Metamath Proof Explorer


Theorem poimirlem2

Description: Lemma for poimir - consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
poimirlem2.2 φ T : 1 N
poimirlem2.3 φ U : 1 N 1-1 onto 1 N
poimirlem2.4 φ V 1 N 1
poimirlem2.5 φ M 0 N V
Assertion poimirlem2 φ * n 1 N F V 1 n F V n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem2.1 φ F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
3 poimirlem2.2 φ T : 1 N
4 poimirlem2.3 φ U : 1 N 1-1 onto 1 N
5 poimirlem2.4 φ V 1 N 1
6 poimirlem2.5 φ M 0 N V
7 dff1o3 U : 1 N 1-1 onto 1 N U : 1 N onto 1 N Fun U -1
8 7 simprbi U : 1 N 1-1 onto 1 N Fun U -1
9 4 8 syl φ Fun U -1
10 imadif Fun U -1 U 1 N V + 1 = U 1 N U V + 1
11 9 10 syl φ U 1 N V + 1 = U 1 N U V + 1
12 fzp1elp1 V 1 N 1 V + 1 1 N - 1 + 1
13 5 12 syl φ V + 1 1 N - 1 + 1
14 1 nncnd φ N
15 npcan1 N N - 1 + 1 = N
16 14 15 syl φ N - 1 + 1 = N
17 16 oveq2d φ 1 N - 1 + 1 = 1 N
18 13 17 eleqtrd φ V + 1 1 N
19 fzsplit V + 1 1 N 1 N = 1 V + 1 V + 1 + 1 N
20 18 19 syl φ 1 N = 1 V + 1 V + 1 + 1 N
21 20 difeq1d φ 1 N V + 1 = 1 V + 1 V + 1 + 1 N V + 1
22 difundir 1 V + 1 V + 1 + 1 N V + 1 = 1 V + 1 V + 1 V + 1 + 1 N V + 1
23 elfzuz V 1 N 1 V 1
24 5 23 syl φ V 1
25 fzsuc V 1 1 V + 1 = 1 V V + 1
26 24 25 syl φ 1 V + 1 = 1 V V + 1
27 26 difeq1d φ 1 V + 1 V + 1 = 1 V V + 1 V + 1
28 difun2 1 V V + 1 V + 1 = 1 V V + 1
29 5 elfzelzd φ V
30 29 zred φ V
31 30 ltp1d φ V < V + 1
32 29 peano2zd φ V + 1
33 32 zred φ V + 1
34 30 33 ltnled φ V < V + 1 ¬ V + 1 V
35 31 34 mpbid φ ¬ V + 1 V
36 elfzle2 V + 1 1 V V + 1 V
37 35 36 nsyl φ ¬ V + 1 1 V
38 difsn ¬ V + 1 1 V 1 V V + 1 = 1 V
39 37 38 syl φ 1 V V + 1 = 1 V
40 28 39 eqtrid φ 1 V V + 1 V + 1 = 1 V
41 27 40 eqtrd φ 1 V + 1 V + 1 = 1 V
42 33 ltp1d φ V + 1 < V + 1 + 1
43 peano2re V + 1 V + 1 + 1
44 33 43 syl φ V + 1 + 1
45 33 44 ltnled φ V + 1 < V + 1 + 1 ¬ V + 1 + 1 V + 1
46 42 45 mpbid φ ¬ V + 1 + 1 V + 1
47 elfzle1 V + 1 V + 1 + 1 N V + 1 + 1 V + 1
48 46 47 nsyl φ ¬ V + 1 V + 1 + 1 N
49 difsn ¬ V + 1 V + 1 + 1 N V + 1 + 1 N V + 1 = V + 1 + 1 N
50 48 49 syl φ V + 1 + 1 N V + 1 = V + 1 + 1 N
51 41 50 uneq12d φ 1 V + 1 V + 1 V + 1 + 1 N V + 1 = 1 V V + 1 + 1 N
52 22 51 eqtrid φ 1 V + 1 V + 1 + 1 N V + 1 = 1 V V + 1 + 1 N
53 21 52 eqtrd φ 1 N V + 1 = 1 V V + 1 + 1 N
54 53 imaeq2d φ U 1 N V + 1 = U 1 V V + 1 + 1 N
55 11 54 eqtr3d φ U 1 N U V + 1 = U 1 V V + 1 + 1 N
56 imaundi U 1 V V + 1 + 1 N = U 1 V U V + 1 + 1 N
57 55 56 eqtrdi φ U 1 N U V + 1 = U 1 V U V + 1 + 1 N
58 57 eleq2d φ n U 1 N U V + 1 n U 1 V U V + 1 + 1 N
59 eldif n U 1 N U V + 1 n U 1 N ¬ n U V + 1
60 elun n U 1 V U V + 1 + 1 N n U 1 V n U V + 1 + 1 N
61 58 59 60 3bitr3g φ n U 1 N ¬ n U V + 1 n U 1 V n U V + 1 + 1 N
62 61 adantr φ M < V n U 1 N ¬ n U V + 1 n U 1 V n U V + 1 + 1 N
63 imassrn U 1 V ran U
64 f1of U : 1 N 1-1 onto 1 N U : 1 N 1 N
65 4 64 syl φ U : 1 N 1 N
66 65 frnd φ ran U 1 N
67 63 66 sstrid φ U 1 V 1 N
68 67 sselda φ n U 1 V n 1 N
69 3 ffnd φ T Fn 1 N
70 69 adantr φ n U 1 V T Fn 1 N
71 1ex 1 V
72 fnconstg 1 V U 1 V × 1 Fn U 1 V
73 71 72 ax-mp U 1 V × 1 Fn U 1 V
74 c0ex 0 V
75 fnconstg 0 V U V + 1 N × 0 Fn U V + 1 N
76 74 75 ax-mp U V + 1 N × 0 Fn U V + 1 N
