Metamath Proof Explorer


Theorem poimirlem2

Description: Lemma for poimir - consecutive vertices differ in at most one dimension. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem2.1
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
poimirlem2.2
|- ( ph -> T : ( 1 ... N ) --> ZZ )
poimirlem2.3
|- ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
poimirlem2.4
|- ( ph -> V e. ( 1 ... ( N - 1 ) ) )
poimirlem2.5
|- ( ph -> M e. ( ( 0 ... N ) \ { V } ) )
Assertion poimirlem2
|- ( ph -> E* n e. ( 1 ... N ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem2.1
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
3 poimirlem2.2
 |-  ( ph -> T : ( 1 ... N ) --> ZZ )
4 poimirlem2.3
 |-  ( ph -> U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
5 poimirlem2.4
 |-  ( ph -> V e. ( 1 ... ( N - 1 ) ) )
6 poimirlem2.5
 |-  ( ph -> M e. ( ( 0 ... N ) \ { V } ) )
7 dff1o3
 |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( U : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' U ) )
8 7 simprbi
 |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' U )
9 4 8 syl
 |-  ( ph -> Fun `' U )
10 imadif
 |-  ( Fun `' U -> ( U " ( ( 1 ... N ) \ { ( V + 1 ) } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { ( V + 1 ) } ) ) )
11 9 10 syl
 |-  ( ph -> ( U " ( ( 1 ... N ) \ { ( V + 1 ) } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { ( V + 1 ) } ) ) )
12 fzp1elp1
 |-  ( V e. ( 1 ... ( N - 1 ) ) -> ( V + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) )
13 5 12 syl
 |-  ( ph -> ( V + 1 ) e. ( 1 ... ( ( N - 1 ) + 1 ) ) )
14 1 nncnd
 |-  ( ph -> N e. CC )
15 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
16 14 15 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
17 16 oveq2d
 |-  ( ph -> ( 1 ... ( ( N - 1 ) + 1 ) ) = ( 1 ... N ) )
18 13 17 eleqtrd
 |-  ( ph -> ( V + 1 ) e. ( 1 ... N ) )
19 fzsplit
 |-  ( ( V + 1 ) e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) )
20 18 19 syl
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) )
21 20 difeq1d
 |-  ( ph -> ( ( 1 ... N ) \ { ( V + 1 ) } ) = ( ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) \ { ( V + 1 ) } ) )
22 difundir
 |-  ( ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) \ { ( V + 1 ) } ) = ( ( ( 1 ... ( V + 1 ) ) \ { ( V + 1 ) } ) u. ( ( ( ( V + 1 ) + 1 ) ... N ) \ { ( V + 1 ) } ) )
23 elfzuz
 |-  ( V e. ( 1 ... ( N - 1 ) ) -> V e. ( ZZ>= ` 1 ) )
24 5 23 syl
 |-  ( ph -> V e. ( ZZ>= ` 1 ) )
25 fzsuc
 |-  ( V e. ( ZZ>= ` 1 ) -> ( 1 ... ( V + 1 ) ) = ( ( 1 ... V ) u. { ( V + 1 ) } ) )
26 24 25 syl
 |-  ( ph -> ( 1 ... ( V + 1 ) ) = ( ( 1 ... V ) u. { ( V + 1 ) } ) )
27 26 difeq1d
 |-  ( ph -> ( ( 1 ... ( V + 1 ) ) \ { ( V + 1 ) } ) = ( ( ( 1 ... V ) u. { ( V + 1 ) } ) \ { ( V + 1 ) } ) )
28 difun2
 |-  ( ( ( 1 ... V ) u. { ( V + 1 ) } ) \ { ( V + 1 ) } ) = ( ( 1 ... V ) \ { ( V + 1 ) } )
29 5 elfzelzd
 |-  ( ph -> V e. ZZ )
30 29 zred
 |-  ( ph -> V e. RR )
31 30 ltp1d
 |-  ( ph -> V < ( V + 1 ) )
32 29 peano2zd
 |-  ( ph -> ( V + 1 ) e. ZZ )
33 32 zred
 |-  ( ph -> ( V + 1 ) e. RR )
34 30 33 ltnled
 |-  ( ph -> ( V < ( V + 1 ) <-> -. ( V + 1 ) <_ V ) )
35 31 34 mpbid
 |-  ( ph -> -. ( V + 1 ) <_ V )
36 elfzle2
 |-  ( ( V + 1 ) e. ( 1 ... V ) -> ( V + 1 ) <_ V )
37 35 36 nsyl
 |-  ( ph -> -. ( V + 1 ) e. ( 1 ... V ) )
38 difsn
 |-  ( -. ( V + 1 ) e. ( 1 ... V ) -> ( ( 1 ... V ) \ { ( V + 1 ) } ) = ( 1 ... V ) )
39 37 38 syl
 |-  ( ph -> ( ( 1 ... V ) \ { ( V + 1 ) } ) = ( 1 ... V ) )
40 28 39 eqtrid
 |-  ( ph -> ( ( ( 1 ... V ) u. { ( V + 1 ) } ) \ { ( V + 1 ) } ) = ( 1 ... V ) )
41 27 40 eqtrd
 |-  ( ph -> ( ( 1 ... ( V + 1 ) ) \ { ( V + 1 ) } ) = ( 1 ... V ) )
42 33 ltp1d
 |-  ( ph -> ( V + 1 ) < ( ( V + 1 ) + 1 ) )
43 peano2re
 |-  ( ( V + 1 ) e. RR -> ( ( V + 1 ) + 1 ) e. RR )
44 33 43 syl
 |-  ( ph -> ( ( V + 1 ) + 1 ) e. RR )
45 33 44 ltnled
 |-  ( ph -> ( ( V + 1 ) < ( ( V + 1 ) + 1 ) <-> -. ( ( V + 1 ) + 1 ) <_ ( V + 1 ) ) )
46 42 45 mpbid
 |-  ( ph -> -. ( ( V + 1 ) + 1 ) <_ ( V + 1 ) )
47 elfzle1
 |-  ( ( V + 1 ) e. ( ( ( V + 1 ) + 1 ) ... N ) -> ( ( V + 1 ) + 1 ) <_ ( V + 1 ) )
48 46 47 nsyl
 |-  ( ph -> -. ( V + 1 ) e. ( ( ( V + 1 ) + 1 ) ... N ) )
49 difsn
 |-  ( -. ( V + 1 ) e. ( ( ( V + 1 ) + 1 ) ... N ) -> ( ( ( ( V + 1 ) + 1 ) ... N ) \ { ( V + 1 ) } ) = ( ( ( V + 1 ) + 1 ) ... N ) )
50 48 49 syl
 |-  ( ph -> ( ( ( ( V + 1 ) + 1 ) ... N ) \ { ( V + 1 ) } ) = ( ( ( V + 1 ) + 1 ) ... N ) )
51 41 50 uneq12d
 |-  ( ph -> ( ( ( 1 ... ( V + 1 ) ) \ { ( V + 1 ) } ) u. ( ( ( ( V + 1 ) + 1 ) ... N ) \ { ( V + 1 ) } ) ) = ( ( 1 ... V ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) )
52 22 51 eqtrid
 |-  ( ph -> ( ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) \ { ( V + 1 ) } ) = ( ( 1 ... V ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) )
53 21 52 eqtrd
 |-  ( ph -> ( ( 1 ... N ) \ { ( V + 1 ) } ) = ( ( 1 ... V ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) )
54 53 imaeq2d
 |-  ( ph -> ( U " ( ( 1 ... N ) \ { ( V + 1 ) } ) ) = ( U " ( ( 1 ... V ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
55 11 54 eqtr3d
 |-  ( ph -> ( ( U " ( 1 ... N ) ) \ ( U " { ( V + 1 ) } ) ) = ( U " ( ( 1 ... V ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
56 imaundi
 |-  ( U " ( ( 1 ... V ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... V ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) )
57 55 56 eqtrdi
 |-  ( ph -> ( ( U " ( 1 ... N ) ) \ ( U " { ( V + 1 ) } ) ) = ( ( U " ( 1 ... V ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
58 57 eleq2d
 |-  ( ph -> ( n e. ( ( U " ( 1 ... N ) ) \ ( U " { ( V + 1 ) } ) ) <-> n e. ( ( U " ( 1 ... V ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) )
59 eldif
 |-  ( n e. ( ( U " ( 1 ... N ) ) \ ( U " { ( V + 1 ) } ) ) <-> ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { ( V + 1 ) } ) ) )
60 elun
 |-  ( n e. ( ( U " ( 1 ... V ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) <-> ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
61 58 59 60 3bitr3g
 |-  ( ph -> ( ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { ( V + 1 ) } ) ) <-> ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) )
62 61 adantr
 |-  ( ( ph /\ M < V ) -> ( ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { ( V + 1 ) } ) ) <-> ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) )
