Metamath Proof Explorer


Theorem poimirlem2

Description: Lemma for poimir - consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
poimirlem2.2 φ T : 1 N
poimirlem2.3 φ U : 1 N 1-1 onto 1 N
poimirlem2.4 φ V 1 N 1
poimirlem2.5 φ M 0 N V
Assertion poimirlem2 φ * n 1 N F V 1 n F V n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
3 poimirlem2.2 φ T : 1 N
4 poimirlem2.3 φ U : 1 N 1-1 onto 1 N
5 poimirlem2.4 φ V 1 N 1
6 poimirlem2.5 φ M 0 N V
7 dff1o3 U : 1 N 1-1 onto 1 N U : 1 N onto 1 N Fun U -1
8 7 simprbi U : 1 N 1-1 onto 1 N Fun U -1
9 4 8 syl φ Fun U -1
10 imadif Fun U -1 U 1 N V + 1 = U 1 N U V + 1
11 9 10 syl φ U 1 N V + 1 = U 1 N U V + 1
12 fzp1elp1 V 1 N 1 V + 1 1 N - 1 + 1
13 5 12 syl φ V + 1 1 N - 1 + 1
14 1 nncnd φ N
15 npcan1 N N - 1 + 1 = N
16 14 15 syl φ N - 1 + 1 = N
17 16 oveq2d φ 1 N - 1 + 1 = 1 N
18 13 17 eleqtrd φ V + 1 1 N
19 fzsplit V + 1 1 N 1 N = 1 V + 1 V + 1 + 1 N
20 18 19 syl φ 1 N = 1 V + 1 V + 1 + 1 N
21 20 difeq1d φ 1 N V + 1 = 1 V + 1 V + 1 + 1 N V + 1
22 difundir 1 V + 1 V + 1 + 1 N V + 1 = 1 V + 1 V + 1 V + 1 + 1 N V + 1
23 elfzuz V 1 N 1 V 1
24 5 23 syl φ V 1
25 fzsuc V 1 1 V + 1 = 1 V V + 1
26 24 25 syl φ 1 V + 1 = 1 V V + 1
27 26 difeq1d φ 1 V + 1 V + 1 = 1 V V + 1 V + 1
28 difun2 1 V V + 1 V + 1 = 1 V V + 1
29 5 elfzelzd φ V
30 29 zred φ V
31 30 ltp1d φ V < V + 1
32 29 peano2zd φ V + 1
33 32 zred φ V + 1
34 30 33 ltnled φ V < V + 1 ¬ V + 1 V
35 31 34 mpbid φ ¬ V + 1 V
36 elfzle2 V + 1 1 V V + 1 V
37 35 36 nsyl φ ¬ V + 1 1 V
38 difsn ¬ V + 1 1 V 1 V V + 1 = 1 V
39 37 38 syl φ 1 V V + 1 = 1 V
40 28 39 syl5eq φ 1 V V + 1 V + 1 = 1 V
41 27 40 eqtrd φ 1 V + 1 V + 1 = 1 V
42 33 ltp1d φ V + 1 < V + 1 + 1
43 peano2re V + 1 V + 1 + 1
44 33 43 syl φ V + 1 + 1
45 33 44 ltnled φ V + 1 < V + 1 + 1 ¬ V + 1 + 1 V + 1
46 42 45 mpbid φ ¬ V + 1 + 1 V + 1
47 elfzle1 V + 1 V + 1 + 1 N V + 1 + 1 V + 1
48 46 47 nsyl φ ¬ V + 1 V + 1 + 1 N
49 difsn ¬ V + 1 V + 1 + 1 N V + 1 + 1 N V + 1 = V + 1 + 1 N
50 48 49 syl φ V + 1 + 1 N V + 1 = V + 1 + 1 N
51 41 50 uneq12d φ 1 V + 1 V + 1 V + 1 + 1 N V + 1 = 1 V V + 1 + 1 N
52 22 51 syl5eq φ 1 V + 1 V + 1 + 1 N V + 1 = 1 V V + 1 + 1 N
53 21 52 eqtrd φ 1 N V + 1 = 1 V V + 1 + 1 N
54 53 imaeq2d φ U 1 N V + 1 = U 1 V V + 1 + 1 N
55 11 54 eqtr3d φ U 1 N U V + 1 = U 1 V V + 1 + 1 N
56 imaundi U 1 V V + 1 + 1 N = U 1 V U V + 1 + 1 N
57 55 56 eqtrdi φ U 1 N U V + 1 = U 1 V U V + 1 + 1 N
58 57 eleq2d φ n U 1 N U V + 1 n U 1 V U V + 1 + 1 N
59 eldif n U 1 N U V + 1 n U 1 N ¬ n U V + 1
60 elun n U 1 V U V + 1 + 1 N n U 1 V n U V + 1 + 1 N
61 58 59 60 3bitr3g φ n U 1 N ¬ n U V + 1 n U 1 V n U V + 1 + 1 N
62 61 adantr φ M < V n U 1 N ¬ n U V + 1 n U 1 V n U V + 1 + 1 N
63 imassrn U 1 V ran U
64 f1of U : 1 N 1-1 onto 1 N U : 1 N 1 N
65 4 64 syl φ U : 1 N 1 N
66 65 frnd φ ran U 1 N
67 63 66 sstrid φ U 1 V 1 N
68 67 sselda φ n U 1 V n 1 N
69 3 ffnd φ T Fn 1 N
70 69 adantr φ n U 1 V T Fn 1 N
71 1ex 1 V
72 fnconstg 1 V U 1 V × 1 Fn U 1 V
73 71 72 ax-mp U 1 V × 1 Fn U 1 V
74 c0ex 0 V
75 fnconstg 0 V U V + 1 N × 0 Fn U V + 1 N
76 74 75 ax-mp U V + 1 N × 0 Fn U V + 1 N