77 73 76 pm3.2i U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N
78 imain Fun U -1 U 1 V V + 1 N = U 1 V U V + 1 N
79 9 78 syl φ U 1 V V + 1 N = U 1 V U V + 1 N
80 fzdisj V < V + 1 1 V V + 1 N =
81 31 80 syl φ 1 V V + 1 N =
82 81 imaeq2d φ U 1 V V + 1 N = U
83 ima0 U =
84 82 83 eqtrdi φ U 1 V V + 1 N =
85 79 84 eqtr3d φ U 1 V U V + 1 N =
86 fnun U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N
87 77 85 86 sylancr φ U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N
88 imaundi U 1 V V + 1 N = U 1 V U V + 1 N
89 1 nnzd φ N
90 peano2zm N N 1
91 uzid N 1 N 1 N 1
92 peano2uz N 1 N 1 N - 1 + 1 N 1
93 89 90 91 92 4syl φ N - 1 + 1 N 1
94 16 93 eqeltrrd φ N N 1
95 fzss2 N N 1 1 N 1 1 N
96 94 95 syl φ 1 N 1 1 N
97 96 5 sseldd φ V 1 N
98 fzsplit V 1 N 1 N = 1 V V + 1 N
99 97 98 syl φ 1 N = 1 V V + 1 N
100 99 imaeq2d φ U 1 N = U 1 V V + 1 N
101 f1ofo U : 1 N 1-1 onto 1 N U : 1 N onto 1 N
102 4 101 syl φ U : 1 N onto 1 N
103 foima U : 1 N onto 1 N U 1 N = 1 N
104 102 103 syl φ U 1 N = 1 N
105 100 104 eqtr3d φ U 1 V V + 1 N = 1 N
106 88 105 eqtr3id φ U 1 V U V + 1 N = 1 N
107 106 fneq2d φ U 1 V × 1 U V + 1 N × 0 Fn U 1 V U V + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
108 87 107 mpbid φ U 1 V × 1 U V + 1 N × 0 Fn 1 N
109 108 adantr φ n U 1 V U 1 V × 1 U V + 1 N × 0 Fn 1 N
110 fzfid φ n U 1 V 1 N Fin
111 inidm 1 N 1 N = 1 N
112 eqidd φ n U 1 V n 1 N T n = T n
113 fvun1 U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
114 73 76 113 mp3an12 U 1 V U V + 1 N = n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
115 85 114 sylan φ n U 1 V U 1 V × 1 U V + 1 N × 0 n = U 1 V × 1 n
116 71 fvconst2 n U 1 V U 1 V × 1 n = 1
117 116 adantl φ n U 1 V U 1 V × 1 n = 1
118 115 117 eqtrd φ n U 1 V U 1 V × 1 U V + 1 N × 0 n = 1
119 118 adantr φ n U 1 V n 1 N U 1 V × 1 U V + 1 N × 0 n = 1
120 70 109 110 110 111 112 119 ofval φ n U 1 V n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 1
121 fnconstg 1 V U 1 V + 1 × 1 Fn U 1 V + 1
122 71 121 ax-mp U 1 V + 1 × 1 Fn U 1 V + 1
123 fnconstg 0 V U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
124 74 123 ax-mp U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
125 122 124 pm3.2i U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N
126 imain Fun U -1 U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
127 9 126 syl φ U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
128 fzdisj V + 1 < V + 1 + 1 1 V + 1 V + 1 + 1 N =
129 42 128 syl φ 1 V + 1 V + 1 + 1 N =
130 129 imaeq2d φ U 1 V + 1 V + 1 + 1 N = U
131 130 83 eqtrdi φ U 1 V + 1 V + 1 + 1 N =
132 127 131 eqtr3d φ U 1 V + 1 U V + 1 + 1 N =
133 fnun U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N
134 125 132 133 sylancr φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N
135 imaundi U 1 V + 1 V + 1 + 1 N = U 1 V + 1 U V + 1 + 1 N
136 20 imaeq2d φ U 1 N = U 1 V + 1 V + 1 + 1 N
137 136 104 eqtr3d φ U 1 V + 1 V + 1 + 1 N = 1 N
138 135 137 eqtr3id φ U 1 V + 1 U V + 1 + 1 N = 1 N
139 138 fneq2d φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn U 1 V + 1 U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
140 134 139 mpbid φ U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
