Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem4.1 |
|- ( ph -> K e. NN ) |
3 |
|
poimirlem4.2 |
|- ( ph -> M e. NN0 ) |
4 |
|
poimirlem4.3 |
|- ( ph -> M < N ) |
5 |
|
poimirlem3.4 |
|- ( ph -> T : ( 1 ... M ) --> ( 0 ..^ K ) ) |
6 |
|
poimirlem3.5 |
|- ( ph -> U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
7 |
5
|
ffnd |
|- ( ph -> T Fn ( 1 ... M ) ) |
8 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> T Fn ( 1 ... M ) ) |
9 |
|
1ex |
|- 1 e. _V |
10 |
|
fnconstg |
|- ( 1 e. _V -> ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) ) |
11 |
9 10
|
ax-mp |
|- ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) |
12 |
|
c0ex |
|- 0 e. _V |
13 |
|
fnconstg |
|- ( 0 e. _V -> ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... M ) ) ) |
14 |
12 13
|
ax-mp |
|- ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... M ) ) |
15 |
11 14
|
pm3.2i |
|- ( ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) /\ ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... M ) ) ) |
16 |
|
dff1o3 |
|- ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( U : ( 1 ... M ) -onto-> ( 1 ... M ) /\ Fun `' U ) ) |
17 |
16
|
simprbi |
|- ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> Fun `' U ) |
18 |
|
imain |
|- ( Fun `' U -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... M ) ) ) ) |
19 |
6 17 18
|
3syl |
|- ( ph -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... M ) ) ) ) |
20 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
21 |
20
|
nn0red |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
22 |
21
|
ltp1d |
|- ( j e. ( 0 ... M ) -> j < ( j + 1 ) ) |
23 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) = (/) ) |
24 |
22 23
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) = (/) ) |
25 |
24
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( U " (/) ) ) |
26 |
|
ima0 |
|- ( U " (/) ) = (/) |
27 |
25 26
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( U " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = (/) ) |
28 |
19 27
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... M ) ) ) = (/) ) |
29 |
|
fnun |
|- ( ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) Fn ( U " ( 1 ... j ) ) /\ ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( U " ( ( j + 1 ) ... M ) ) ) /\ ( ( U " ( 1 ... j ) ) i^i ( U " ( ( j + 1 ) ... M ) ) ) = (/) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... M ) ) ) ) |
30 |
15 28 29
|
sylancr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... M ) ) ) ) |
31 |
|
imaundi |
|- ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) = ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... M ) ) ) |
32 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
33 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
34 |
32 33
|
eleqtrdi |
|- ( j e. NN0 -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
35 |
20 34
|
syl |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
36 |
|
elfzuz3 |
|- ( j e. ( 0 ... M ) -> M e. ( ZZ>= ` j ) ) |
37 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ M e. ( ZZ>= ` j ) ) -> ( 1 ... M ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
38 |
35 36 37
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( 1 ... M ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
39 |
38
|
eqcomd |
|- ( j e. ( 0 ... M ) -> ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) = ( 1 ... M ) ) |
40 |
39
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) = ( U " ( 1 ... M ) ) ) |
41 |
|
f1ofo |
|- ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> U : ( 1 ... M ) -onto-> ( 1 ... M ) ) |
42 |
|
foima |
|- ( U : ( 1 ... M ) -onto-> ( 1 ... M ) -> ( U " ( 1 ... M ) ) = ( 1 ... M ) ) |
43 |
6 41 42
|
3syl |
|- ( ph -> ( U " ( 1 ... M ) ) = ( 1 ... M ) ) |
44 |
40 43
|
sylan9eqr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( U " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) = ( 1 ... M ) ) |
45 |
31 44
|
eqtr3id |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... M ) ) ) = ( 1 ... M ) ) |
46 |
45
|
fneq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( U " ( 1 ... j ) ) u. ( U " ( ( j + 1 ) ... M ) ) ) <-> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) ) |
47 |
30 46
|
mpbid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) |
48 |
|
ovexd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 ... M ) e. _V ) |
49 |
|
inidm |
|- ( ( 1 ... M ) i^i ( 1 ... M ) ) = ( 1 ... M ) |
50 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( T ` n ) = ( T ` n ) ) |
51 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
52 |
8 47 48 48 49 50 51
|
offval |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) ) |
53 |
|
nn0p1nn |
|- ( M e. NN0 -> ( M + 1 ) e. NN ) |
54 |
3 53
|
syl |
|- ( ph -> ( M + 1 ) e. NN ) |
55 |
54
|
nnzd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
56 |
|
uzid |
|- ( ( M + 1 ) e. ZZ -> ( M + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
57 |
|
peano2uz |
|- ( ( M + 1 ) e. ( ZZ>= ` ( M + 1 ) ) -> ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
58 |
55 56 57
|
3syl |
|- ( ph -> ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
59 |
3
|
nn0zd |
|- ( ph -> M e. ZZ ) |
60 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
61 |
|
zltp1le |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