77 73 76 pm3.2i U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N
78 imain Fun U -1 U 1 V V + 1 N = U 1 V U V + 1 N
79 9 78 syl φ U 1 V V + 1 N = U 1 V U V + 1 N
80 fzdisj V < V + 1 1 V V + 1 N =
81 31 80 syl φ 1 V V + 1 N =
82 81 imaeq2d φ U 1 V V + 1 N = U
83 ima0 U =
84 82 83 eqtrdi φ U 1 V V + 1 N =
85 79 84 eqtr3d φ U 1 V U V + 1 N =
86 fnun U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N
87 77 85 86 sylancr φ U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N
88 imaundi U 1 V V + 1 N = U 1 V U V + 1 N
89 1 nnzd φ N
90 peano2zm N N 1
91 89 90 syl φ N 1
92 uzid N 1 N 1 N 1
93 91 92 syl φ N 1 N 1
94 peano2uz N 1 N 1 N - 1 + 1 N 1
95 93 94 syl φ N - 1 + 1 N 1
96 16 95 eqeltrrd φ N N 1
97 fzss2 N N 1 1 N 1 1 N
98 96 97 syl φ 1 N 1 1 N
99 98 5 sseldd φ V 1 N
100 fzsplit V 1 N 1 N = 1 V V + 1 N
101 99 100 syl φ 1 N = 1 V V + 1 N
102 101 imaeq2d φ U 1 N = U 1 V V + 1 N
103 f1ofo U : 1 N 1-1 onto 1 N U : 1 N onto 1 N
104 4 103 syl φ U : 1 N onto 1 N
105 foima U : 1 N onto 1 N U 1 N = 1 N
106 104 105 syl φ U 1 N = 1 N
107 102 106 eqtr3d φ U 1 V V + 1 N = 1 N
108 88 107 eqtr3id φ U 1 V U V + 1 N = 1 N
109 108 fneq2d φ U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
110 87 109 mpbid φ U 1 V × 1 U V + 1 N × 0 Fn 1 N
111 110 adantr φ n U 1 V U 1 V × 1 U V + 1 N × 0 Fn 1 N
112 fzfid φ n U 1 V 1 N Fin
113 inidm 1 N 1 N = 1 N
114 eqidd φ n U 1 V n 1 N T n = T n
115 fvun1 U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
116 73 76 115 mp3an12 U 1 V U V + 1 N = n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
117 85 116 sylan φ n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
118 71 fvconst2 n U 1 V U 1 V × 1 n = 1
119 118 adantl φ n U 1 V U 1 V × 1 n = 1
120 117 119 eqtrd φ n U 1 V U 1 V × 1 U V + 1 N × 0 n = 1
121 120 adantr φ n U 1 V n 1 N U 1 V × 1 U V + 1 N × 0 n = 1
122 70 111 112 112 113 114 121 ofval φ n U 1 V n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 1
123 fnconstg 1 V U 1 V + 1 × 1 Fn U 1 V + 1
124 71 123 ax-mp U 1 V + 1 × 1 Fn U 1 V + 1
125 fnconstg 0 V U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
126 74 125 ax-mp U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
127 124 126 pm3.2i U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
128 imain Fun U -1 U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
129 9 128 syl φ U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
130 fzdisj V + 1 < V + 1 + 1 1 V + 1 V + 1 + 1 N =
131 42 130 syl φ 1 V + 1 V + 1 + 1 N =
132 131 imaeq2d φ U 1 V + 1 V + 1 + 1 N = U
133 132 83 eqtrdi φ U 1 V + 1 V + 1 + 1 N =
134 129 133 eqtr3d φ U 1 V + 1 U V + 1 + 1 N =
135 fnun U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N
136 127 134 135 sylancr φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N
137 imaundi U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
138 20 imaeq2d φ U 1 N = U 1 V + 1 V + 1 + 1 N
139 138 106 eqtr3d φ U 1 V + 1 V + 1 + 1 N = 1 N
140 137 139 eqtr3id φ U 1 V + 1 U V + 1 + 1 N = 1 N
141 140 fneq2d φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
142 136 141 mpbid φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