141 140 adantr φ n U 1 V U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
142 uzid V V V
143 29 142 syl φ V V
144 peano2uz V V V + 1 V
145 fzss2 V + 1 V 1 V 1 V + 1
146 imass2 1 V 1 V + 1 U 1 V U 1 V + 1
147 143 144 145 146 4syl φ U 1 V U 1 V + 1
148 147 sselda φ n U 1 V n U 1 V + 1
149 fvun1 U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
150 122 124 149 mp3an12 U 1 V + 1 U V + 1 + 1 N = n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
151 132 150 sylan φ n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U 1 V + 1 × 1 n
152 71 fvconst2 n U 1 V + 1 U 1 V + 1 × 1 n = 1
153 152 adantl φ n U 1 V + 1 U 1 V + 1 × 1 n = 1
154 151 153 eqtrd φ n U 1 V + 1 U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
155 148 154 syldan φ n U 1 V U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
156 155 adantr φ n U 1 V n 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 1
157 70 141 110 110 111 112 156 ofval φ n U 1 V n 1 N T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = T n + 1
158 120 157 eqtr4d φ n U 1 V n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
159 68 158 mpdan φ n U 1 V T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
160 imassrn U V + 1 + 1 N ran U
161 160 66 sstrid φ U V + 1 + 1 N 1 N
162 161 sselda φ n U V + 1 + 1 N n 1 N
163 69 adantr φ n U V + 1 + 1 N T Fn 1 N
164 108 adantr φ n U V + 1 + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
165 fzfid φ n U V + 1 + 1 N 1 N Fin
166 eqidd φ n U V + 1 + 1 N n 1 N T n = T n
167 uzid V + 1 V + 1 V + 1
168 32 167 syl φ V + 1 V + 1
169 peano2uz V + 1 V + 1 V + 1 + 1 V + 1
170 fzss1 V + 1 + 1 V + 1 V + 1 + 1 N V + 1 N
171 imass2 V + 1 + 1 N V + 1 N U V + 1 + 1 N U V + 1 N
172 168 169 170 171 4syl φ U V + 1 + 1 N U V + 1 N
173 172 sselda φ n U V + 1 + 1 N n U V + 1 N
174 fvun2 U 1 V × 1 Fn U 1 V U V + 1 N × 0 Fn U V + 1 N U 1 V U V + 1 N = n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
175 73 76 174 mp3an12 U 1 V U V + 1 N = n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
176 85 175 sylan φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = U V + 1 N × 0 n
177 74 fvconst2 n U V + 1 N U V + 1 N × 0 n = 0
178 177 adantl φ n U V + 1 N U V + 1 N × 0 n = 0
179 176 178 eqtrd φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 n = 0
180 173 179 syldan φ n U V + 1 + 1 N U 1 V × 1 U V + 1 N × 0 n = 0
181 180 adantr φ n U V + 1 + 1 N n 1 N U 1 V × 1 U V + 1 N × 0 n = 0
182 163 164 165 165 111 166 181 ofval φ n U V + 1 + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 0
183 140 adantr φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 Fn 1 N
184 fvun2 U 1 V + 1 × 1 Fn U 1 V + 1 U V + 1 + 1 N × 0 Fn U V + 1 + 1 N U 1 V + 1 U V + 1 + 1 N = n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
185 122 124 184 mp3an12 U 1 V + 1 U V + 1 + 1 N = n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
186 132 185 sylan φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = U V + 1 + 1 N × 0 n
187 74 fvconst2 n U V + 1 + 1 N U V + 1 + 1 N × 0 n = 0
188 187 adantl φ n U V + 1 + 1 N U V + 1 + 1 N × 0 n = 0
189 186 188 eqtrd φ n U V + 1 + 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 0