62 |
|
peano2z |
|- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
63 |
|
eluz |
|- ( ( ( M + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) <-> ( M + 1 ) <_ N ) ) |
64 |
62 63
|
sylan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) <-> ( M + 1 ) <_ N ) ) |
65 |
61 64
|
bitr4d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
66 |
59 60 65
|
syl2anc |
|- ( ph -> ( M < N <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
67 |
4 66
|
mpbid |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
68 |
|
fzsplit2 |
|- ( ( ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ... N ) = ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
69 |
58 67 68
|
syl2anc |
|- ( ph -> ( ( M + 1 ) ... N ) = ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
70 |
|
fzsn |
|- ( ( M + 1 ) e. ZZ -> ( ( M + 1 ) ... ( M + 1 ) ) = { ( M + 1 ) } ) |
71 |
55 70
|
syl |
|- ( ph -> ( ( M + 1 ) ... ( M + 1 ) ) = { ( M + 1 ) } ) |
72 |
71
|
uneq1d |
|- ( ph -> ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) = ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
73 |
69 72
|
eqtrd |
|- ( ph -> ( ( M + 1 ) ... N ) = ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
74 |
73
|
xpeq1d |
|- ( ph -> ( ( ( M + 1 ) ... N ) X. { 0 } ) = ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
75 |
|
xpundir |
|- ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( { ( M + 1 ) } X. { 0 } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
76 |
|
ovex |
|- ( M + 1 ) e. _V |
77 |
76 12
|
xpsn |
|- ( { ( M + 1 ) } X. { 0 } ) = { <. ( M + 1 ) , 0 >. } |
78 |
77
|
uneq1i |
|- ( ( { ( M + 1 ) } X. { 0 } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
79 |
75 78
|
eqtri |
|- ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
80 |
74 79
|
eqtrdi |
|- ( ph -> ( ( ( M + 1 ) ... N ) X. { 0 } ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
81 |
80
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( M + 1 ) ... N ) X. { 0 } ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
82 |
52 81
|
uneq12d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) u. ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) ) |
83 |
|
unass |
|- ( ( ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) u. ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
84 |
82 83
|
eqtr4di |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
85 |
3
|
nn0red |
|- ( ph -> M e. RR ) |
86 |
85
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
87 |
54
|
nnred |
|- ( ph -> ( M + 1 ) e. RR ) |
88 |
85 87
|
ltnled |
|- ( ph -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) |
89 |
86 88
|
mpbid |
|- ( ph -> -. ( M + 1 ) <_ M ) |
90 |
|
elfzle2 |
|- ( ( M + 1 ) e. ( 1 ... M ) -> ( M + 1 ) <_ M ) |
91 |
89 90
|
nsyl |
|- ( ph -> -. ( M + 1 ) e. ( 1 ... M ) ) |
92 |
|
disjsn |
|- ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) <-> -. ( M + 1 ) e. ( 1 ... M ) ) |
93 |
91 92
|
sylibr |
|- ( ph -> ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) |
94 |
|
eqid |
|- { <. ( M + 1 ) , 0 >. } = { <. ( M + 1 ) , 0 >. } |
95 |
76 12
|
fsn |
|- ( { <. ( M + 1 ) , 0 >. } : { ( M + 1 ) } --> { 0 } <-> { <. ( M + 1 ) , 0 >. } = { <. ( M + 1 ) , 0 >. } ) |
96 |
94 95
|
mpbir |
|- { <. ( M + 1 ) , 0 >. } : { ( M + 1 ) } --> { 0 } |
97 |
|
fun |
|- ( ( ( T : ( 1 ... M ) --> ( 0 ..^ K ) /\ { <. ( M + 1 ) , 0 >. } : { ( M + 1 ) } --> { 0 } ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) -> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) --> ( ( 0 ..^ K ) u. { 0 } ) ) |
98 |
96 97
|
mpanl2 |
|- ( ( T : ( 1 ... M ) --> ( 0 ..^ K ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) -> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) --> ( ( 0 ..^ K ) u. { 0 } ) ) |
99 |
5 93 98
|
syl2anc |
|- ( ph -> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) --> ( ( 0 ..^ K ) u. { 0 } ) ) |
100 |
|
1z |
|- 1 e. ZZ |
101 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
102 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
103 |
102
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
104 |
101 103
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
105 |
3 104
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 1 - 1 ) ) ) |
106 |
|
fzsuc2 |
|- ( ( 1 e. ZZ /\ M e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
107 |
100 105 106
|
sylancr |
|- ( ph -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
108 |
107
|
eqcomd |
|- ( ph -> ( ( 1 ... M ) u. { ( M + 1 ) } ) = ( 1 ... ( M + 1 ) ) ) |
109 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ K ) <-> K e. NN ) |
110 |
2 109
|
sylibr |
|- ( ph -> 0 e. ( 0 ..^ K ) ) |
111 |
110
|
snssd |
|- ( ph -> { 0 } C_ ( 0 ..^ K ) ) |
112 |
|
ssequn2 |
|- ( { 0 } C_ ( 0 ..^ K ) <-> ( ( 0 ..^ K ) u. { 0 } ) = ( 0 ..^ K ) ) |
113 |
111 112
|
sylib |
|- ( ph -> ( ( 0 ..^ K ) u. { 0 } ) = ( 0 ..^ K ) ) |
114 |
108 113
|
feq23d |
|- ( ph -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) --> ( ( 0 ..^ K ) u. { 0 } ) <-> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) ) |
115 |
99 114
|
mpbid |
|- ( ph -> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) |
116 |
115
|
ffnd |
|- ( ph -> ( T u. { <. ( M + 1 ) , 0 >. } ) Fn ( 1 ... ( M + 1 ) ) ) |
117 |
116