63 imassrn
 |-  ( U " ( 1 ... V ) ) C_ ran U
64 f1of
 |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) --> ( 1 ... N ) )
65 4 64 syl
 |-  ( ph -> U : ( 1 ... N ) --> ( 1 ... N ) )
66 65 frnd
 |-  ( ph -> ran U C_ ( 1 ... N ) )
67 63 66 sstrid
 |-  ( ph -> ( U " ( 1 ... V ) ) C_ ( 1 ... N ) )
68 67 sselda
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> n e. ( 1 ... N ) )
69 3 ffnd
 |-  ( ph -> T Fn ( 1 ... N ) )
70 69 adantr
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> T Fn ( 1 ... N ) )
71 1ex
 |-  1 e. _V
72 fnconstg
 |-  ( 1 e. _V -> ( ( U " ( 1 ... V ) ) X. { 1 } ) Fn ( U " ( 1 ... V ) ) )
73 71 72 ax-mp
 |-  ( ( U " ( 1 ... V ) ) X. { 1 } ) Fn ( U " ( 1 ... V ) )
74 c0ex
 |-  0 e. _V
75 fnconstg
 |-  ( 0 e. _V -> ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( V + 1 ) ... N ) ) )
76 74 75 ax-mp
 |-  ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( V + 1 ) ... N ) )
77 73 76 pm3.2i
 |-  ( ( ( U " ( 1 ... V ) ) X. { 1 } ) Fn ( U " ( 1 ... V ) ) /\ ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( V + 1 ) ... N ) ) )
78 imain
 |-  ( Fun `' U -> ( U " ( ( 1 ... V ) i^i ( ( V + 1 ) ... N ) ) ) = ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) )
79 9 78 syl
 |-  ( ph -> ( U " ( ( 1 ... V ) i^i ( ( V + 1 ) ... N ) ) ) = ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) )
80 fzdisj
 |-  ( V < ( V + 1 ) -> ( ( 1 ... V ) i^i ( ( V + 1 ) ... N ) ) = (/) )
81 31 80 syl
 |-  ( ph -> ( ( 1 ... V ) i^i ( ( V + 1 ) ... N ) ) = (/) )
82 81 imaeq2d
 |-  ( ph -> ( U " ( ( 1 ... V ) i^i ( ( V + 1 ) ... N ) ) ) = ( U " (/) ) )
83 ima0
 |-  ( U " (/) ) = (/)
84 82 83 eqtrdi
 |-  ( ph -> ( U " ( ( 1 ... V ) i^i ( ( V + 1 ) ... N ) ) ) = (/) )
85 79 84 eqtr3d
 |-  ( ph -> ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) = (/) )
86 fnun
 |-  ( ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) Fn ( U " ( 1 ... V ) ) /\ ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( V + 1 ) ... N ) ) ) /\ ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... V ) ) u. ( U " ( ( V + 1 ) ... N ) ) ) )
87 77 85 86 sylancr
 |-  ( ph -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... V ) ) u. ( U " ( ( V + 1 ) ... N ) ) ) )
88 imaundi
 |-  ( U " ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) ) = ( ( U " ( 1 ... V ) ) u. ( U " ( ( V + 1 ) ... N ) ) )
89 1 nnzd
 |-  ( ph -> N e. ZZ )
90 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
91 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
92 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
93 89 90 91 92 4syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
94 16 93 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
95 fzss2
 |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
96 94 95 syl
 |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
97 96 5 sseldd
 |-  ( ph -> V e. ( 1 ... N ) )
98 fzsplit
 |-  ( V e. ( 1 ... N ) -> ( 1 ... N ) = ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) )
99 97 98 syl
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) )
100 99 imaeq2d
 |-  ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) ) )
101 f1ofo
 |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U : ( 1 ... N ) -onto-> ( 1 ... N ) )
102 4 101 syl
 |-  ( ph -> U : ( 1 ... N ) -onto-> ( 1 ... N ) )
103 foima
 |-  ( U : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( U " ( 1 ... N ) ) = ( 1 ... N ) )
104 102 103 syl
 |-  ( ph -> ( U " ( 1 ... N ) ) = ( 1 ... N ) )
105 100 104 eqtr3d
 |-  ( ph -> ( U " ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) ) = ( 1 ... N ) )
106 88 105 eqtr3id
 |-  ( ph -> ( ( U " ( 1 ... V ) ) u. ( U " ( ( V + 1 ) ... N ) ) ) = ( 1 ... N ) )
107 106 fneq2d
 |-  ( ph -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... V ) ) u. ( U " ( ( V + 1 ) ... N ) ) ) <-> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
108 87 107 mpbid
 |-  ( ph -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
109 108 adantr
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
110 fzfid
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( 1 ... N ) e. Fin )
111 inidm
 |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N )
112 eqidd
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) /\ n e. ( 1 ... N ) ) -> ( T ` n ) = ( T ` n ) )
113 fvun1
 |-  ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) Fn ( U " ( 1 ... V ) ) /\ ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( V + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... V ) ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... V ) ) X. { 1 } ) ` n ) )
114 73 76 113 mp3an12
 |-  ( ( ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... V ) ) X. { 1 } ) ` n ) )
115 85 114 sylan
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... V ) ) X. { 1 } ) ` n ) )
116 71 fvconst2
 |-  ( n e. ( U " ( 1 ... V ) ) -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) ` n ) = 1 )
117 116 adantl
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) ` n ) = 1 )
118 115 117 eqtrd
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 )
119 118 adantr
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 )
120 70 109 110 110 111 112 119 ofval
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) )
121 fnconstg
 |-  ( 1 e. _V -> ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V + 1 ) ) ) )
122 71 121 ax-mp
 |-  ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V + 1 ) ) )
123 fnconstg
 |-  ( 0 e. _V -> ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) )
124 74 123 ax-mp
 |-  ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( V + 1 ) + 1 ) ... N ) )
125 122 124 pm3.2i
 |-  ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V + 1 ) ) ) /\ ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) )
126 imain
 |-  ( Fun `' U -> ( U " ( ( 1 ... ( V + 1 ) ) i^i ( ( ( V + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
127 9 126 syl
 |-  ( ph -> ( U " ( ( 1 ... ( V + 1 ) ) i^i ( ( ( V + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
128 fzdisj
 |-  ( ( V + 1 ) < ( ( V + 1 ) + 1 ) -> ( ( 1 ... ( V + 1 ) ) i^i ( ( ( V + 1 ) + 1 ) ... N ) ) = (/) )
129 42 128 syl
 |-  ( ph -> ( ( 1 ... ( V + 1 ) ) i^i ( ( ( V + 1 ) + 1 ) ... N ) ) = (/) )