190 189 adantr φ n U V + 1 + 1 N n 1 N U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = 0
191 163 183 165 165 111 166 190 ofval φ n U V + 1 + 1 N n 1 N T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n = T n + 0
192 182 191 eqtr4d φ n U V + 1 + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
193 162 192 mpdan φ n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
194 159 193 jaodan φ n U 1 V n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
195 194 adantlr φ M < V n U 1 V n U V + 1 + 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
196 2 adantr φ M < V F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
197 vex y V
198 ovex y + 1 V
199 197 198 ifex if y < M y y + 1 V
200 199 a1i φ M < V y = V 1 if y < M y y + 1 V
201 breq1 y = V 1 y < M V 1 < M
202 201 adantl φ y = V 1 y < M V 1 < M
203 simpr φ y = V 1 y = V 1
204 oveq1 y = V 1 y + 1 = V - 1 + 1
205 29 zcnd φ V
206 npcan1 V V - 1 + 1 = V
207 205 206 syl φ V - 1 + 1 = V
208 204 207 sylan9eqr φ y = V 1 y + 1 = V
209 202 203 208 ifbieq12d φ y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
210 209 adantlr φ M < V y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
211 6 eldifad φ M 0 N
212 211 elfzelzd φ M
213 zltlem1 M V M < V M V 1
214 212 29 213 syl2anc φ M < V M V 1
215 212 zred φ M
216 peano2zm V V 1
217 29 216 syl φ V 1
218 217 zred φ V 1
219 215 218 lenltd φ M V 1 ¬ V 1 < M
220 214 219 bitrd φ M < V ¬ V 1 < M
221 220 biimpa φ M < V ¬ V 1 < M
222 221 iffalsed φ M < V if V 1 < M V 1 V = V
223 222 adantr φ M < V y = V 1 if V 1 < M V 1 V = V
224 210 223 eqtrd φ M < V y = V 1 if y < M y y + 1 = V
225 224 eqeq2d φ M < V y = V 1 j = if y < M y y + 1 j = V
226 225 biimpa φ M < V y = V 1 j = if y < M y y + 1 j = V
227 oveq2 j = V 1 j = 1 V
228 227 imaeq2d j = V U 1 j = U 1 V
229 228 xpeq1d j = V U 1 j × 1 = U 1 V × 1
230 oveq1 j = V j + 1 = V + 1
231 230 oveq1d j = V j + 1 N = V + 1 N
232 231 imaeq2d j = V U j + 1 N = U V + 1 N
233 232 xpeq1d j = V U j + 1 N × 0 = U V + 1 N × 0
234 229 233 uneq12d j = V U 1 j × 1 U j + 1 N × 0 = U 1 V × 1 U V + 1 N × 0
235 234 oveq2d j = V T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
236 226 235 syl φ M < V y = V 1 j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
237 200 236 csbied φ M < V y = V 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
238 elfzm1b V N V 1 N V 1 0 N 1
239 29 89 238 syl2anc φ V 1 N V 1 0 N 1
240 97 239 mpbid φ V 1 0 N 1
241 240 adantr φ M < V V 1 0 N 1
242 ovexd φ M < V T + f U 1 V × 1 U V + 1 N × 0 V
243 196 237 241 242 fvmptd φ M < V F V 1 = T + f U 1 V × 1 U V + 1 N × 0
244 243 fveq1d φ M < V F V 1 n = T + f U 1 V × 1 U V + 1 N × 0 n
245 244 adantr φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = T + f U 1 V × 1 U V + 1 N × 0 n
246 199 a1i φ M < V y = V if y < M y y + 1 V
247 breq1 y = V y < M V < M
248 id y = V y = V
249 oveq1 y = V y + 1 = V + 1
250 247 248 249 ifbieq12d y = V if y < M y y + 1 = if V < M V V + 1
251 ltnsym M V M < V ¬ V < M
252 215 30 251 syl2anc φ M < V ¬ V < M
253 252 imp φ M < V ¬ V < M
254 253 iffalsed φ M < V if V < M V V + 1 = V + 1