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( T u. { <. ( M + 1 ) , 0 >. } ) Fn ( 1 ... ( M + 1 ) ) ) |
118 |
|
fnconstg |
|- ( 1 e. _V -> ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) ) |
119 |
9 118
|
ax-mp |
|- ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) |
120 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
121 |
12 120
|
ax-mp |
|- ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) |
122 |
119 121
|
pm3.2i |
|- ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) /\ ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
123 |
76 76
|
f1osn |
|- { <. ( M + 1 ) , ( M + 1 ) >. } : { ( M + 1 ) } -1-1-onto-> { ( M + 1 ) } |
124 |
|
f1oun |
|- ( ( ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) /\ { <. ( M + 1 ) , ( M + 1 ) >. } : { ( M + 1 ) } -1-1-onto-> { ( M + 1 ) } ) /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) ) -> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
125 |
123 124
|
mpanl2 |
|- ( ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) ) -> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
126 |
6 93 93 125
|
syl12anc |
|- ( ph -> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
127 |
|
dff1o3 |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) <-> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) /\ Fun `' ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
128 |
127
|
simprbi |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) -> Fun `' ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
129 |
|
imain |
|- ( Fun `' ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) i^i ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
130 |
126 128 129
|
3syl |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) i^i ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
131 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) = (/) ) |
132 |
22 131
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) = (/) ) |
133 |
132
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " (/) ) ) |
134 |
|
ima0 |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " (/) ) = (/) |
135 |
133 134
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
136 |
130 135
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) i^i ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
137 |
|
fnun |
|- ( ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) /\ ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) /\ ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) i^i ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) u. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
138 |
122 136 137
|
sylancr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) u. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
139 |
|
f1ofo |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) -> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
140 |
|
foima |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... M ) u. { ( M + 1 ) } ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
141 |
126 139 140
|
3syl |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... M ) u. { ( M + 1 ) } ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
142 |
107
|
imaeq2d |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... ( M + 1 ) ) ) = ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... M ) u. { ( M + 1 ) } ) ) ) |
143 |
141 142 107
|
3eqtr4d |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) ) |
144 |
|
peano2uz |
|- ( M e. ( ZZ>= ` j ) -> ( M + 1 ) e. ( ZZ>= ` j ) ) |
145 |
36 144
|
syl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ZZ>= ` j ) ) |
146 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ ( M + 1 ) e. ( ZZ>= ` j ) ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
147 |
35 145 146
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
148 |
147
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... ( M + 1 ) ) ) = ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
149 |
143 148
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 ... ( M + 1 ) ) = ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
150 |
|
imaundi |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) u. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
151 |
149 150
|
eqtrdi |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 ... ( M + 1 ) ) = ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) u. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
152 |
151
|
fneq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( 1 ... ( M + 1 ) ) <-> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) u. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) ) |
153 |
138 152
|
mpbird |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( 1 ... ( M + 1 ) ) ) |
154 |
|
ovexd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( 1 ... ( M + 1 ) ) e. _V ) |
155 |
|
inidm |
|- ( ( 1 ... ( M + 1 ) ) i^i ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) |
156 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... ( M + 1 ) ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) ) |
157 |
|
eqidd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... ( M + 1 ) ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) |
158 |
117 153 154 154 155 156 157
|
offval |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