130 129 imaeq2d
 |-  ( ph -> ( U " ( ( 1 ... ( V + 1 ) ) i^i ( ( ( V + 1 ) + 1 ) ... N ) ) ) = ( U " (/) ) )
131 130 83 eqtrdi
 |-  ( ph -> ( U " ( ( 1 ... ( V + 1 ) ) i^i ( ( ( V + 1 ) + 1 ) ... N ) ) ) = (/) )
132 127 131 eqtr3d
 |-  ( ph -> ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) = (/) )
133 fnun
 |-  ( ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V + 1 ) ) ) /\ ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) /\ ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( V + 1 ) ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
134 125 132 133 sylancr
 |-  ( ph -> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( V + 1 ) ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
135 imaundi
 |-  ( U " ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( V + 1 ) ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) )
136 20 imaeq2d
 |-  ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) ) )
137 136 104 eqtr3d
 |-  ( ph -> ( U " ( ( 1 ... ( V + 1 ) ) u. ( ( ( V + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) )
138 135 137 eqtr3id
 |-  ( ph -> ( ( U " ( 1 ... ( V + 1 ) ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) )
139 138 fneq2d
 |-  ( ph -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( V + 1 ) ) ) u. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
140 134 139 mpbid
 |-  ( ph -> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
141 140 adantr
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
142 uzid
 |-  ( V e. ZZ -> V e. ( ZZ>= ` V ) )
143 29 142 syl
 |-  ( ph -> V e. ( ZZ>= ` V ) )
144 peano2uz
 |-  ( V e. ( ZZ>= ` V ) -> ( V + 1 ) e. ( ZZ>= ` V ) )
145 fzss2
 |-  ( ( V + 1 ) e. ( ZZ>= ` V ) -> ( 1 ... V ) C_ ( 1 ... ( V + 1 ) ) )
146 imass2
 |-  ( ( 1 ... V ) C_ ( 1 ... ( V + 1 ) ) -> ( U " ( 1 ... V ) ) C_ ( U " ( 1 ... ( V + 1 ) ) ) )
147 143 144 145 146 4syl
 |-  ( ph -> ( U " ( 1 ... V ) ) C_ ( U " ( 1 ... ( V + 1 ) ) ) )
148 147 sselda
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> n e. ( U " ( 1 ... ( V + 1 ) ) ) )
149 fvun1
 |-  ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V + 1 ) ) ) /\ ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( V + 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) ` n ) )
150 122 124 149 mp3an12
 |-  ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( V + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) ` n ) )
151 132 150 sylan
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) ` n ) )
152 71 fvconst2
 |-  ( n e. ( U " ( 1 ... ( V + 1 ) ) ) -> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) ` n ) = 1 )
153 152 adantl
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V + 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) ` n ) = 1 )
154 151 153 eqtrd
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V + 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 )
155 148 154 syldan
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 )
156 155 adantr
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 )
157 70 141 110 110 111 112 156 ofval
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) )
158 120 157 eqtr4d
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
159 68 158 mpdan
 |-  ( ( ph /\ n e. ( U " ( 1 ... V ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
160 imassrn
 |-  ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) C_ ran U
161 160 66 sstrid
 |-  ( ph -> ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) C_ ( 1 ... N ) )
162 161 sselda
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> n e. ( 1 ... N ) )
163 69 adantr
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> T Fn ( 1 ... N ) )
164 108 adantr
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
165 fzfid
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( 1 ... N ) e. Fin )
166 eqidd
 |-  ( ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( T ` n ) = ( T ` n ) )
167 uzid
 |-  ( ( V + 1 ) e. ZZ -> ( V + 1 ) e. ( ZZ>= ` ( V + 1 ) ) )
168 32 167 syl
 |-  ( ph -> ( V + 1 ) e. ( ZZ>= ` ( V + 1 ) ) )
169 peano2uz
 |-  ( ( V + 1 ) e. ( ZZ>= ` ( V + 1 ) ) -> ( ( V + 1 ) + 1 ) e. ( ZZ>= ` ( V + 1 ) ) )
170 fzss1
 |-  ( ( ( V + 1 ) + 1 ) e. ( ZZ>= ` ( V + 1 ) ) -> ( ( ( V + 1 ) + 1 ) ... N ) C_ ( ( V + 1 ) ... N ) )
171 imass2
 |-  ( ( ( ( V + 1 ) + 1 ) ... N ) C_ ( ( V + 1 ) ... N ) -> ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) C_ ( U " ( ( V + 1 ) ... N ) ) )
172 168 169 170 171 4syl
 |-  ( ph -> ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) C_ ( U " ( ( V + 1 ) ... N ) ) )
173 172 sselda
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> n e. ( U " ( ( V + 1 ) ... N ) ) )
174 fvun2
 |-  ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) Fn ( U " ( 1 ... V ) ) /\ ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( V + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ` n ) )
175 73 76 174 mp3an12
 |-  ( ( ( ( U " ( 1 ... V ) ) i^i ( U " ( ( V + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ` n ) )
176 85 175 sylan
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ` n ) )
177 74 fvconst2
 |-  ( n e. ( U " ( ( V + 1 ) ... N ) ) -> ( ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ` n ) = 0 )
178 177 adantl
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ` n ) = 0 )
179 176 178 eqtrd
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 0 )
180 173 179 syldan
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 0 )
181 180 adantr
 |-  ( ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 0 )
182 163 164 165 165 111 166 181 ofval
 |-  ( ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) )
183 140 adantr
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
184 fvun2
 |-  ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V + 1 ) ) ) /\ ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) /\ ( ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ` n ) )
185 122 124 184 mp3an12
 |-  ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) i^i ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) = (/) /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ` n ) )
186 132 185 sylan
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ` n ) )
187 74 fvconst2