255 250 254 sylan9eqr φ M < V y = V if y < M y y + 1 = V + 1
256 255 eqeq2d φ M < V y = V j = if y < M y y + 1 j = V + 1
257 256 biimpa φ M < V y = V j = if y < M y y + 1 j = V + 1
258 oveq2 j = V + 1 1 j = 1 V + 1
259 258 imaeq2d j = V + 1 U 1 j = U 1 V + 1
260 259 xpeq1d j = V + 1 U 1 j × 1 = U 1 V + 1 × 1
261 oveq1 j = V + 1 j + 1 = V + 1 + 1
262 261 oveq1d j = V + 1 j + 1 N = V + 1 + 1 N
263 262 imaeq2d j = V + 1 U j + 1 N = U V + 1 + 1 N
264 263 xpeq1d j = V + 1 U j + 1 N × 0 = U V + 1 + 1 N × 0
265 260 264 uneq12d j = V + 1 U 1 j × 1 U j + 1 N × 0 = U 1 V + 1 × 1 U V + 1 + 1 N × 0
266 265 oveq2d j = V + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
267 257 266 syl φ M < V y = V j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
268 246 267 csbied φ M < V y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
269 fz1ssfz0 1 N 1 0 N 1
270 269 5 sselid φ V 0 N 1
271 270 adantr φ M < V V 0 N 1
272 ovexd φ M < V T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 V
273 196 268 271 272 fvmptd φ M < V F V = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0
274 273 fveq1d φ M < V F V n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
275 274 adantr φ M < V n U 1 V n U V + 1 + 1 N F V n = T + f U 1 V + 1 × 1 U V + 1 + 1 N × 0 n
276 195 245 275 3eqtr4d φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = F V n
277 276 ex φ M < V n U 1 V n U V + 1 + 1 N F V 1 n = F V n
278 62 277 sylbid φ M < V n U 1 N ¬ n U V + 1 F V 1 n = F V n
279 278 expdimp φ M < V n U 1 N ¬ n U V + 1 F V 1 n = F V n
280 279 necon1ad φ M < V n U 1 N F V 1 n F V n n U V + 1
281 elimasni n U V + 1 V + 1 U n
282 eqcom n = U V + 1 U V + 1 = n
283 f1ofn U : 1 N 1-1 onto 1 N U Fn 1 N
284 4 283 syl φ U Fn 1 N
285 fnbrfvb U Fn 1 N V + 1 1 N U V + 1 = n V + 1 U n
286 284 18 285 syl2anc φ U V + 1 = n V + 1 U n
287 282 286 bitrid φ n = U V + 1 V + 1 U n
288 281 287 imbitrrid φ n U V + 1 n = U V + 1
289 288 ad2antrr φ M < V n U 1 N n U V + 1 n = U V + 1
290 280 289 syld φ M < V n U 1 N F V 1 n F V n n = U V + 1
291 290 ralrimiva φ M < V n U 1 N F V 1 n F V n n = U V + 1
292 fvex U V + 1 V
293 eqeq2 m = U V + 1 n = m n = U V + 1
294 293 imbi2d m = U V + 1 F V 1 n F V n n = m F V 1 n F V n n = U V + 1
295 294 ralbidv m = U V + 1 n U 1 N F V 1 n F V n n = m n U 1 N F V 1 n F V n n = U V + 1
296 292 295 spcev n U 1 N F V 1 n F V n n = U V + 1 m n U 1 N F V 1 n F V n n = m
297 291 296 syl φ M < V m n U 1 N F V 1 n F V n n = m
298 imadif Fun U -1 U 1 N V = U 1 N U V
299 9 298 syl φ U 1 N V = U 1 N U V
300 99 difeq1d φ 1 N V = 1 V V + 1 N V
301 difundir 1 V V + 1 N V = 1 V V V + 1 N V
302 207 24 eqeltrd φ V - 1 + 1 1
303 uzid V 1 V 1 V 1
304 peano2uz V 1 V 1 V - 1 + 1 V 1
305 29 216 303 304 4syl φ V - 1 + 1 V 1
306 207 305 eqeltrrd φ V V 1
307 fzsplit2 V - 1 + 1 1 V V 1 1 V = 1 V 1 V - 1 + 1 V
308 302 306 307 syl2anc φ 1 V = 1 V 1 V - 1 + 1 V
309 207 oveq1d φ V - 1 + 1 V = V V
310 fzsn V V V = V
311 29 310 syl φ V V = V
312 309 311 eqtrd φ V - 1 + 1 V = V
313 312 uneq2d φ 1 V 1 V - 1 + 1 V = 1 V 1 V
314 308 313 eqtrd φ 1 V = 1 V 1 V
315 314 difeq1d φ 1 V V = 1 V 1 V V
316 difun2 1 V 1 V V = 1 V 1 V
317 30 ltm1d φ V 1 < V