143 142 adantr φ n U 1 V U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
144 uzid V V V
145 29 144 syl φ V V
146 peano2uz V V V + 1 V
147 145 146 syl φ V + 1 V
148 fzss2 V + 1 V 1 V 1 V + 1
149 147 148 syl φ 1 V 1 V + 1
150 imass2 1 V 1 V + 1 U 1 V U 1 V + 1
151 149 150 syl φ U 1 V U 1 V + 1
152 151 sselda φ n U 1 V n U 1 V + 1
153 fvun1 U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
154 124 126 153 mp3an12 U 1 V + 1 U V + 1 + 1 N = n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
155 134 154 sylan φ n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
156 71 fvconst2 n U 1 V + 1 U 1 V + 1 × 1 n = 1
157 156 adantl φ n U 1 V + 1 U 1 V + 1 × 1 n = 1
158 155 157 eqtrd φ n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
159 152 158 syldan φ n U 1 V U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
160 159 adantr φ n U 1 V n 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
161 70 143 112 112 113 114 160 ofval φ n U 1 V n 1 N T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = T n + 1
162 122 161 eqtr4d φ n U 1 V n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
163 68 162 mpdan φ n U 1 V T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
164 imassrn U V + 1 + 1 N ran U
165 164 66 sstrid φ U V + 1 + 1 N 1 N
166 165 sselda φ n U V + 1 + 1 N n 1 N
167 69 adantr φ n U V + 1 + 1 N T Fn 1 N
168 110 adantr φ n U V + 1 + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
169 fzfid φ n U V + 1 + 1 N 1 N Fin
170 eqidd φ n U V + 1 + 1 N n 1 N T n = T n
171 uzid V + 1 V + 1 V + 1
172 32 171 syl φ V + 1 V + 1
173 peano2uz V + 1 V + 1 V + 1 + 1 V + 1
174 172 173 syl φ V + 1 + 1 V + 1
175 fzss1 V + 1 + 1 V + 1 V + 1 + 1 N V + 1 N
176 174 175 syl φ V + 1 + 1 N V + 1 N
177 imass2 V + 1 + 1 N V + 1 N U V + 1 + 1 N U V + 1 N
178 176 177 syl φ U V + 1 + 1 N U V + 1 N
179 178 sselda φ n U V + 1 + 1 N n U V + 1 N
180 fvun2 U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
181 73 76 180 mp3an12 U 1 V U V + 1 N = n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
182 85 181 sylan φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
183 74 fvconst2 n U V + 1 N U V + 1 N × 0 n = 0
184 183 adantl φ n U V + 1 N U V + 1 N × 0 n = 0
185 182 184 eqtrd φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = 0
186 179 185 syldan φ n U V + 1 + 1 N U 1 V × 1 U V + 1 N × 0 n = 0
187 186 adantr φ n U V + 1 + 1 N n 1 N U 1 V × 1 U V + 1 N × 0 n = 0
188 167 168 169 169 113 170 187 ofval φ n U V + 1 + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 0
189 142 adantr φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
190 fvun2 U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
191 124 126 190 mp3an12 U 1 V + 1 U V + 1 + 1 N = n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
192 134 191 sylan φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
193 74 fvconst2 n U V + 1 + 1 N U V + 1 + 1 N × 0 n = 0
194 193 adantl φ n U V + 1 + 1 N U V + 1 + 1 N × 0 n = 0
195 192 194 eqtrd φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 0
196 195 adantr φ n U V + 1 + 1 N n 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 0