159 |
|
imadmrn |
|- ( ( { ( M + 1 ) } X. { ( M + 1 ) } ) " dom ( { ( M + 1 ) } X. { ( M + 1 ) } ) ) = ran ( { ( M + 1 ) } X. { ( M + 1 ) } ) |
160 |
76 76
|
xpsn |
|- ( { ( M + 1 ) } X. { ( M + 1 ) } ) = { <. ( M + 1 ) , ( M + 1 ) >. } |
161 |
160
|
imaeq1i |
|- ( ( { ( M + 1 ) } X. { ( M + 1 ) } ) " dom ( { ( M + 1 ) } X. { ( M + 1 ) } ) ) = ( { <. ( M + 1 ) , ( M + 1 ) >. } " dom ( { ( M + 1 ) } X. { ( M + 1 ) } ) ) |
162 |
|
dmxpid |
|- dom ( { ( M + 1 ) } X. { ( M + 1 ) } ) = { ( M + 1 ) } |
163 |
162
|
imaeq2i |
|- ( { <. ( M + 1 ) , ( M + 1 ) >. } " dom ( { ( M + 1 ) } X. { ( M + 1 ) } ) ) = ( { <. ( M + 1 ) , ( M + 1 ) >. } " { ( M + 1 ) } ) |
164 |
161 163
|
eqtri |
|- ( ( { ( M + 1 ) } X. { ( M + 1 ) } ) " dom ( { ( M + 1 ) } X. { ( M + 1 ) } ) ) = ( { <. ( M + 1 ) , ( M + 1 ) >. } " { ( M + 1 ) } ) |
165 |
|
rnxpid |
|- ran ( { ( M + 1 ) } X. { ( M + 1 ) } ) = { ( M + 1 ) } |
166 |
159 164 165
|
3eqtr3ri |
|- { ( M + 1 ) } = ( { <. ( M + 1 ) , ( M + 1 ) >. } " { ( M + 1 ) } ) |
167 |
|
eluzp1p1 |
|- ( M e. ( ZZ>= ` j ) -> ( M + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
168 |
|
eluzfz2 |
|- ( ( M + 1 ) e. ( ZZ>= ` ( j + 1 ) ) -> ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) |
169 |
36 167 168
|
3syl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) |
170 |
169
|
snssd |
|- ( j e. ( 0 ... M ) -> { ( M + 1 ) } C_ ( ( j + 1 ) ... ( M + 1 ) ) ) |
171 |
|
imass2 |
|- ( { ( M + 1 ) } C_ ( ( j + 1 ) ... ( M + 1 ) ) -> ( { <. ( M + 1 ) , ( M + 1 ) >. } " { ( M + 1 ) } ) C_ ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
172 |
170 171
|
syl |
|- ( j e. ( 0 ... M ) -> ( { <. ( M + 1 ) , ( M + 1 ) >. } " { ( M + 1 ) } ) C_ ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
173 |
166 172
|
eqsstrid |
|- ( j e. ( 0 ... M ) -> { ( M + 1 ) } C_ ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
174 |
76
|
snid |
|- ( M + 1 ) e. { ( M + 1 ) } |
175 |
|
ssel |
|- ( { ( M + 1 ) } C_ ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( ( M + 1 ) e. { ( M + 1 ) } -> ( M + 1 ) e. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
176 |
173 174 175
|
mpisyl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
177 |
|
elun2 |
|- ( ( M + 1 ) e. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( M + 1 ) e. ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
178 |
176 177
|
syl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
179 |
|
imaundir |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
180 |
178 179
|
eleqtrrdi |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
181 |
180
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( M + 1 ) e. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
182 |
12
|
a1i |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> 0 e. _V ) |
183 |
108
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( 1 ... M ) u. { ( M + 1 ) } ) = ( 1 ... ( M + 1 ) ) ) |
184 |
|
fveq2 |
|- ( n = ( M + 1 ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) ) |
185 |
76 12
|
fnsn |
|- { <. ( M + 1 ) , 0 >. } Fn { ( M + 1 ) } |
186 |
|
fvun2 |
|- ( ( T Fn ( 1 ... M ) /\ { <. ( M + 1 ) , 0 >. } Fn { ( M + 1 ) } /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ ( M + 1 ) e. { ( M + 1 ) } ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , 0 >. } ` ( M + 1 ) ) ) |
187 |
185 186
|
mp3an2 |
|- ( ( T Fn ( 1 ... M ) /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ ( M + 1 ) e. { ( M + 1 ) } ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , 0 >. } ` ( M + 1 ) ) ) |
188 |
174 187
|
mpanr2 |
|- ( ( T Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , 0 >. } ` ( M + 1 ) ) ) |
189 |
7 93 188
|
syl2anc |
|- ( ph -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , 0 >. } ` ( M + 1 ) ) ) |
190 |
76 12
|
fvsn |
|- ( { <. ( M + 1 ) , 0 >. } ` ( M + 1 ) ) = 0 |
191 |
189 190
|
eqtrdi |
|- ( ph -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 ) |
192 |
184 191
|
sylan9eqr |
|- ( ( ph /\ n = ( M + 1 ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = 0 ) |
193 |
192
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n = ( M + 1 ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = 0 ) |
194 |
|
fveq2 |
|- ( n = ( M + 1 ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) |
195 |
|
fvun2 |
|- ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) /\ ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) /\ ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) i^i ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) /\ ( M + 1 ) e. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
196 |
119 121 195
|
mp3an12 |
|- ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) i^i ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) /\ ( M + 1 ) e. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
197 |
136 181 196
|
syl2anc |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
198 |
12
|
fvconst2 |
|- ( ( M + 1 ) e. ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) = 0 ) |
199 |
180 198
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) = 0 ) |
200 |
199
|
adantl |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) = 0 ) |
201 |
197 200
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = 0 ) |
202 |
194 201
|