 |-  ( n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) -> ( ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ` n ) = 0 )
188 187 adantl
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ` n ) = 0 )
189 186 188 eqtrd
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 0 )
190 189 adantr
 |-  ( ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 0 )
191 163 183 165 165 111 166 190 ofval
 |-  ( ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) )
192 182 191 eqtr4d
 |-  ( ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
193 162 192 mpdan
 |-  ( ( ph /\ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
194 159 193 jaodan
 |-  ( ( ph /\ ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
195 194 adantlr
 |-  ( ( ( ph /\ M < V ) /\ ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
196 2 adantr
 |-  ( ( ph /\ M < V ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
197 vex
 |-  y e. _V
198 ovex
 |-  ( y + 1 ) e. _V
199 197 198 ifex
 |-  if ( y < M , y , ( y + 1 ) ) e. _V
200 199 a1i
 |-  ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) e. _V )
201 breq1
 |-  ( y = ( V - 1 ) -> ( y < M <-> ( V - 1 ) < M ) )
202 201 adantl
 |-  ( ( ph /\ y = ( V - 1 ) ) -> ( y < M <-> ( V - 1 ) < M ) )
203 simpr
 |-  ( ( ph /\ y = ( V - 1 ) ) -> y = ( V - 1 ) )
204 oveq1
 |-  ( y = ( V - 1 ) -> ( y + 1 ) = ( ( V - 1 ) + 1 ) )
205 29 zcnd
 |-  ( ph -> V e. CC )
206 npcan1
 |-  ( V e. CC -> ( ( V - 1 ) + 1 ) = V )
207 205 206 syl
 |-  ( ph -> ( ( V - 1 ) + 1 ) = V )
208 204 207 sylan9eqr
 |-  ( ( ph /\ y = ( V - 1 ) ) -> ( y + 1 ) = V )
209 202 203 208 ifbieq12d
 |-  ( ( ph /\ y = ( V - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = if ( ( V - 1 ) < M , ( V - 1 ) , V ) )
210 209 adantlr
 |-  ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = if ( ( V - 1 ) < M , ( V - 1 ) , V ) )
211 6 eldifad
 |-  ( ph -> M e. ( 0 ... N ) )
212 211 elfzelzd
 |-  ( ph -> M e. ZZ )
213 zltlem1
 |-  ( ( M e. ZZ /\ V e. ZZ ) -> ( M < V <-> M <_ ( V - 1 ) ) )
214 212 29 213 syl2anc
 |-  ( ph -> ( M < V <-> M <_ ( V - 1 ) ) )
215 212 zred
 |-  ( ph -> M e. RR )
216 peano2zm
 |-  ( V e. ZZ -> ( V - 1 ) e. ZZ )
217 29 216 syl
 |-  ( ph -> ( V - 1 ) e. ZZ )
218 217 zred
 |-  ( ph -> ( V - 1 ) e. RR )
219 215 218 lenltd
 |-  ( ph -> ( M <_ ( V - 1 ) <-> -. ( V - 1 ) < M ) )
220 214 219 bitrd
 |-  ( ph -> ( M < V <-> -. ( V - 1 ) < M ) )
221 220 biimpa
 |-  ( ( ph /\ M < V ) -> -. ( V - 1 ) < M )
222 221 iffalsed
 |-  ( ( ph /\ M < V ) -> if ( ( V - 1 ) < M , ( V - 1 ) , V ) = V )
223 222 adantr
 |-  ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) -> if ( ( V - 1 ) < M , ( V - 1 ) , V ) = V )
224 210 223 eqtrd
 |-  ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = V )
225 224 eqeq2d
 |-  ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) -> ( j = if ( y < M , y , ( y + 1 ) ) <-> j = V ) )
226 225 biimpa
 |-  ( ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) /\ j = if ( y < M , y , ( y + 1 ) ) ) -> j = V )
227 oveq2
 |-  ( j = V -> ( 1 ... j ) = ( 1 ... V ) )
228 227 imaeq2d
 |-  ( j = V -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... V ) ) )
229 228 xpeq1d
 |-  ( j = V -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... V ) ) X. { 1 } ) )
230 oveq1
 |-  ( j = V -> ( j + 1 ) = ( V + 1 ) )
231 230 oveq1d
 |-  ( j = V -> ( ( j + 1 ) ... N ) = ( ( V + 1 ) ... N ) )
232 231 imaeq2d
 |-  ( j = V -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( V + 1 ) ... N ) ) )
233 232 xpeq1d
 |-  ( j = V -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) )
234 229 233 uneq12d
 |-  ( j = V -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) )
235 234 oveq2d
 |-  ( j = V -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
236 226 235 syl
 |-  ( ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) /\ j = if ( y < M , y , ( y + 1 ) ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
237 200 236 csbied
 |-  ( ( ( ph /\ M < V ) /\ y = ( V - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
238 elfzm1b
 |-  ( ( V e. ZZ /\ N e. ZZ ) -> ( V e. ( 1 ... N ) <-> ( V - 1 ) e. ( 0 ... ( N - 1 ) ) ) )
239 29 89 238 syl2anc
 |-  ( ph -> ( V e. ( 1 ... N ) <-> ( V - 1 ) e. ( 0 ... ( N - 1 ) ) ) )
240 97 239 mpbid
 |-  ( ph -> ( V - 1 ) e. ( 0 ... ( N - 1 ) ) )
241 240 adantr
 |-  ( ( ph /\ M < V ) -> ( V - 1 ) e. ( 0 ... ( N - 1 ) ) )
242 ovexd
 |-  ( ( ph /\ M < V ) -> ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V )
243 196 237 241 242 fvmptd
 |-  ( ( ph /\ M < V ) -> ( F ` ( V - 1 ) ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
244 243 fveq1d
 |-  ( ( ph /\ M < V ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
245 244 adantr
 |-  ( ( ( ph /\ M < V ) /\ ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
246 199 a1i
 |-  ( ( ( ph /\ M < V ) /\ y = V ) -> if ( y < M , y , ( y + 1 ) ) e. _V )
247 breq1
 |-  ( y = V -> ( y < M <-> V < M ) )
248 id
 |-  ( y = V -> y = V )
249 oveq1
 |-  ( y = V -> ( y + 1 ) = ( V + 1 ) )
250 247 248 249 ifbieq12d
 |-  ( y = V -> if ( y < M , y , ( y + 1 ) ) = if ( V < M , V , ( V + 1 ) ) )
251 ltnsym
 |-  ( ( M e. RR /\ V e. RR ) -> ( M < V -> -. V < M ) )
252 215 30 251 syl2anc
 |-  ( ph -> ( M < V -> -. V < M ) )
253 252 imp
 |-  ( ( ph /\ M < V ) -> -. V < M )
254 253 iffalsed
 |-  ( ( ph /\ M < V ) -> if ( V < M , V , ( V + 1 ) ) = ( V + 1 ) )
255 250 254 sylan9eqr
 |-  ( ( ( ph /\ M < V ) /\ y = V ) -> if ( y < M , y , ( y + 1 ) ) = ( V + 1 ) )
256 255 eqeq2d
 |-  ( ( ( ph /\ M < V ) /\ y = V ) -> ( j = if ( y < M , y , ( y + 1 ) ) <-> j = ( V + 1 ) ) )
257 256 biimpa
 |-  ( ( ( ( ph /\ M < V ) /\ y = V ) /\ j = if ( y < M , y , ( y + 1 ) ) ) -> j = ( V + 1 ) )
258 oveq2
 |-  ( j = ( V + 1 ) -> ( 1 ... j ) = ( 1 ... ( V + 1 ) ) )
259 258 imaeq2d
 |-  ( j = ( V + 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( V + 1 ) ) ) )
260 259 xpeq1d
 |-  ( j = ( V + 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) )
261 oveq1
 |-  ( j = ( V + 1 ) -> ( j + 1 ) = ( ( V + 1 ) + 1 ) )
262 261 oveq1d
 |-  ( j = ( V + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( V + 1 ) + 1 ) ... N ) )
263 262 imaeq2d
 |-  ( j = ( V + 1 ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) )
264 263 xpeq1d
 |-  ( j = ( V + 1 ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
265 260 264 uneq12d