318 218 30 ltnled φ V 1 < V ¬ V V 1
319 317 318 mpbid φ ¬ V V 1
320 elfzle2 V 1 V 1 V V 1
321 319 320 nsyl φ ¬ V 1 V 1
322 difsn ¬ V 1 V 1 1 V 1 V = 1 V 1
323 321 322 syl φ 1 V 1 V = 1 V 1
324 316 323 eqtrid φ 1 V 1 V V = 1 V 1
325 315 324 eqtrd φ 1 V V = 1 V 1
326 elfzle1 V V + 1 N V + 1 V
327 35 326 nsyl φ ¬ V V + 1 N
328 difsn ¬ V V + 1 N V + 1 N V = V + 1 N
329 327 328 syl φ V + 1 N V = V + 1 N
330 325 329 uneq12d φ 1 V V V + 1 N V = 1 V 1 V + 1 N
331 301 330 eqtrid φ 1 V V + 1 N V = 1 V 1 V + 1 N
332 300 331 eqtrd φ 1 N V = 1 V 1 V + 1 N
333 332 imaeq2d φ U 1 N V = U 1 V 1 V + 1 N
334 299 333 eqtr3d φ U 1 N U V = U 1 V 1 V + 1 N
335 imaundi U 1 V 1 V + 1 N = U 1 V 1 U V + 1 N
336 334 335 eqtrdi φ U 1 N U V = U 1 V 1 U V + 1 N
337 336 eleq2d φ n U 1 N U V n U 1 V 1 U V + 1 N
338 eldif n U 1 N U V n U 1 N ¬ n U V
339 elun n U 1 V 1 U V + 1 N n U 1 V 1 n U V + 1 N
340 337 338 339 3bitr3g φ n U 1 N ¬ n U V n U 1 V 1 n U V + 1 N
341 340 adantr φ V < M n U 1 N ¬ n U V n U 1 V 1 n U V + 1 N
342 imassrn U 1 V 1 ran U
343 342 66 sstrid φ U 1 V 1 1 N
344 343 sselda φ n U 1 V 1 n 1 N
345 69 adantr φ n U 1 V 1 T Fn 1 N
346 fnconstg 1 V U 1 V 1 × 1 Fn U 1 V 1
347 71 346 ax-mp U 1 V 1 × 1 Fn U 1 V 1
348 fnconstg 0 V U V N × 0 Fn U V N
349 74 348 ax-mp U V N × 0 Fn U V N
350 347 349 pm3.2i U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N
351 imain Fun U -1 U 1 V 1 V N = U 1 V 1 U V N
352 9 351 syl φ U 1 V 1 V N = U 1 V 1 U V N
353 fzdisj V 1 < V 1 V 1 V N =
354 317 353 syl φ 1 V 1 V N =
355 354 imaeq2d φ U 1 V 1 V N = U
356 355 83 eqtrdi φ U 1 V 1 V N =
357 352 356 eqtr3d φ U 1 V 1 U V N =
358 fnun U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N
359 350 357 358 sylancr φ U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N
360 imaundi U 1 V 1 V N = U 1 V 1 U V N
361 uzss V V 1 V V 1
362 306 361 syl φ V V 1
363 elfzuz3 V 1 N 1 N 1 V
364 5 363 syl φ N 1 V
365 362 364 sseldd φ N 1 V 1
366 peano2uz N 1 V 1 N - 1 + 1 V 1
367 365 366 syl φ N - 1 + 1 V 1
368 16 367 eqeltrrd φ N V 1
369 fzsplit2 V - 1 + 1 1 N V 1 1 N = 1 V 1 V - 1 + 1 N
370 302 368 369 syl2anc φ 1 N = 1 V 1 V - 1 + 1 N
371 207 oveq1d φ V - 1 + 1 N = V N
372 371 uneq2d φ 1 V 1 V - 1 + 1 N = 1 V 1 V N
373 370 372 eqtrd φ 1 N = 1 V 1 V N
374 373 imaeq2d φ U 1 N = U 1 V 1 V N
375 374 104 eqtr3d φ U 1 V 1 V N = 1 N
376 360 375 eqtr3id φ U 1 V 1 U V N = 1 N
377 376 fneq2d φ U 1 V 1 × 1 U V N × 0 Fn U 1 V 1 U V N U 1 V 1 × 1 U V N × 0 Fn 1 N
378 359 377 mpbid φ U 1 V 1 × 1 U V N × 0 Fn 1 N
379 378 adantr φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 Fn 1 N
380 fzfid φ n U 1 V 1 1 N Fin
381 eqidd φ n U 1 V 1 n 1 N T n = T n
382 fvun1 U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
383 347 349 382 mp3an12 U 1 V 1 U V N = n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
384 357 383 sylan φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = U 1 V 1 × 1 n
385 71 fvconst2 n U 1 V 1 U 1 V 1 × 1 n = 1
386 385 adantl φ n U 1 V 1 U 1 V 1 × 1 n = 1
387 384 386 eqtrd φ n U 1 V 1 U 1 V 1 × 1 U V N × 0 n = 1
388 387 adantr φ n U 1 V 1 n 1 N U 1 V 1 × 1 U V N × 0 n = 1