sylan9eqr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n = ( M + 1 ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = 0 ) |
203 |
193 202
|
oveq12d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n = ( M + 1 ) ) -> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) = ( 0 + 0 ) ) |
204 |
|
00id |
|- ( 0 + 0 ) = 0 |
205 |
203 204
|
eqtrdi |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n = ( M + 1 ) ) -> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) = 0 ) |
206 |
181 182 183 205
|
fmptapd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) = ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
207 |
7 93
|
jca |
|- ( ph -> ( T Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) ) |
208 |
|
fvun1 |
|- ( ( T Fn ( 1 ... M ) /\ { <. ( M + 1 ) , 0 >. } Fn { ( M + 1 ) } /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ n e. ( 1 ... M ) ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = ( T ` n ) ) |
209 |
185 208
|
mp3an2 |
|- ( ( T Fn ( 1 ... M ) /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ n e. ( 1 ... M ) ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = ( T ` n ) ) |
210 |
209
|
anassrs |
|- ( ( ( T Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) /\ n e. ( 1 ... M ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = ( T ` n ) ) |
211 |
207 210
|
sylan |
|- ( ( ph /\ n e. ( 1 ... M ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = ( T ` n ) ) |
212 |
211
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) = ( T ` n ) ) |
213 |
|
fvres |
|- ( n e. ( 1 ... M ) -> ( ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |` ( 1 ... M ) ) ` n ) = ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) |
214 |
213
|
eqcomd |
|- ( n e. ( 1 ... M ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |` ( 1 ... M ) ) ` n ) ) |
215 |
|
resundir |
|- ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |` ( 1 ... M ) ) = ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) u. ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) ) |
216 |
|
relxp |
|- Rel ( ( U " ( 1 ... j ) ) X. { 1 } ) |
217 |
|
dmxpss |
|- dom ( ( U " ( 1 ... j ) ) X. { 1 } ) C_ ( U " ( 1 ... j ) ) |
218 |
|
imassrn |
|- ( U " ( 1 ... j ) ) C_ ran U |
219 |
217 218
|
sstri |
|- dom ( ( U " ( 1 ... j ) ) X. { 1 } ) C_ ran U |
220 |
|
f1of |
|- ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> U : ( 1 ... M ) --> ( 1 ... M ) ) |
221 |
|
frn |
|- ( U : ( 1 ... M ) --> ( 1 ... M ) -> ran U C_ ( 1 ... M ) ) |
222 |
6 220 221
|
3syl |
|- ( ph -> ran U C_ ( 1 ... M ) ) |
223 |
219 222
|
sstrid |
|- ( ph -> dom ( ( U " ( 1 ... j ) ) X. { 1 } ) C_ ( 1 ... M ) ) |
224 |
|
relssres |
|- ( ( Rel ( ( U " ( 1 ... j ) ) X. { 1 } ) /\ dom ( ( U " ( 1 ... j ) ) X. { 1 } ) C_ ( 1 ... M ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = ( ( U " ( 1 ... j ) ) X. { 1 } ) ) |
225 |
216 223 224
|
sylancr |
|- ( ph -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = ( ( U " ( 1 ... j ) ) X. { 1 } ) ) |
226 |
225
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( U " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = ( ( U " ( 1 ... j ) ) X. { 1 } ) ) |
227 |
|
imassrn |
|- ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) C_ ran { <. ( M + 1 ) , ( M + 1 ) >. } |
228 |
76
|
rnsnop |
|- ran { <. ( M + 1 ) , ( M + 1 ) >. } = { ( M + 1 ) } |
229 |
227 228
|
sseqtri |
|- ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) C_ { ( M + 1 ) } |
230 |
|
ssrin |
|- ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) C_ { ( M + 1 ) } -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) C_ ( { ( M + 1 ) } i^i ( 1 ... M ) ) ) |
231 |
229 230
|
ax-mp |
|- ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) C_ ( { ( M + 1 ) } i^i ( 1 ... M ) ) |
232 |
|
incom |
|- ( { ( M + 1 ) } i^i ( 1 ... M ) ) = ( ( 1 ... M ) i^i { ( M + 1 ) } ) |
233 |
232 93
|
eqtrid |
|- ( ph -> ( { ( M + 1 ) } i^i ( 1 ... M ) ) = (/) ) |
234 |
231 233
|
sseqtrid |
|- ( ph -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) C_ (/) ) |
235 |
|
ss0 |
|- ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) C_ (/) -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) = (/) ) |
236 |
234 235
|
syl |
|- ( ph -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) = (/) ) |
237 |
|
fnconstg |
|- ( 1 e. _V -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) Fn ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) ) |
238 |
|
fnresdisj |
|- ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) Fn ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) -> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) = (/) <-> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = (/) ) ) |
239 |
9 237 238
|
mp2b |
|- ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) i^i ( 1 ... M ) ) = (/) <-> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = (/) ) |
240 |
236 239
|
sylib |
|- ( ph -> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = (/) ) |
241 |
240
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = (/) ) |
242 |
226 241
|
uneq12d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) u. ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. (/) ) ) |
243 |
|
imaundir |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) = ( ( U " ( 1 ... j ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) ) |
244 |
243
|