 |-  ( j = ( V + 1 ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
266 265 oveq2d
 |-  ( j = ( V + 1 ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
267 257 266 syl
 |-  ( ( ( ( ph /\ M < V ) /\ y = V ) /\ j = if ( y < M , y , ( y + 1 ) ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
268 246 267 csbied
 |-  ( ( ( ph /\ M < V ) /\ y = V ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
269 fz1ssfz0
 |-  ( 1 ... ( N - 1 ) ) C_ ( 0 ... ( N - 1 ) )
270 269 5 sselid
 |-  ( ph -> V e. ( 0 ... ( N - 1 ) ) )
271 270 adantr
 |-  ( ( ph /\ M < V ) -> V e. ( 0 ... ( N - 1 ) ) )
272 ovexd
 |-  ( ( ph /\ M < V ) -> ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V )
273 196 268 271 272 fvmptd
 |-  ( ( ph /\ M < V ) -> ( F ` V ) = ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
274 273 fveq1d
 |-  ( ( ph /\ M < V ) -> ( ( F ` V ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
275 274 adantr
 |-  ( ( ( ph /\ M < V ) /\ ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) -> ( ( F ` V ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V + 1 ) ) ) X. { 1 } ) u. ( ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
276 195 245 275 3eqtr4d
 |-  ( ( ( ph /\ M < V ) /\ ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) )
277 276 ex
 |-  ( ( ph /\ M < V ) -> ( ( n e. ( U " ( 1 ... V ) ) \/ n e. ( U " ( ( ( V + 1 ) + 1 ) ... N ) ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) ) )
278 62 277 sylbid
 |-  ( ( ph /\ M < V ) -> ( ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { ( V + 1 ) } ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) ) )
279 278 expdimp
 |-  ( ( ( ph /\ M < V ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( -. n e. ( U " { ( V + 1 ) } ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) ) )
280 279 necon1ad
 |-  ( ( ( ph /\ M < V ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n e. ( U " { ( V + 1 ) } ) ) )
281 elimasni
 |-  ( n e. ( U " { ( V + 1 ) } ) -> ( V + 1 ) U n )
282 eqcom
 |-  ( n = ( U ` ( V + 1 ) ) <-> ( U ` ( V + 1 ) ) = n )
283 f1ofn
 |-  ( U : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> U Fn ( 1 ... N ) )
284 4 283 syl
 |-  ( ph -> U Fn ( 1 ... N ) )
285 fnbrfvb
 |-  ( ( U Fn ( 1 ... N ) /\ ( V + 1 ) e. ( 1 ... N ) ) -> ( ( U ` ( V + 1 ) ) = n <-> ( V + 1 ) U n ) )
286 284 18 285 syl2anc
 |-  ( ph -> ( ( U ` ( V + 1 ) ) = n <-> ( V + 1 ) U n ) )
287 282 286 bitrid
 |-  ( ph -> ( n = ( U ` ( V + 1 ) ) <-> ( V + 1 ) U n ) )
288 281 287 imbitrrid
 |-  ( ph -> ( n e. ( U " { ( V + 1 ) } ) -> n = ( U ` ( V + 1 ) ) ) )
289 288 ad2antrr
 |-  ( ( ( ph /\ M < V ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( n e. ( U " { ( V + 1 ) } ) -> n = ( U ` ( V + 1 ) ) ) )
290 280 289 syld
 |-  ( ( ( ph /\ M < V ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` ( V + 1 ) ) ) )
291 290 ralrimiva
 |-  ( ( ph /\ M < V ) -> A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` ( V + 1 ) ) ) )
292 fvex
 |-  ( U ` ( V + 1 ) ) e. _V
293 eqeq2
 |-  ( m = ( U ` ( V + 1 ) ) -> ( n = m <-> n = ( U ` ( V + 1 ) ) ) )
294 293 imbi2d
 |-  ( m = ( U ` ( V + 1 ) ) -> ( ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) <-> ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` ( V + 1 ) ) ) ) )
295 294 ralbidv
 |-  ( m = ( U ` ( V + 1 ) ) -> ( A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) <-> A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` ( V + 1 ) ) ) ) )
296 292 295 spcev
 |-  ( A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` ( V + 1 ) ) ) -> E. m A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) )
297 291 296 syl
 |-  ( ( ph /\ M < V ) -> E. m A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) )
298 imadif
 |-  ( Fun `' U -> ( U " ( ( 1 ... N ) \ { V } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { V } ) ) )
299 9 298 syl
 |-  ( ph -> ( U " ( ( 1 ... N ) \ { V } ) ) = ( ( U " ( 1 ... N ) ) \ ( U " { V } ) ) )
300 99 difeq1d
 |-  ( ph -> ( ( 1 ... N ) \ { V } ) = ( ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) \ { V } ) )
301 difundir
 |-  ( ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) \ { V } ) = ( ( ( 1 ... V ) \ { V } ) u. ( ( ( V + 1 ) ... N ) \ { V } ) )
302 207 24 eqeltrd
 |-  ( ph -> ( ( V - 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
303 uzid
 |-  ( ( V - 1 ) e. ZZ -> ( V - 1 ) e. ( ZZ>= ` ( V - 1 ) ) )
304 peano2uz
 |-  ( ( V - 1 ) e. ( ZZ>= ` ( V - 1 ) ) -> ( ( V - 1 ) + 1 ) e. ( ZZ>= ` ( V - 1 ) ) )
305 29 216 303 304 4syl
 |-  ( ph -> ( ( V - 1 ) + 1 ) e. ( ZZ>= ` ( V - 1 ) ) )
306 207 305 eqeltrrd
 |-  ( ph -> V e. ( ZZ>= ` ( V - 1 ) ) )
307 fzsplit2
 |-  ( ( ( ( V - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ V e. ( ZZ>= ` ( V - 1 ) ) ) -> ( 1 ... V ) = ( ( 1 ... ( V - 1 ) ) u. ( ( ( V - 1 ) + 1 ) ... V ) ) )
308 302 306 307 syl2anc
 |-  ( ph -> ( 1 ... V ) = ( ( 1 ... ( V - 1 ) ) u. ( ( ( V - 1 ) + 1 ) ... V ) ) )
309 207 oveq1d
 |-  ( ph -> ( ( ( V - 1 ) + 1 ) ... V ) = ( V ... V ) )
310 fzsn
 |-  ( V e. ZZ -> ( V ... V ) = { V } )
311 29 310 syl
 |-  ( ph -> ( V ... V ) = { V } )
312 309 311 eqtrd
 |-  ( ph -> ( ( ( V - 1 ) + 1 ) ... V ) = { V } )
313 312 uneq2d
 |-  ( ph -> ( ( 1 ... ( V - 1 ) ) u. ( ( ( V - 1 ) + 1 ) ... V ) ) = ( ( 1 ... ( V - 1 ) ) u. { V } ) )
314 308 313 eqtrd
 |-  ( ph -> ( 1 ... V ) = ( ( 1 ... ( V - 1 ) ) u. { V } ) )
315 314 difeq1d
 |-  ( ph -> ( ( 1 ... V ) \ { V } ) = ( ( ( 1 ... ( V - 1 ) ) u. { V } ) \ { V } ) )
316 difun2
 |-  ( ( ( 1 ... ( V - 1 ) ) u. { V } ) \ { V } ) = ( ( 1 ... ( V - 1 ) ) \ { V } )
317 30 ltm1d
 |-  ( ph -> ( V - 1 ) < V )
318 218 30 ltnled
 |-  ( ph -> ( ( V - 1 ) < V <-> -. V <_ ( V - 1 ) ) )
319 317 318 mpbid
 |-  ( ph -> -. V <_ ( V - 1 ) )
320 elfzle2
 |-  ( V e. ( 1 ... ( V - 1 ) ) -> V <_ ( V - 1 ) )
321 319 320 nsyl
 |-  ( ph -> -. V e. ( 1 ... ( V - 1 ) ) )
322 difsn
 |-  ( -. V e. ( 1 ... ( V - 1 ) ) -> ( ( 1 ... ( V - 1 ) ) \ { V } ) = ( 1 ... ( V - 1 ) ) )
323 321 322 syl
 |-  ( ph -> ( ( 1 ... ( V - 1 ) ) \ { V } ) = ( 1 ... ( V - 1 ) ) )
324 316 323 eqtrid
 |-  ( ph -> ( ( ( 1 ... ( V - 1 ) ) u. { V } ) \ { V } ) = ( 1 ... ( V - 1 ) ) )
325 315 324 eqtrd
 |-  ( ph -> ( ( 1 ... V ) \ { V } ) = ( 1 ... ( V - 1 ) ) )
326 elfzle1
 |-  ( V e. ( ( V + 1 ) ... N ) -> ( V + 1 ) <_ V )