197 167 189 169 169 113 170 196 ofval φ n U V + 1 + 1 N n 1 N T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = T n + 0
198 188 197 eqtr4d φ n U V + 1 + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
199 166 198 mpdan φ n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
200 163 199 jaodan φ n U 1 V n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
201 200 adantlr φ M < V n U 1 V n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
202 2 adantr φ M < V F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
203 vex y V
204 ovex y + 1 V
205 203 204 ifex if y < M y y + 1 V
206 205 a1i φ M < V y = V 1 if y < M y y + 1 V
207 breq1 y = V 1 y < M V 1 < M
208 207 adantl φ y = V 1 y < M V 1 < M
209 simpr φ y = V 1 y = V 1
210 oveq1 y = V 1 y + 1 = V - 1 + 1
211 29 zcnd φ V
212 npcan1 V V - 1 + 1 = V
213 211 212 syl φ V - 1 + 1 = V
214 210 213 sylan9eqr φ y = V 1 y + 1 = V
215 208 209 214 ifbieq12d φ y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
216 215 adantlr φ M < V y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
217 6 eldifad φ M 0 N
218 217 elfzelzd φ M
219 zltlem1 M V M < V M V 1
220 218 29 219 syl2anc φ M < V M V 1
221 218 zred φ M
222 peano2zm V V 1
223 29 222 syl φ V 1
224 223 zred φ V 1
225 221 224 lenltd φ M V 1 ¬ V 1 < M
226 220 225 bitrd φ M < V ¬ V 1 < M
227 226 biimpa φ M < V ¬ V 1 < M
228 227 iffalsed φ M < V if V 1 < M V 1 V = V
229 228 adantr φ M < V y = V 1 if V 1 < M V 1 V = V
230 216 229 eqtrd φ M < V y = V 1 if y < M y y + 1 = V
231 230 eqeq2d φ M < V y = V 1 j = if y < M y y + 1 j = V
232 231 biimpa φ M < V y = V 1 j = if y < M y y + 1 j = V
233 oveq2 j = V 1 j = 1 V
234 233 imaeq2d j = V U 1 j = U 1 V
235 234 xpeq1d j = V U 1 j × 1 = U 1 V × 1
236 oveq1 j = V j + 1 = V + 1
237 236 oveq1d j = V j + 1 N = V + 1 N
238 237 imaeq2d j = V U j + 1 N = U V + 1 N
239 238 xpeq1d j = V U j + 1 N × 0 = U V + 1 N × 0
240 235 239 uneq12d j = V U 1 j × 1 U j + 1 N × 0 = U 1 V × 1 U V + 1 N × 0
241 240 oveq2d j = V T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
242 232 241 syl φ M < V y = V 1 j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
243 206 242 csbied φ M < V y = V 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
244 elfzm1b V N V 1 N V 1 0 N 1
245 29 89 244 syl2anc φ V 1 N V 1 0 N 1
246 99 245 mpbid φ V 1 0 N 1
247 246 adantr φ M < V V 1 0 N 1
248 ovexd φ M < V T + f U 1 V × 1 U V + 1 N × 0 V
249 202 243 247 248 fvmptd φ M < V F V 1 = T + f U 1 V × 1 U V + 1 N × 0
250 249 fveq1d φ M < V F V 1 n = T + f U 1 V × 1 U V + 1 N × 0 n
251 250 adantr φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = T + f U 1 V × 1 U V + 1 N × 0 n
252 205 a1i φ M < V y = V if y < M y y + 1 V
253 breq1 y = V y < M V < M
254 id y = V y = V
255 oveq1 y = V y + 1 = V + 1
256 253 254 255 ifbieq12d y = V if y < M y y + 1 = if V < M V V + 1
257 ltnsym M V M < V ¬ V < M
258 221 30 257 syl2anc φ M < V ¬ V < M
259 258 imp φ M < V ¬ V < M
260 259 iffalsed φ M < V if V < M V V + 1 = V + 1
261 256 260 sylan9eqr φ M < V y = V if y < M y y + 1 = V + 1
262 261 eqeq2d φ M < V y = V j = if y < M y y + 1 j = V + 1