xpeq1i |
|- ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( U " ( 1 ... j ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) ) X. { 1 } ) |
245 |
|
xpundir |
|- ( ( ( U " ( 1 ... j ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) ) X. { 1 } ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) ) |
246 |
244 245
|
eqtri |
|- ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) ) |
247 |
246
|
reseq1i |
|- ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) ) |` ( 1 ... M ) ) |
248 |
|
resundir |
|- ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) ) |` ( 1 ... M ) ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) u. ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) ) |
249 |
247 248
|
eqtr2i |
|- ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) u. ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) ) = ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) |
250 |
|
un0 |
|- ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. (/) ) = ( ( U " ( 1 ... j ) ) X. { 1 } ) |
251 |
242 249 250
|
3eqtr3g |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) = ( ( U " ( 1 ... j ) ) X. { 1 } ) ) |
252 |
|
f1odm |
|- ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> dom U = ( 1 ... M ) ) |
253 |
6 252
|
syl |
|- ( ph -> dom U = ( 1 ... M ) ) |
254 |
253
|
ineq2d |
|- ( ph -> ( ( ( j + 1 ) ... ( M + 1 ) ) i^i dom U ) = ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... M ) ) ) |
255 |
254
|
reseq2d |
|- ( ph -> ( U |` ( ( ( j + 1 ) ... ( M + 1 ) ) i^i dom U ) ) = ( U |` ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... M ) ) ) ) |
256 |
|
f1orel |
|- ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> Rel U ) |
257 |
|
resindm |
|- ( Rel U -> ( U |` ( ( ( j + 1 ) ... ( M + 1 ) ) i^i dom U ) ) = ( U |` ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
258 |
6 256 257
|
3syl |
|- ( ph -> ( U |` ( ( ( j + 1 ) ... ( M + 1 ) ) i^i dom U ) ) = ( U |` ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
259 |
255 258
|
eqtr3d |
|- ( ph -> ( U |` ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... M ) ) ) = ( U |` ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
260 |
38
|
ineq2d |
|- ( j e. ( 0 ... M ) -> ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... M ) ) = ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) ) |
261 |
|
fzssp1 |
|- ( ( j + 1 ) ... M ) C_ ( ( j + 1 ) ... ( M + 1 ) ) |
262 |
|
sseqin2 |
|- ( ( ( j + 1 ) ... M ) C_ ( ( j + 1 ) ... ( M + 1 ) ) <-> ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) = ( ( j + 1 ) ... M ) ) |
263 |
261 262
|
mpbi |
|- ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) = ( ( j + 1 ) ... M ) |
264 |
263
|
a1i |
|- ( j e. ( 0 ... M ) -> ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) = ( ( j + 1 ) ... M ) ) |
265 |
|
incom |
|- ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... j ) ) = ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) |
266 |
265 132
|
eqtrid |
|- ( j e. ( 0 ... M ) -> ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... j ) ) = (/) ) |
267 |
264 266
|
uneq12d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) u. ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... j ) ) ) = ( ( ( j + 1 ) ... M ) u. (/) ) ) |
268 |
|
uncom |
|- ( ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) u. ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... j ) ) ) = ( ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... j ) ) u. ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) ) |
269 |
|
indi |
|- ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) = ( ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... j ) ) u. ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) ) |
270 |
268 269
|
eqtr4i |
|- ( ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( j + 1 ) ... M ) ) u. ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... j ) ) ) = ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
271 |
|
un0 |
|- ( ( ( j + 1 ) ... M ) u. (/) ) = ( ( j + 1 ) ... M ) |
272 |
267 270 271
|
3eqtr3g |
|- ( j e. ( 0 ... M ) -> ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) = ( ( j + 1 ) ... M ) ) |
273 |
260 272
|
eqtrd |
|- ( j e. ( 0 ... M ) -> ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... M ) ) = ( ( j + 1 ) ... M ) ) |
274 |
273
|
reseq2d |
|- ( j e. ( 0 ... M ) -> ( U |` ( ( ( j + 1 ) ... ( M + 1 ) ) i^i ( 1 ... M ) ) ) = ( U |` ( ( j + 1 ) ... M ) ) ) |
275 |
259 274
|
sylan9req |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( U |` ( ( j + 1 ) ... ( M + 1 ) ) ) = ( U |` ( ( j + 1 ) ... M ) ) ) |
276 |
275
|
rneqd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ran ( U |` ( ( j + 1 ) ... ( M + 1 ) ) ) = ran ( U |` ( ( j + 1 ) ... M ) ) ) |
277 |
|
df-ima |
|- ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) = ran ( U |` ( ( j + 1 ) ... ( M + 1 ) ) ) |
278 |
|
df-ima |
|- ( U " ( ( j + 1 ) ... M ) ) = ran ( U |` ( ( j + 1 ) ... M ) ) |
279 |
276 277 278
|
3eqtr4g |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( U " ( ( j + 1 ) ... M ) ) ) |
280 |
279
|
xpeq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
281 |
280
|
reseq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = ( ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) |` ( 1 ... M ) ) ) |