327 35 326 nsyl
 |-  ( ph -> -. V e. ( ( V + 1 ) ... N ) )
328 difsn
 |-  ( -. V e. ( ( V + 1 ) ... N ) -> ( ( ( V + 1 ) ... N ) \ { V } ) = ( ( V + 1 ) ... N ) )
329 327 328 syl
 |-  ( ph -> ( ( ( V + 1 ) ... N ) \ { V } ) = ( ( V + 1 ) ... N ) )
330 325 329 uneq12d
 |-  ( ph -> ( ( ( 1 ... V ) \ { V } ) u. ( ( ( V + 1 ) ... N ) \ { V } ) ) = ( ( 1 ... ( V - 1 ) ) u. ( ( V + 1 ) ... N ) ) )
331 301 330 eqtrid
 |-  ( ph -> ( ( ( 1 ... V ) u. ( ( V + 1 ) ... N ) ) \ { V } ) = ( ( 1 ... ( V - 1 ) ) u. ( ( V + 1 ) ... N ) ) )
332 300 331 eqtrd
 |-  ( ph -> ( ( 1 ... N ) \ { V } ) = ( ( 1 ... ( V - 1 ) ) u. ( ( V + 1 ) ... N ) ) )
333 332 imaeq2d
 |-  ( ph -> ( U " ( ( 1 ... N ) \ { V } ) ) = ( U " ( ( 1 ... ( V - 1 ) ) u. ( ( V + 1 ) ... N ) ) ) )
334 299 333 eqtr3d
 |-  ( ph -> ( ( U " ( 1 ... N ) ) \ ( U " { V } ) ) = ( U " ( ( 1 ... ( V - 1 ) ) u. ( ( V + 1 ) ... N ) ) ) )
335 imaundi
 |-  ( U " ( ( 1 ... ( V - 1 ) ) u. ( ( V + 1 ) ... N ) ) ) = ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( ( V + 1 ) ... N ) ) )
336 334 335 eqtrdi
 |-  ( ph -> ( ( U " ( 1 ... N ) ) \ ( U " { V } ) ) = ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( ( V + 1 ) ... N ) ) ) )
337 336 eleq2d
 |-  ( ph -> ( n e. ( ( U " ( 1 ... N ) ) \ ( U " { V } ) ) <-> n e. ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( ( V + 1 ) ... N ) ) ) ) )
338 eldif
 |-  ( n e. ( ( U " ( 1 ... N ) ) \ ( U " { V } ) ) <-> ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { V } ) ) )
339 elun
 |-  ( n e. ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( ( V + 1 ) ... N ) ) ) <-> ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) )
340 337 338 339 3bitr3g
 |-  ( ph -> ( ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { V } ) ) <-> ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) )
341 340 adantr
 |-  ( ( ph /\ V < M ) -> ( ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { V } ) ) <-> ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) )
342 imassrn
 |-  ( U " ( 1 ... ( V - 1 ) ) ) C_ ran U
343 342 66 sstrid
 |-  ( ph -> ( U " ( 1 ... ( V - 1 ) ) ) C_ ( 1 ... N ) )
344 343 sselda
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> n e. ( 1 ... N ) )
345 69 adantr
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> T Fn ( 1 ... N ) )
346 fnconstg
 |-  ( 1 e. _V -> ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V - 1 ) ) ) )
347 71 346 ax-mp
 |-  ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V - 1 ) ) )
348 fnconstg
 |-  ( 0 e. _V -> ( ( U " ( V ... N ) ) X. { 0 } ) Fn ( U " ( V ... N ) ) )
349 74 348 ax-mp
 |-  ( ( U " ( V ... N ) ) X. { 0 } ) Fn ( U " ( V ... N ) )
350 347 349 pm3.2i
 |-  ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V - 1 ) ) ) /\ ( ( U " ( V ... N ) ) X. { 0 } ) Fn ( U " ( V ... N ) ) )
351 imain
 |-  ( Fun `' U -> ( U " ( ( 1 ... ( V - 1 ) ) i^i ( V ... N ) ) ) = ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) )
352 9 351 syl
 |-  ( ph -> ( U " ( ( 1 ... ( V - 1 ) ) i^i ( V ... N ) ) ) = ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) )
353 fzdisj
 |-  ( ( V - 1 ) < V -> ( ( 1 ... ( V - 1 ) ) i^i ( V ... N ) ) = (/) )
354 317 353 syl
 |-  ( ph -> ( ( 1 ... ( V - 1 ) ) i^i ( V ... N ) ) = (/) )
355 354 imaeq2d
 |-  ( ph -> ( U " ( ( 1 ... ( V - 1 ) ) i^i ( V ... N ) ) ) = ( U " (/) ) )
356 355 83 eqtrdi
 |-  ( ph -> ( U " ( ( 1 ... ( V - 1 ) ) i^i ( V ... N ) ) ) = (/) )
357 352 356 eqtr3d
 |-  ( ph -> ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) = (/) )
358 fnun
 |-  ( ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V - 1 ) ) ) /\ ( ( U " ( V ... N ) ) X. { 0 } ) Fn ( U " ( V ... N ) ) ) /\ ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) = (/) ) -> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( V ... N ) ) ) )
359 350 357 358 sylancr
 |-  ( ph -> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( V ... N ) ) ) )
360 imaundi
 |-  ( U " ( ( 1 ... ( V - 1 ) ) u. ( V ... N ) ) ) = ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( V ... N ) ) )
361 uzss
 |-  ( V e. ( ZZ>= ` ( V - 1 ) ) -> ( ZZ>= ` V ) C_ ( ZZ>= ` ( V - 1 ) ) )
362 306 361 syl
 |-  ( ph -> ( ZZ>= ` V ) C_ ( ZZ>= ` ( V - 1 ) ) )
363 elfzuz3
 |-  ( V e. ( 1 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` V ) )
364 5 363 syl
 |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` V ) )
365 362 364 sseldd
 |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` ( V - 1 ) ) )
366 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( V - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( V - 1 ) ) )
367 365 366 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( V - 1 ) ) )
368 16 367 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( V - 1 ) ) )
369 fzsplit2
 |-  ( ( ( ( V - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( V - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( V - 1 ) ) u. ( ( ( V - 1 ) + 1 ) ... N ) ) )
370 302 368 369 syl2anc
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( V - 1 ) ) u. ( ( ( V - 1 ) + 1 ) ... N ) ) )
371 207 oveq1d
 |-  ( ph -> ( ( ( V - 1 ) + 1 ) ... N ) = ( V ... N ) )
372 371 uneq2d
 |-  ( ph -> ( ( 1 ... ( V - 1 ) ) u. ( ( ( V - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( V - 1 ) ) u. ( V ... N ) ) )
373 370 372 eqtrd
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( V - 1 ) ) u. ( V ... N ) ) )
374 373 imaeq2d
 |-  ( ph -> ( U " ( 1 ... N ) ) = ( U " ( ( 1 ... ( V - 1 ) ) u. ( V ... N ) ) ) )
375 374 104 eqtr3d
 |-  ( ph -> ( U " ( ( 1 ... ( V - 1 ) ) u. ( V ... N ) ) ) = ( 1 ... N ) )
376 360 375 eqtr3id
 |-  ( ph -> ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( V ... N ) ) ) = ( 1 ... N ) )
377 376 fneq2d
 |-  ( ph -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... ( V - 1 ) ) ) u. ( U " ( V ... N ) ) ) <-> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
378 359 377 mpbid
 |-  ( ph -> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
379 378 adantr
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
380 fzfid
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( 1 ... N ) e. Fin )
381 eqidd
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( T ` n ) = ( T ` n ) )
382 fvun1