389 345 379 380 380 111 381 388 ofval φ n U 1 V 1 n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T n + 1
390 108 adantr φ n U 1 V 1 U 1 V × 1 U V + 1 N × 0 Fn 1 N
391 fzss2 V V 1 1 V 1 1 V
392 306 391 syl φ 1 V 1 1 V
393 imass2 1 V 1 1 V U 1 V 1 U 1 V
394 392 393 syl φ U 1 V 1 U 1 V
395 394 sselda φ n U 1 V 1 n U 1 V
396 395 118 syldan φ n U 1 V 1 U 1 V × 1 U V + 1 N × 0 n = 1
397 396 adantr φ n U 1 V 1 n 1 N U 1 V × 1 U V + 1 N × 0 n = 1
398 345 390 380 380 111 381 397 ofval φ n U 1 V 1 n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 1
399 389 398 eqtr4d φ n U 1 V 1 n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
400 344 399 mpdan φ n U 1 V 1 T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
401 imassrn U V + 1 N ran U
402 401 66 sstrid φ U V + 1 N 1 N
403 402 sselda φ n U V + 1 N n 1 N
404 69 adantr φ n U V + 1 N T Fn 1 N
405 378 adantr φ n U V + 1 N U 1 V 1 × 1 U V N × 0 Fn 1 N
406 fzfid φ n U V + 1 N 1 N Fin
407 eqidd φ n U V + 1 N n 1 N T n = T n
408 fzss1 V + 1 V V + 1 N V N
409 imass2 V + 1 N V N U V + 1 N U V N
410 143 144 408 409 4syl φ U V + 1 N U V N
411 410 sselda φ n U V + 1 N n U V N
412 fvun2 U 1 V 1 × 1 Fn U 1 V 1 U V N × 0 Fn U V N U 1 V 1 U V N = n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
413 347 349 412 mp3an12 U 1 V 1 U V N = n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
414 357 413 sylan φ n U V N U 1 V 1 × 1 U V N × 0 n = U V N × 0 n
415 74 fvconst2 n U V N U V N × 0 n = 0
416 415 adantl φ n U V N U V N × 0 n = 0
417 414 416 eqtrd φ n U V N U 1 V 1 × 1 U V N × 0 n = 0
418 411 417 syldan φ n U V + 1 N U 1 V 1 × 1 U V N × 0 n = 0
419 418 adantr φ n U V + 1 N n 1 N U 1 V 1 × 1 U V N × 0 n = 0
420 404 405 406 406 111 407 419 ofval φ n U V + 1 N n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T n + 0
421 108 adantr φ n U V + 1 N U 1 V × 1 U V + 1 N × 0 Fn 1 N
422 179 adantr φ n U V + 1 N n 1 N U 1 V × 1 U V + 1 N × 0 n = 0
423 404 421 406 406 111 407 422 ofval φ n U V + 1 N n 1 N T + f U 1 V × 1 U V + 1 N × 0 n = T n + 0
424 420 423 eqtr4d φ n U V + 1 N n 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
425 403 424 mpdan φ n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
426 400 425 jaodan φ n U 1 V 1 n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
427 426 adantlr φ V < M n U 1 V 1 n U V + 1 N T + f U 1 V 1 × 1 U V N × 0 n = T + f U 1 V × 1 U V + 1 N × 0 n
428 2 adantr φ V < M F = y 0 N 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0
429 199 a1i φ V < M y = V 1 if y < M y y + 1 V
430 209 adantlr φ V < M y = V 1 if y < M y y + 1 = if V 1 < M V 1 V
431 lttr V 1 V M V 1 < V V < M V 1 < M
432 218 30 215 431 syl3anc φ V 1 < V V < M V 1 < M
433 317 432 mpand φ V < M V 1 < M
434 433 imp φ V < M V 1 < M
435 434 iftrued φ V < M if V 1 < M V 1 V = V 1
436 435 adantr φ V < M y = V 1 if V 1 < M V 1 V = V 1
437 430 436 eqtrd φ V < M y = V 1 if y < M y y + 1 = V 1
438 simpll φ V < M y = V 1 φ
439 oveq2 j = V 1 1 j = 1 V 1
440 439 imaeq2d j = V 1 U 1 j = U 1 V 1
441 440 xpeq1d j = V 1 U 1 j × 1 = U 1 V 1 × 1
442 441 adantl φ j = V 1 U 1 j × 1 = U 1 V 1 × 1
443 oveq1 j = V 1 j + 1 = V - 1 + 1
444 443 207 sylan9eqr φ j = V 1 j + 1 = V