282 |
|
relxp |
|- Rel ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) |
283 |
|
dmxpss |
|- dom ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) C_ ( U " ( ( j + 1 ) ... M ) ) |
284 |
|
imassrn |
|- ( U " ( ( j + 1 ) ... M ) ) C_ ran U |
285 |
283 284
|
sstri |
|- dom ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) C_ ran U |
286 |
285 222
|
sstrid |
|- ( ph -> dom ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) C_ ( 1 ... M ) ) |
287 |
|
relssres |
|- ( ( Rel ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) /\ dom ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) C_ ( 1 ... M ) ) -> ( ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) |` ( 1 ... M ) ) = ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
288 |
282 286 287
|
sylancr |
|- ( ph -> ( ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) |` ( 1 ... M ) ) = ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
289 |
288
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) |` ( 1 ... M ) ) = ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
290 |
281 289
|
eqtrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
291 |
|
imassrn |
|- ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) C_ ran { <. ( M + 1 ) , ( M + 1 ) >. } |
292 |
291 228
|
sseqtri |
|- ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) C_ { ( M + 1 ) } |
293 |
|
ssrin |
|- ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) C_ { ( M + 1 ) } -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) C_ ( { ( M + 1 ) } i^i ( 1 ... M ) ) ) |
294 |
292 293
|
ax-mp |
|- ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) C_ ( { ( M + 1 ) } i^i ( 1 ... M ) ) |
295 |
294 233
|
sseqtrid |
|- ( ph -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) C_ (/) ) |
296 |
|
ss0 |
|- ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) C_ (/) -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) = (/) ) |
297 |
295 296
|
syl |
|- ( ph -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) = (/) ) |
298 |
|
fnconstg |
|- ( 0 e. _V -> ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
299 |
|
fnresdisj |
|- ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) = (/) <-> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = (/) ) ) |
300 |
12 298 299
|
mp2b |
|- ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) i^i ( 1 ... M ) ) = (/) <-> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = (/) ) |
301 |
297 300
|
sylib |
|- ( ph -> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = (/) ) |
302 |
301
|
adantr |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = (/) ) |
303 |
290 302
|
uneq12d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) u. ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) ) = ( ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. (/) ) ) |
304 |
179
|
xpeq1i |
|- ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) X. { 0 } ) |
305 |
|
xpundir |
|- ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) u. ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) ) X. { 0 } ) = ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |
306 |
304 305
|
eqtri |
|- ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |
307 |
306
|
reseq1i |
|- ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = ( ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |` ( 1 ... M ) ) |
308 |
|
resundir |
|- ( ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) u. ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |` ( 1 ... M ) ) = ( ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) u. ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) ) |
309 |
307 308
|
eqtr2i |
|- ( ( ( ( U " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) u. ( ( ( { <. ( M + 1 ) , ( M + 1 ) >. } " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) ) = ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) |
310 |
|
un0 |
|- ( ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. (/) ) = ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) |
311 |
303 309 310
|
3eqtr3g |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) = ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
312 |
251 311
|
uneq12d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) |` ( 1 ... M ) ) u. ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) |` ( 1 ... M ) ) ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
313 |
215 312
|
eqtrid |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |` ( 1 ... M ) ) = ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
314 |
313
|
fveq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |` ( 1 ... M ) ) ` n ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
315 |
214 314
|
sylan9eqr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
316 |
212 315
|
oveq12d |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) = ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) |
317 |
316
|
mpteq2dva |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( n e. ( 1 ... M ) |-> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) = ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) ) |
318 |
317
|
uneq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` n ) + ( ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
319 |
158 206 318
|