 |-  ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V - 1 ) ) ) /\ ( ( U " ( V ... N ) ) X. { 0 } ) Fn ( U " ( V ... N ) ) /\ ( ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) ` n ) )
383 347 349 382 mp3an12
 |-  ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) = (/) /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) ` n ) )
384 357 383 sylan
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) ` n ) )
385 71 fvconst2
 |-  ( n e. ( U " ( 1 ... ( V - 1 ) ) ) -> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) ` n ) = 1 )
386 385 adantl
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) ` n ) = 1 )
387 384 386 eqtrd
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = 1 )
388 387 adantr
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = 1 )
389 345 379 380 380 111 381 388 ofval
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) )
390 108 adantr
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
391 fzss2
 |-  ( V e. ( ZZ>= ` ( V - 1 ) ) -> ( 1 ... ( V - 1 ) ) C_ ( 1 ... V ) )
392 306 391 syl
 |-  ( ph -> ( 1 ... ( V - 1 ) ) C_ ( 1 ... V ) )
393 imass2
 |-  ( ( 1 ... ( V - 1 ) ) C_ ( 1 ... V ) -> ( U " ( 1 ... ( V - 1 ) ) ) C_ ( U " ( 1 ... V ) ) )
394 392 393 syl
 |-  ( ph -> ( U " ( 1 ... ( V - 1 ) ) ) C_ ( U " ( 1 ... V ) ) )
395 394 sselda
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> n e. ( U " ( 1 ... V ) ) )
396 395 118 syldan
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 )
397 396 adantr
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 1 )
398 345 390 380 380 111 381 397 ofval
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 1 ) )
399 389 398 eqtr4d
 |-  ( ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
400 344 399 mpdan
 |-  ( ( ph /\ n e. ( U " ( 1 ... ( V - 1 ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
401 imassrn
 |-  ( U " ( ( V + 1 ) ... N ) ) C_ ran U
402 401 66 sstrid
 |-  ( ph -> ( U " ( ( V + 1 ) ... N ) ) C_ ( 1 ... N ) )
403 402 sselda
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> n e. ( 1 ... N ) )
404 69 adantr
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> T Fn ( 1 ... N ) )
405 378 adantr
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
406 fzfid
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( 1 ... N ) e. Fin )
407 eqidd
 |-  ( ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( T ` n ) = ( T ` n ) )
408 fzss1
 |-  ( ( V + 1 ) e. ( ZZ>= ` V ) -> ( ( V + 1 ) ... N ) C_ ( V ... N ) )
409 imass2
 |-  ( ( ( V + 1 ) ... N ) C_ ( V ... N ) -> ( U " ( ( V + 1 ) ... N ) ) C_ ( U " ( V ... N ) ) )
410 143 144 408 409 4syl
 |-  ( ph -> ( U " ( ( V + 1 ) ... N ) ) C_ ( U " ( V ... N ) ) )
411 410 sselda
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> n e. ( U " ( V ... N ) ) )
412 fvun2
 |-  ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) Fn ( U " ( 1 ... ( V - 1 ) ) ) /\ ( ( U " ( V ... N ) ) X. { 0 } ) Fn ( U " ( V ... N ) ) /\ ( ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) = (/) /\ n e. ( U " ( V ... N ) ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( V ... N ) ) X. { 0 } ) ` n ) )
413 347 349 412 mp3an12
 |-  ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) i^i ( U " ( V ... N ) ) ) = (/) /\ n e. ( U " ( V ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( V ... N ) ) X. { 0 } ) ` n ) )
414 357 413 sylan
 |-  ( ( ph /\ n e. ( U " ( V ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( U " ( V ... N ) ) X. { 0 } ) ` n ) )
415 74 fvconst2
 |-  ( n e. ( U " ( V ... N ) ) -> ( ( ( U " ( V ... N ) ) X. { 0 } ) ` n ) = 0 )
416 415 adantl
 |-  ( ( ph /\ n e. ( U " ( V ... N ) ) ) -> ( ( ( U " ( V ... N ) ) X. { 0 } ) ` n ) = 0 )
417 414 416 eqtrd
 |-  ( ( ph /\ n e. ( U " ( V ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = 0 )
418 411 417 syldan
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = 0 )
419 418 adantr
 |-  ( ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ` n ) = 0 )
420 404 405 406 406 111 407 419 ofval
 |-  ( ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) )
421 108 adantr
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
422 179 adantr
 |-  ( ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = 0 )
423 404 421 406 406 111 407 422 ofval
 |-  ( ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T ` n ) + 0 ) )
424 420 423 eqtr4d
 |-  ( ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
425 403 424 mpdan
 |-  ( ( ph /\ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
426 400 425 jaodan
 |-  ( ( ph /\ ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
427 426 adantlr
 |-  ( ( ( ph /\ V < M ) /\ ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) -> ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
428 2 adantr
 |-  ( ( ph /\ V < M ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
429 199 a1i
 |-  ( ( ( ph /\ V < M ) /\ y = ( V - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) e. _V )
430 209 adantlr
 |-  ( ( ( ph /\ V < M ) /\ y = ( V - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = if ( ( V - 1 ) < M , ( V - 1 ) , V ) )
431 lttr
 |-  ( ( ( V - 1 ) e. RR /\ V e. RR /\ M e. RR ) -> ( ( ( V - 1 ) < V /\ V < M ) -> ( V - 1 ) < M ) )
432 218 30 215 431 syl3anc
 |-  ( ph -> ( ( ( V - 1 ) < V /\ V < M ) -> ( V - 1 ) < M ) )
433 317 432 mpand
 |-  ( ph -> ( V < M -> ( V - 1 ) < M ) )
434 433 imp
 |-  ( ( ph /\ V < M ) -> ( V - 1 ) < M )
435 434 iftrued
 |-  ( ( ph /\ V < M ) -> if ( ( V - 1 ) < M , ( V - 1 ) , V ) = ( V - 1 ) )
436 435 adantr
 |-  ( ( ( ph /\ V < M ) /\ y = ( V - 1 ) ) -> if ( ( V - 1 ) < M , ( V - 1 ) , V ) = ( V - 1 ) )
437 430 436 eqtrd
 |-  ( ( ( ph /\ V < M ) /\ y = ( V - 1 ) ) -> if ( y < M , y , ( y + 1 ) ) = ( V - 1 ) )
438 simpll
 |-  ( ( ( ph /\ V < M ) /\ y = ( V - 1 ) ) -> ph )
439 oveq2
 |-  ( j = ( V - 1 ) -> ( 1 ... j ) = ( 1 ... ( V - 1 ) ) )
440 439 imaeq2d
 |-  ( j = ( V - 1 ) -> ( U " ( 1 ... j ) ) = ( U " ( 1 ... ( V - 1 ) ) ) )
441 440 xpeq1d
 |-  ( j = ( V - 1 ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) )
442 441 adantl
 |-  ( ( ph /\ j = ( V - 1 ) ) -> ( ( U " ( 1 ... j ) ) X. { 1 } ) = ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) )
443 oveq1
 |-  ( j = ( V - 1 ) -> ( j + 1 ) = ( ( V - 1 ) + 1 ) )
444 443 207 sylan9eqr
 |-  ( ( ph /\ j = ( V - 1 ) ) -> ( j + 1 ) = V )
445 444 oveq1d