263 262 biimpa φ M < V y = V j = if y < M y y + 1 j = V + 1
264 oveq2 j = V + 1 1 j = 1 V + 1
265 264 imaeq2d j = V + 1 U 1 j = U 1 V + 1
266 265 xpeq1d j = V + 1 U 1 j × 1 = U 1 V + 1 × 1
267 oveq1 j = V + 1 j + 1 = V + 1 + 1
268 267 oveq1d j = V + 1 j + 1 N = V + 1 + 1 N
269 268 imaeq2d j = V + 1 U j + 1 N = U V + 1 + 1 N
270 269 xpeq1d j = V + 1 U j + 1 N × 0 = U V + 1 + 1 N × 0
271 266 270 uneq12d j = V + 1 U 1 j × 1 U j + 1 N × 0 = U 1 V + 1 × 1 U V + 1 + 1 N × 0
272 271 oveq2d j = V + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
273 263 272 syl φ M < V y = V j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
274 252 273 csbied φ M < V y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
275 fz1ssfz0 1 N 1 0 N 1
276 275 5 sselid φ V 0 N 1
277 276 adantr φ M < V V 0 N 1
278 ovexd φ M < V T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 V
279 202 274 277 278 fvmptd φ M < V F V = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
280 279 fveq1d φ M < V F V n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
281 280 adantr φ M < V n U 1 V n U V + 1 + 1 N F V n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
282 201 251 281 3eqtr4d φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = F V n
283 282 ex φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = F V n
284 62 283 sylbid φ M < V n U 1 N ¬ n U V + 1 F V 1 n = F V n
285 284 expdimp φ M < V n U 1 N ¬ n U V + 1 F V 1 n = F V n
286 285 necon1ad φ M < V n U 1 N F V 1 n F V n n U V + 1
287 elimasni n U V + 1 V + 1 U n
288 eqcom n = U V + 1 U V + 1 = n
289 f1ofn U : 1 N 1-1 onto 1 N U Fn 1 N
290 4 289 syl φ U Fn 1 N
291 fnbrfvb U Fn 1 N V + 1 1 N U V + 1 = n V + 1 U n
292 290 18 291 syl2anc φ U V + 1 = n V + 1 U n
293 288 292 syl5bb φ n = U V + 1 V + 1 U n
294 287 293 syl5ibr φ n U V + 1 n = U V + 1
295 294 ad2antrr φ M < V n U 1 N n U V + 1 n = U V + 1
296 286 295 syld φ M < V n U 1 N F V 1 n F V n n = U V + 1
297 296 ralrimiva φ M < V n U 1 N F V 1 n F V n n = U V + 1
298 fvex U V + 1 V
299 eqeq2 m = U V + 1 n = m n = U V + 1
300 299 imbi2d m = U V + 1 F V 1 n F V n n = m F V 1 n F V n n = U V + 1
301 300 ralbidv m = U V + 1 n U 1 N F V 1 n F V n n = m n U 1 N F V 1 n F V n n = U V + 1
302 298 301 spcev n U 1 N F V 1 n F V n n = U V + 1 m n U 1 N F V 1 n F V n n = m
303 297 302 syl φ M < V m n U 1 N F V 1 n F V n n = m
304 imadif Fun U -1 U 1 N V = U 1 N U V
305 9 304 syl φ U 1 N V = U 1 N U V
306 101 difeq1d φ 1 N V = 1 V V + 1 N V
307 difundir 1 V V + 1 N V = 1 V V V + 1 N V
308 213 24 eqeltrd φ V - 1 + 1 1
309 uzid V 1 V 1 V 1
310 223 309 syl φ V 1 V 1
311 peano2uz V 1 V 1 V - 1 + 1 V 1
312 310 311 syl φ V - 1 + 1 V 1
313 213 312 eqeltrrd φ V V 1
314 fzsplit2 V - 1 + 1 1 V V 1 1 V = 1 V 1 V - 1 + 1 V
315 308 313 314 syl2anc φ 1 V = 1 V 1 V - 1 + 1 V
316 213 oveq1d φ V - 1 + 1 V = V V
317 fzsn V V V = V
318 29 317 syl φ V V = V
319 316 318 eqtrd φ V - 1 + 1 V = V
320 319 uneq2d φ 1 V 1 V - 1 + 1 V = 1 V 1 V
321 315 320 eqtrd φ 1 V = 1 V 1 V
322 321 difeq1d φ 1 V V = 1 V 1 V V
323 difun2 1 V 1 V V = 1 V 1 V
324 30 ltm1d φ V 1 < V