3eqtr2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
320 |
319
|
uneq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( T ` n ) + ( ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
321 |
84 320
|
eqtr4d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
322 |
321
|
csbeq1d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
323 |
322
|
eqeq2d |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( i = [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
324 |
323
|
rexbidva |
|- ( ph -> ( E. j e. ( 0 ... M ) i = [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
325 |
324
|
ralbidv |
|- ( ph -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
326 |
325
|
biimpd |
|- ( ph -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
327 |
|
f1ofn |
|- ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> U Fn ( 1 ... M ) ) |
328 |
6 327
|
syl |
|- ( ph -> U Fn ( 1 ... M ) ) |
329 |
76 76
|
fnsn |
|- { <. ( M + 1 ) , ( M + 1 ) >. } Fn { ( M + 1 ) } |
330 |
|
fvun2 |
|- ( ( U Fn ( 1 ... M ) /\ { <. ( M + 1 ) , ( M + 1 ) >. } Fn { ( M + 1 ) } /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ ( M + 1 ) e. { ( M + 1 ) } ) ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , ( M + 1 ) >. } ` ( M + 1 ) ) ) |
331 |
329 330
|
mp3an2 |
|- ( ( U Fn ( 1 ... M ) /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ ( M + 1 ) e. { ( M + 1 ) } ) ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , ( M + 1 ) >. } ` ( M + 1 ) ) ) |
332 |
174 331
|
mpanr2 |
|- ( ( U Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , ( M + 1 ) >. } ` ( M + 1 ) ) ) |
333 |
328 93 332
|
syl2anc |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( { <. ( M + 1 ) , ( M + 1 ) >. } ` ( M + 1 ) ) ) |
334 |
76 76
|
fvsn |
|- ( { <. ( M + 1 ) , ( M + 1 ) >. } ` ( M + 1 ) ) = ( M + 1 ) |
335 |
333 334
|
eqtrdi |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) |
336 |
191 335
|
jca |
|- ( ph -> ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) |
337 |
326 336
|
jctird |
|- ( ph -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) ) |
338 |
|
3anass |
|- ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
339 |
337 338
|
syl6ibr |
|- ( ph -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
340 |
5 96
|
jctir |
|- ( ph -> ( T : ( 1 ... M ) --> ( 0 ..^ K ) /\ { <. ( M + 1 ) , 0 >. } : { ( M + 1 ) } --> { 0 } ) ) |
341 |
340 93 97
|
syl2anc |
|- ( ph -> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) --> ( ( 0 ..^ K ) u. { 0 } ) ) |
342 |
341 114
|
mpbid |
|- ( ph -> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) |
343 |
|
ovex |
|- ( 0 ..^ K ) e. _V |
344 |
|
ovex |
|- ( 1 ... ( M + 1 ) ) e. _V |
345 |
343 344
|
elmap |
|- ( ( T u. { <. ( M + 1 ) , 0 >. } ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) <-> ( T u. { <. ( M + 1 ) , 0 >. } ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) |
346 |
342 345
|
sylibr |
|- ( ph -> ( T u. { <. ( M + 1 ) , 0 >. } ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) ) |
347 |
|
ovex |
|- ( 1 ... M ) e. _V |
348 |
|
f1oexrnex |
|- ( ( U : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) /\ ( 1 ... M ) e. _V ) -> U e. _V ) |
349 |
6 347 348
|
sylancl |
|- ( ph -> U e. _V ) |
350 |
|
snex |
|- { <. ( M + 1 ) , ( M + 1 ) >. } e. _V |
351 |
|
unexg |
|- ( ( U e. _V /\ { <. ( M + 1 ) , ( M + 1 ) >. } e. _V ) -> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. _V ) |
352 |
349 350 351
|
sylancl |
|- ( ph -> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. _V ) |
353 |
|
f1oeq1 |
|- ( f = ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) <-> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) ) |
354 |
353
|
elabg |
|- ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. _V -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } <-> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) ) |
355 |
352 354
|
syl |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } <-> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) ) |
356 |
|
f1oeq23 |
|- ( ( ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) /\ ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) <-> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) ) ) |
357 |
107 107 356
|
syl2anc |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) <-> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) ) ) |
358 |
355 357
|
bitrd |
|- ( ph -> ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } <-> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) : ( ( 1 ... M ) u. { ( M + 1 ) } ) -1-1-onto-> ( ( 1 ... M ) u. { ( M + 1 ) } ) ) ) |
359 |
126 358
|
mpbird |
|- ( ph -> ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) |
360 |
346 359
|
opelxpd |
|- ( ph -> <. ( T u. { <. ( M + 1 ) , 0 >. } ) , ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) |
361 |
339 360
|
jctild |
|- ( ph -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( T oF + ( ( ( U " ( 1 ... j ) ) X. { 1 } ) u. ( ( U " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> ( <. ( T u. { <. ( M + 1 ) , 0 >. } ) , ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( T u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( T u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( U u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) ) |