 |-  ( ( ph /\ j = ( V - 1 ) ) -> ( ( j + 1 ) ... N ) = ( V ... N ) )
446 445 imaeq2d
 |-  ( ( ph /\ j = ( V - 1 ) ) -> ( U " ( ( j + 1 ) ... N ) ) = ( U " ( V ... N ) ) )
447 446 xpeq1d
 |-  ( ( ph /\ j = ( V - 1 ) ) -> ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( U " ( V ... N ) ) X. { 0 } ) )
448 442 447 uneq12d
 |-  ( ( ph /\ j = ( V - 1 ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) )
449 448 oveq2d
 |-  ( ( ph /\ j = ( V - 1 ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) )
450 438 449 sylan
 |-  ( ( ( ( ph /\ V < M ) /\ y = ( V - 1 ) ) /\ j = ( V - 1 ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) )
451 429 437 450 csbied2
 |-  ( ( ( ph /\ V < M ) /\ y = ( V - 1 ) ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) )
452 240 adantr
 |-  ( ( ph /\ V < M ) -> ( V - 1 ) e. ( 0 ... ( N - 1 ) ) )
453 ovexd
 |-  ( ( ph /\ V < M ) -> ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) e. _V )
454 428 451 452 453 fvmptd
 |-  ( ( ph /\ V < M ) -> ( F ` ( V - 1 ) ) = ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) )
455 454 fveq1d
 |-  ( ( ph /\ V < M ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) )
456 455 adantr
 |-  ( ( ( ph /\ V < M ) /\ ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... ( V - 1 ) ) ) X. { 1 } ) u. ( ( U " ( V ... N ) ) X. { 0 } ) ) ) ` n ) )
457 199 a1i
 |-  ( ( V < M /\ y = V ) -> if ( y < M , y , ( y + 1 ) ) e. _V )
458 iftrue
 |-  ( V < M -> if ( V < M , V , ( V + 1 ) ) = V )
459 250 458 sylan9eqr
 |-  ( ( V < M /\ y = V ) -> if ( y < M , y , ( y + 1 ) ) = V )
460 459 eqeq2d
 |-  ( ( V < M /\ y = V ) -> ( j = if ( y < M , y , ( y + 1 ) ) <-> j = V ) )
461 460 biimpa
 |-  ( ( ( V < M /\ y = V ) /\ j = if ( y < M , y , ( y + 1 ) ) ) -> j = V )
462 461 235 syl
 |-  ( ( ( V < M /\ y = V ) /\ j = if ( y < M , y , ( y + 1 ) ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
463 457 462 csbied
 |-  ( ( V < M /\ y = V ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
464 463 adantll
 |-  ( ( ( ph /\ V < M ) /\ y = V ) -> [_ if ( y < M , y , ( y + 1 ) ) / j ]_ ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
465 270 adantr
 |-  ( ( ph /\ V < M ) -> V e. ( 0 ... ( N - 1 ) ) )
466 ovexd
 |-  ( ( ph /\ V < M ) -> ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V )
467 428 464 465 466 fvmptd
 |-  ( ( ph /\ V < M ) -> ( F ` V ) = ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) )
468 467 fveq1d
 |-  ( ( ph /\ V < M ) -> ( ( F ` V ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
469 468 adantr
 |-  ( ( ( ph /\ V < M ) /\ ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) -> ( ( F ` V ) ` n ) = ( ( T oF + ( ( ( U " ( 1 ... V ) ) X. { 1 } ) u. ( ( U " ( ( V + 1 ) ... N ) ) X. { 0 } ) ) ) ` n ) )
470 427 456 469 3eqtr4d
 |-  ( ( ( ph /\ V < M ) /\ ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) )
471 470 ex
 |-  ( ( ph /\ V < M ) -> ( ( n e. ( U " ( 1 ... ( V - 1 ) ) ) \/ n e. ( U " ( ( V + 1 ) ... N ) ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) ) )
472 341 471 sylbid
 |-  ( ( ph /\ V < M ) -> ( ( n e. ( U " ( 1 ... N ) ) /\ -. n e. ( U " { V } ) ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) ) )
473 472 expdimp
 |-  ( ( ( ph /\ V < M ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( -. n e. ( U " { V } ) -> ( ( F ` ( V - 1 ) ) ` n ) = ( ( F ` V ) ` n ) ) )
474 473 necon1ad
 |-  ( ( ( ph /\ V < M ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n e. ( U " { V } ) ) )
475 elimasni
 |-  ( n e. ( U " { V } ) -> V U n )
476 eqcom
 |-  ( n = ( U ` V ) <-> ( U ` V ) = n )
477 fnbrfvb
 |-  ( ( U Fn ( 1 ... N ) /\ V e. ( 1 ... N ) ) -> ( ( U ` V ) = n <-> V U n ) )
478 284 97 477 syl2anc
 |-  ( ph -> ( ( U ` V ) = n <-> V U n ) )
479 476 478 bitrid
 |-  ( ph -> ( n = ( U ` V ) <-> V U n ) )
480 475 479 imbitrrid
 |-  ( ph -> ( n e. ( U " { V } ) -> n = ( U ` V ) ) )
481 480 ad2antrr
 |-  ( ( ( ph /\ V < M ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( n e. ( U " { V } ) -> n = ( U ` V ) ) )
482 474 481 syld
 |-  ( ( ( ph /\ V < M ) /\ n e. ( U " ( 1 ... N ) ) ) -> ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` V ) ) )
483 482 ralrimiva
 |-  ( ( ph /\ V < M ) -> A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` V ) ) )
484 fvex
 |-  ( U ` V ) e. _V
485 eqeq2
 |-  ( m = ( U ` V ) -> ( n = m <-> n = ( U ` V ) ) )
486 485 imbi2d
 |-  ( m = ( U ` V ) -> ( ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) <-> ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` V ) ) ) )
487 486 ralbidv
 |-  ( m = ( U ` V ) -> ( A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) <-> A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` V ) ) ) )
488 484 487 spcev
 |-  ( A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = ( U ` V ) ) -> E. m A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) )
489 483 488 syl
 |-  ( ( ph /\ V < M ) -> E. m A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) )
490 eldifsni
 |-  ( M e. ( ( 0 ... N ) \ { V } ) -> M =/= V )
491 6 490 syl
 |-  ( ph -> M =/= V )
492 215 30 lttri2d
 |-  ( ph -> ( M =/= V <-> ( M < V \/ V < M ) ) )
493 491 492 mpbid
 |-  ( ph -> ( M < V \/ V < M ) )
494 297 489 493 mpjaodan
 |-  ( ph -> E. m A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) )
495 nfv
 |-  F/ m ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n )
496 495 rmo2
 |-  ( E* n e. ( U " ( 1 ... N ) ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) <-> E. m A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) )
497 rmoeq1
 |-  ( ( U " ( 1 ... N ) ) = ( 1 ... N ) -> ( E* n e. ( U " ( 1 ... N ) ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) <-> E* n e. ( 1 ... N ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) ) )
498 4 101 103 497 4syl
 |-  ( ph -> ( E* n e. ( U " ( 1 ... N ) ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) <-> E* n e. ( 1 ... N ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) ) )
499 496 498 bitr3id
 |-  ( ph -> ( E. m A. n e. ( U " ( 1 ... N ) ) ( ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) -> n = m ) <-> E* n e. ( 1 ... N ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) ) )
500 494 499 mpbid
 |-  ( ph -> E* n e. ( 1 ... N ) ( ( F ` ( V - 1 ) ) ` n ) =/= ( ( F ` V ) ` n ) )