325 224 30 ltnled φ V 1 < V ¬ V V 1
326 324 325 mpbid φ ¬ V V 1
327 elfzle2 V 1 V 1 V V 1
328 326 327 nsyl φ ¬ V 1 V 1
329 difsn ¬ V 1 V 1 1 V 1 V = 1 V 1
330 328 329 syl φ 1 V 1 V = 1 V 1
331 323 330 syl5eq φ 1 V 1 V V = 1 V 1
332 322 331 eqtrd φ 1 V V = 1 V 1
333 elfzle1 V V + 1 N V + 1 V
334 35 333 nsyl φ ¬ V V + 1 N
335 difsn ¬ V V + 1 N V + 1 N V = V + 1 N
336 334 335 syl φ V + 1 N V = V + 1 N
337 332 336 uneq12d φ 1 V V V + 1 N V = 1 V 1 V + 1 N
338 307 337 syl5eq φ 1 V V + 1 N V = 1 V 1 V + 1 N
339 306 338 eqtrd φ 1 N V = 1 V 1 V + 1 N
340 339 imaeq2d φ U 1 N V = U 1 V 1 V + 1 N
341 305 340 eqtr3d φ U 1 N U V = U 1 V 1 V + 1 N
342 imaundi U 1 V 1 V + 1 N = U 1 V 1 U V + 1 N
343 341 342 eqtrdi φ U 1 N U V = U 1 V 1 U V + 1 N
344 343 eleq2d φ n U 1 N U V n U 1 V 1 U V + 1 N
345 eldif n U 1 N U V n U 1 N ¬ n U V
346 elun n U 1 V 1 U V + 1 N n U 1 V 1 n U V + 1 N
347 344 345 346 3bitr3g φ n U 1 N ¬ n U V n U 1 V 1 n U V + 1 N
348 347 adantr φ V < M n U 1 N ¬ n U V n U 1 V 1 n U V + 1 N
349 imassrn U 1 V 1 ran U
350 349 66 sstrid φ U 1 V 1 1 N
351 350 sselda φ n U 1 V 1 n 1 N
352 69 adantr φ n U 1 V 1 T Fn 1 N
353 fnconstg 1 V U 1 V 1 × 1 Fn U 1 V 1
354 71 353 ax-mp U 1 V 1 × 1 Fn U 1 V 1
355 fnconstg 0 V U V N × 0 Fn U V N
356 74 355 ax-mp U V N × 0 Fn U V N
357 354 356 pm3.2i U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N
358 imain Fun U -1 U 1 V 1 V N = U 1 V 1 U V N
359 9 358 syl φ U 1 V 1 V N = U 1 V 1 U V N
360 fzdisj V 1 < V 1 V 1 V N =
361 324 360 syl φ 1 V 1 V N =
362 361 imaeq2d φ U 1 V 1 V N = U
363 362 83 eqtrdi φ U 1 V 1 V N =
364 359 363 eqtr3d φ U 1 V 1 U V N =
365 fnun U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N
366 357 364 365 sylancr φ U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N
367 imaundi U 1 V 1 V N = U 1 V 1 U V N
368 uzss V V 1 V V 1
369 313 368 syl φ V V 1
370 elfzuz3 V 1 N 1 N 1 V
371 5 370 syl φ N 1 V
372 369 371 sseldd φ N 1 V 1
373 peano2uz N 1 V 1 N - 1 + 1 V 1
374 372 373 syl φ N - 1 + 1 V 1
375 16 374 eqeltrrd φ N V 1
376 fzsplit2 V - 1 + 1 1 N V 1 1 N = 1 V 1 V - 1 + 1 N
377 308 375 376 syl2anc φ 1 N = 1 V 1 V - 1 + 1 N
378 213 oveq1d φ V - 1 + 1 N = V N
379 378 uneq2d φ 1 V 1 V - 1 + 1 N = 1 V 1 V N
380 377 379 eqtrd φ 1 N = 1 V 1 V N
381 380 imaeq2d φ U 1 N = U 1 V 1 V N
382 381 106 eqtr3d φ U 1 V 1 V N = 1 N
383 367 382 eqtr3id φ U 1 V 1 U V N = 1 N
384 383 fneq2d φ U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N U 1 V 1 × 1 U V N × 0 Fn 1 N
385 366 384 mpbid φ U 1 V 1 × 1 U V N × 0 Fn 1 N
386 385 adantr φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 Fn 1 N
387 fzfid φ n U 1 V 1 1 N Fin
388 eqidd φ n U 1 V 1 n 1 N T n = T n
389 fvun1 U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
390 354 356 389 mp3an12 U 1 V 1 U V N = n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
391 364 390 sylan φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
392 71 fvconst2 n U 1 V 1 U 1 V 1 × 1 n = 1
393 392 adantl φ n U 1 V 1 U 1 V 1 × 1 n = 1
394 391 393 eqtrd φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = 1
395 394 adantr φ n U 1 V 1 n 1 N U 1 V 1 × 1 U V N × 0 n = 1