445 444 oveq1d φ j = V 1 j + 1 N = V N
446 445 imaeq2d φ j = V 1 U j + 1 N = U V N
447 446 xpeq1d φ j = V 1 U j + 1 N × 0 = U V N × 0
448 442 447 uneq12d φ j = V 1 U 1 j × 1 U j + 1 N × 0 = U 1 V 1 × 1 U V N × 0
449 448 oveq2d φ j = V 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
450 438 449 sylan φ V < M y = V 1 j = V 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
451 429 437 450 csbied2 φ V < M y = V 1 if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V 1 × 1 U V N × 0
452 240 adantr φ V < M V 1 0 N 1
453 ovexd φ V < M T + f U 1 V 1 × 1 U V N × 0 V
454 428 451 452 453 fvmptd φ V < M F V 1 = T + f U 1 V 1 × 1 U V N × 0
455 454 fveq1d φ V < M F V 1 n = T + f U 1 V 1 × 1 U V N × 0 n
456 455 adantr φ V < M n U 1 V 1 n U V + 1 N F V 1 n = T + f U 1 V 1 × 1 U V N × 0 n
457 199 a1i V < M y = V if y < M y y + 1 V
458 iftrue V < M if V < M V V + 1 = V
459 250 458 sylan9eqr V < M y = V if y < M y y + 1 = V
460 459 eqeq2d V < M y = V j = if y < M y y + 1 j = V
461 460 biimpa V < M y = V j = if y < M y y + 1 j = V
462 461 235 syl V < M y = V j = if y < M y y + 1 T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
463 457 462 csbied V < M y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
464 463 adantll φ V < M y = V if y < M y y + 1 / j T + f U 1 j × 1 U j + 1 N × 0 = T + f U 1 V × 1 U V + 1 N × 0
465 270 adantr φ V < M V 0 N 1
466 ovexd φ V < M T + f U 1 V × 1 U V + 1 N × 0 V
467 428 464 465 466 fvmptd φ V < M F V = T + f U 1 V × 1 U V + 1 N × 0
468 467 fveq1d φ V < M F V n = T + f U 1 V × 1 U V + 1 N × 0 n
469 468 adantr φ V < M n U 1 V 1 n U V + 1 N F V n = T + f U 1 V × 1 U V + 1 N × 0 n
470 427 456 469 3eqtr4d φ V < M n U 1 V 1 n U V + 1 N F V 1 n = F V n
471 470 ex φ V < M n U 1 V 1 n U V + 1 N F V 1 n = F V n
472 341 471 sylbid φ V < M n U 1 N ¬ n U V F V 1 n = F V n
473 472 expdimp φ V < M n U 1 N ¬ n U V F V 1 n = F V n
474 473 necon1ad φ V < M n U 1 N F V 1 n F V n n U V
475 elimasni n U V V U n
476 eqcom n = U V U V = n
477 fnbrfvb U Fn 1 N V 1 N U V = n V U n
478 284 97 477 syl2anc φ U V = n V U n
479 476 478 bitrid φ n = U V V U n
480 475 479 imbitrrid φ n U V n = U V
481 480 ad2antrr φ V < M n U 1 N n U V n = U V
482 474 481 syld φ V < M n U 1 N F V 1 n F V n n = U V
483 482 ralrimiva φ V < M n U 1 N F V 1 n F V n n = U V
484 fvex U V V
485 eqeq2 m = U V n = m n = U V
486 485 imbi2d m = U V F V 1 n F V n n = m F V 1 n F V n n = U V
487 486 ralbidv m = U V n U 1 N F V 1 n F V n n = m n U 1 N F V 1 n F V n n = U V
488 484 487 spcev n U 1 N F V 1 n F V n n = U V m n U 1 N F V 1 n F V n n = m
489 483 488 syl φ V < M m n U 1 N F V 1 n F V n n = m
490 eldifsni M 0 N V M V
491 6 490 syl φ M V
492 215 30 lttri2d φ M V M < V V < M
493 491 492 mpbid φ M < V V < M
494 297 489 493 mpjaodan φ m n U 1 N F V 1 n F V n n = m
495 nfv m F V 1 n F V n
496 495 rmo2 * n U 1 N F V 1 n F V n m n U 1 N F V 1 n F V n n = m
497 rmoeq1 U 1 N = 1 N * n U 1 N F V 1 n F V n * n 1 N F V 1 n F V n
498 4 101 103 497 4syl φ * n U 1 N F V 1 n F V n * n 1 N F V 1 n F V n
499 496 498 bitr3id φ m n U 1 N F V 1 n F V n n = m * n 1 N F V 1 n F V n
500 494 499 mpbid φ * n 1 N F V 1 n F V n