 U 1 j × 1 = U 1 V 1 × 1
453 oveq1 j = V 1 j + 1 = V - 1 + 1
454 453 214 sylan9eqr φ j = V 1 j + 1 = V
455 454 oveq1d φ j = V 1 j + 1 N = V N
456 455 imaeq2d φ j = V 1 U j + 1 N = U V N
457 456 xpeq1d φ j = V 1 U j + 1 N × 0 = U V N × 0
458 452 457 uneq12d φ j = V 1 U 1 j × 1 U j + 1 N × 0 = U 1 V 1 × 1 U V N × 0
459 458 oveq2d φ j = V 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
460 448 459 sylan φ V < M y = V 1 j = V 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
461 439 447 460 csbied2 φ V < M y = V 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
462 248 adantr φ V < M V 1 0 N 1
463 ovexd φ V < M T + f U 1 V 1 × 1 U V N × 0 V
464 438 461 462 463 fvmptd φ V < M F V 1 = T + f U 1 V 1 × 1 U V N × 0
465 464 fveq1d φ V < M F V 1 n = T + f U 1 V 1 × 1 U V N × 0 n
466 465 adantr φ V < M n U 1 V 1 n U V + 1 N F V 1 n = T + f U 1 V 1 × 1 U V N × 0 n
467 206 a1i V < M y = V if y < M y y + 1 V
468 iftrue V < M if V < M V V + 1 = V
469 258 468 sylan9eqr V < M y = V if y < M y y + 1 = V
470 469 eqeq2d V < M y = V j = if y < M y y + 1 j = V
471 470 biimpa V < M y = V j = if y < M y y + 1 j = V
472 471 243 syl V < M y = V j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
473 467 472 csbied V < M y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
474 473 adantll φ V < M y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
475 278 adantr φ V < M V 0 N 1
476 ovexd φ V < M T + f U 1 V × 1 U V + 1 N × 0 V
477 438 474 475 476 fvmptd φ V < M F V = T + f U 1 V × 1 U V + 1 N × 0
478 477 fveq1d φ V < M F V n = T + f U 1 V × 1 U V + 1 N × 0 n
479 478 adantr φ V < M n U 1 V 1 n U V + 1 N F V n = T + f U 1 V × 1 U V + 1 N × 0 n
480 437 466 479 3eqtr4d φ V < M n U 1 V 1 n U V + 1 N F V 1 n = F V n
481 480 ex φ V < M n U 1 V 1 n U V + 1 N F V 1 n = F V n
482 350 481 sylbid φ V < M n U 1 N ¬ n U V F V 1 n = F V n
483 482 expdimp φ V < M n U 1 N ¬ n U V F V 1 n = F V n
484 483 necon1ad φ V < M n U 1 N F V 1 n F V n n U V
485 elimasni n U V V U n
486 eqcom n = U V U V = n
487 fnbrfvb U Fn 1 N V 1 N U V = n V U n
488 292 100 487 syl2anc φ U V = n V U n
489 486 488 syl5bb φ n = U V V U n
490 485 489 syl5ibr φ n U V n = U V
491 490 ad2antrr φ V < M n U 1 N n U V n = U V
492 484 491 syld φ V < M n U 1 N F V 1 n F V n n = U V
493 492 ralrimiva φ V < M n U 1 N F V 1 n F V n n = U V
494 fvex U V V
495 eqeq2 m = U V n = m n = U V
496 495 imbi2d m = U V F V 1 n F V n n = m F V 1 n F V n n = U V
497 496 ralbidv m = U V n U 1 N F V 1 n F V n n = m n U 1 N F V 1 n F V n n = U V
498 494 497 spcev n U 1 N F V 1 n F V n n = U V m n U 1 N F V 1 n F V n n = m
499 493 498 syl φ V < M m n U 1 N F V 1 n F V n n = m
500 eldifsni M 0 N V M V
501 6 500 syl φ M V
502 223 31 lttri2d φ M V M < V V < M
503 501 502 mpbid φ M < V V < M
504 305 499 503 mpjaodan φ m n U 1 N F V 1 n F V n n = m
505 nfv m F V 1 n F V n
506 505 rmo2 * n U 1 N F V 1 n F V n m n U 1 N F V 1 n F V n n = m
507 rmoeq1 U 1 N = 1 N * n U 1 N F V 1 n F V n * n 1 N F V 1 n F V n
508 107 507 syl φ * n U 1 N F V 1 n F V n * n 1 N F V 1 n F V n
509 506 508 bitr3id φ m n U 1 N F V 1 n F V n n = m * n 1 N F V 1 n F V n
510 504 509 mpbid φ * n 1 N F V 1 n F V n