396 352 386 387 387 113 388 395 ofval φ n U 1 V 1 n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T n + 1
397 110 adantr φ n U 1 V 1 U 1 V × 1 U V + 1 N × 0 Fn 1 N
398 fzss2 V V 1 1 V 1 1 V
399 313 398 syl φ 1 V 1 1 V
400 imass2 1 V 1 1 V U 1 V 1 U 1 V
401 399 400 syl φ U 1 V 1 U 1 V
402 401 sselda φ n U 1 V 1 n U 1 V
403 402 120 syldan φ n U 1 V 1 U 1 V × 1 U V + 1 N × 0 n = 1
404 403 adantr φ n U 1 V 1 n 1 N U 1 V × 1 U V + 1 N × 0 n = 1
405 352 397 387 387 113 388 404 ofval φ n U 1 V 1 n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 1
406 396 405 eqtr4d φ n U 1 V 1 n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
407 351 406 mpdan φ n U 1 V 1 T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
408 imassrn U V + 1 N ran U
409 408 66 sstrid φ U V + 1 N 1 N
410 409 sselda φ n U V + 1 N n 1 N
411 69 adantr φ n U V + 1 N T Fn 1 N
412 385 adantr φ n U V + 1 N U 1 V 1 × 1 U V N × 0 Fn 1 N
413 fzfid φ n U V + 1 N 1 N Fin
414 eqidd φ n U V + 1 N n 1 N T n = T n
415 fzss1 V + 1 V V + 1 N V N
416 147 415 syl φ V + 1 N V N
417 imass2 V + 1 N V N U V + 1 N U V N
418 416 417 syl φ U V + 1 N U V N
419 418 sselda φ n U V + 1 N n U V N
420 fvun2 U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
421 354 356 420 mp3an12 U 1 V 1 U V N = n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
422 364 421 sylan φ n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
423 74 fvconst2 n U V N U V N × 0 n = 0
424 423 adantl φ n U V N U V N × 0 n = 0
425 422 424 eqtrd φ n U V N U 1 V 1 × 1 U V N × 0 n = 0
426 419 425 syldan φ n U V + 1 N U 1 V 1 × 1 U V N × 0 n = 0
427 426 adantr φ n U V + 1 N n 1 N U 1 V 1 × 1 U V N × 0 n = 0
428 411 412 413 413 113 414 427 ofval φ n U V + 1 N n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T n + 0
429 110 adantr φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
430 185 adantr φ n U V + 1 N n 1 N U 1 V × 1 U V + 1 N × 0 n = 0
431 411 429 413 413 113 414 430 ofval φ n U V + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 0
432 428 431 eqtr4d φ n U V + 1 N n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
433 410 432 mpdan φ n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
434 407 433 jaodan φ n U 1 V 1 n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
435 434 adantlr φ V < M n U 1 V 1 n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
436 2 adantr φ V < M F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
437 205 a1i φ V < M y = V 1 if y < M y y + 1 V
438 215 adantlr φ V < M y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
439 lttr V 1 V M V 1 < V V < M V 1 < M
440 224 30 221 439 syl3anc φ V 1 < V V < M V 1 < M
441 324 440 mpand φ V < M V 1 < M
442 441 imp φ V < M V 1 < M
443 442 iftrued φ V < M if V 1 < M V 1 V = V 1
444 443 adantr φ V < M y = V 1 if V 1 < M V 1 V = V 1
445 438 444 eqtrd φ V < M y = V 1 if y < M y y + 1 = V 1
446 simpll φ V < M y = V 1 φ
447 oveq2 j = V 1 1 j = 1 V 1
448 447 imaeq2d j = V 1 U 1 j = U 1 V 1
449 448 xpeq1d j = V 1 U 1 j × 1 = U 1 V 1 × 1
450 449 adantl φ j = V 1 U 1 j × 1 = U 1 V 1 × 1
451 oveq1 j = V 1 j + 1 = V - 1 + 1
452 451 213 sylan9eqr φ j = V 1 j + 1 = V
453 452 oveq1d φ j = V 1 j + 1 N = V N
454 453 imaeq2d φ j = V 1 U j + 1 N = U V N
455 454 xpeq1d φ j = V 1 U j + 1 N × 0 = U V N × 0
456 450 455 uneq12d φ j = V 1 U 1 j × 1 U j + 1 N × 0 = U 1 V 1 × 1 U V N × 0
457 456 oveq2d φ j = V 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
458 446 457 sylan φ V < M y = V 1 j = V 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
459 437 445 458 csbied2 φ V < M y = V 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
460 246 adantr φ V < M V 1 0 N 1
461 ovexd φ V < M T + f U 1 V 1 × 1 U V N × 0 V
462 436 459 460 461 fvmptd φ V < M F V 1 = T + f U 1 V 1 × 1 U V N × 0
463 462 fveq1d φ V < M F V 1 n = T + f U 1 V 1 × 1 U V N × 0 n
464 463 adantr φ V < M n U 1 V 1 n U V + 1 N F V 1 n = T + f U 1 V 1 × 1 U V N × 0 n
465 205 a1i V < M y = V if y < M y y + 1 V
466 iftrue V < M if V < M V V + 1 = V
467 256 466 sylan9eqr V < M y = V if y < M y y + 1 = V
468 467 eqeq2d V < M y = V j = if y < M y y + 1 j = V
469 468 biimpa V < M y = V j = if y < M y y + 1 j = V
470 469 241 syl V < M y = V j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
471 465 470 csbied V < M y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
472 471 adantll φ V < M y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
473 276 adantr φ V < M V 0 N 1
474 ovexd φ V < M T + f U 1 V × 1 U V + 1 N × 0 V
475 436 472 473 474 fvmptd φ V < M F V = T + f U 1 V × 1 U V + 1 N × 0
476 475 fveq1d φ V < M F V n = T + f U 1 V × 1 U V + 1 N × 0 n
477 476 adantr φ V < M n U 1 V 1 n U V + 1 N F V n = T + f U 1 V × 1 U V + 1 N × 0 n
478 435 464 477 3eqtr4d φ V < M n U 1 V 1 n U V + 1 N F V 1 n = F V n
479 478 ex φ V < M n U 1 V 1 n U V + 1 N F V 1 n = F V n
480 348 479 sylbid φ V < M n U 1 N ¬ n U V F V 1 n = F V n
481 480 expdimp φ V < M n U 1 N ¬ n U V F V 1 n = F V n
482 481 necon1ad φ V < M n U 1 N F V 1 n F V n n U V
483 elimasni n U V V U n
484 eqcom n = U V U V = n
485 fnbrfvb U Fn 1 N V 1 N U V = n V U n
486 290 99 485 syl2anc φ U V = n V U n
487 484 486 syl5bb φ n = U V V U n
488 483 487 syl5ibr φ n U V n = U V
489 488 ad2antrr φ V < M n U 1 N n U V n = U V
490 482 489 syld φ V < M n U 1 N F V 1 n F V n n = U V
491 490 ralrimiva φ V < M n U 1 N F V 1 n F V n n = U V
492 fvex U V V
493 eqeq2 m = U V n = m n = U V
494 493 imbi2d m = U V F V 1 n F V n n = m F V 1 n F V n n = U V
495 494 ralbidv m = U V n U 1 N F V 1 n F V n n = m n U 1 N F V 1 n F V n n = U V
496 492 495 spcev n U 1 N F V 1 n F V n n = U V m n U 1 N F V 1 n F V n n = m
497 491 496 syl φ V < M m n U 1 N F V 1 n F V n n = m
498 eldifsni M 0 N V M V
499 6 498 syl φ M V
500 221 30 lttri2d φ M V M < V V < M
501 499 500 mpbid φ M < V V < M
502 303 497 501 mpjaodan φ m n U 1 N F V 1 n F V n n = m
503 nfv m F V 1 n F V n
504 503 rmo2 * n U 1 N F V 1 n F V n m n U 1 N F V 1 n F V n n = m
505 rmoeq1 U 1 N = 1 N * n U 1 N F V 1 n F V n * n 1 N F V 1 n F V n
506 106 505 syl φ * n U 1 N F V 1 n F V n * n 1 N F V 1 n F V n
507 504 506 bitr3id φ m n U 1 N F V 1 n F V n n = m * n 1 N F V 1 n F V n
508 502 507 mpbid φ * n 1 N F V 1 n F V n