Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem4.1 |
|- ( ph -> K e. NN ) |
3 |
|
poimirlem4.2 |
|- ( ph -> M e. NN0 ) |
4 |
|
poimirlem4.3 |
|- ( ph -> M < N ) |
5 |
1
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> N e. NN ) |
6 |
2
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> K e. NN ) |
7 |
3
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> M e. NN0 ) |
8 |
4
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> M < N ) |
9 |
|
xp1st |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 1st ` t ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
10 |
|
elmapi |
|- ( ( 1st ` t ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) -> ( 1st ` t ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
11 |
9 10
|
syl |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 1st ` t ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
12 |
11
|
adantl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( 1st ` t ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
13 |
|
xp2nd |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` t ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) |
14 |
|
fvex |
|- ( 2nd ` t ) e. _V |
15 |
|
f1oeq1 |
|- ( f = ( 2nd ` t ) -> ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
16 |
14 15
|
elab |
|- ( ( 2nd ` t ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } <-> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
17 |
13 16
|
sylib |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
19 |
5 6 7 8 12 18
|
poimirlem3 |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) ) |
20 |
|
fvex |
|- ( 1st ` t ) e. _V |
21 |
|
snex |
|- { <. ( M + 1 ) , 0 >. } e. _V |
22 |
20 21
|
unex |
|- ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) e. _V |
23 |
|
snex |
|- { <. ( M + 1 ) , ( M + 1 ) >. } e. _V |
24 |
14 23
|
unex |
|- ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. _V |
25 |
22 24
|
op1std |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( 1st ` s ) = ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ) |
26 |
22 24
|
op2ndd |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( 2nd ` s ) = ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
27 |
26
|
imaeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) ) |
28 |
27
|
xpeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) ) |
29 |
26
|
imaeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
30 |
29
|
xpeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |
31 |
28 30
|
uneq12d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) |
32 |
25 31
|
oveq12d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) ) |
33 |
32
|
uneq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
34 |
33
|
csbeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
35 |
34
|
eqeq2d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
36 |
35
|
rexbidv |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
37 |
36
|
ralbidv |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
38 |
25
|
fveq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 1st ` s ) ` ( M + 1 ) ) = ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) ) |
39 |
38
|
eqeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 1st ` s ) ` ( M + 1 ) ) = 0 <-> ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 ) ) |
40 |
26
|
fveq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 2nd ` s ) ` ( M + 1 ) ) = ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) ) |
41 |
40
|
eqeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) <-> ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) |
42 |
37 39 41
|
3anbi123d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
43 |
42
|
elrab |
|- ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } <-> ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
44 |
19 43
|
syl6ibr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) ) |
45 |
44
|
ralrimiva |
|- ( ph -> A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) ) |
46 |
|
fveq2 |
|- ( s = t -> ( 1st ` s ) = ( 1st ` t ) ) |
47 |
|
fveq2 |
|- ( s = t -> ( 2nd ` s ) = ( 2nd ` t ) ) |
48 |
47
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... j ) ) ) |
49 |
48
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) ) |
50 |
47
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) = ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) ) |
51 |
50
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
52 |
49 51
|
uneq12d |
|- ( s = t -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
53 |
46 52
|
oveq12d |
|- ( s = t -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) ) |
54 |
53
|
uneq1d |
|- ( s = t -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
55 |
54
|
csbeq1d |
|- ( s = t -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
56 |
55
|
eqeq2d |
|- ( s = t -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
57 |
56
|
rexbidv |
|- ( s = t -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
58 |
57
|
ralbidv |
|- ( s = t -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
59 |
58
|
ralrab |
|- ( A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } <-> A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) ) |
60 |
45 59
|
sylibr |
|- ( ph -> A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |
61 |
|
xp1st |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 1st ` k ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) ) |
62 |
|
elmapi |
|- ( ( 1st ` k ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) -> ( 1st ` k ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) |
63 |
61 62
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 1st ` k ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) |
64 |
|
fzssp1 |
|- ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) |
65 |
|
fssres |
|- ( ( ( 1st ` k ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) /\ ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
66 |
63 64 65
|
sylancl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
67 |
|
ovex |
|- ( 0 ..^ K ) e. _V |
68 |
|
ovex |
|- ( 1 ... M ) e. _V |
69 |
67 68
|
elmap |
|- ( ( ( 1st ` k ) |` ( 1 ... M ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) <-> ( ( 1st ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
70 |
66 69
|
sylibr |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
71 |
70
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
72 |
|
xp2nd |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) |
73 |
|
fvex |
|- ( 2nd ` k ) e. _V |
74 |
|
f1oeq1 |
|- ( f = ( 2nd ` k ) -> ( f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) <-> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) ) |
75 |
73 74
|
elab |
|- ( ( 2nd ` k ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } <-> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) |
76 |
72 75
|
sylib |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) |
77 |
|
f1of1 |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-> ( 1 ... ( M + 1 ) ) ) |
78 |
76 77
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-> ( 1 ... ( M + 1 ) ) ) |
79 |
|
f1ores |
|- ( ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-> ( 1 ... ( M + 1 ) ) /\ ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
80 |
78 64 79
|
sylancl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
81 |
80
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
82 |
|
dff1o3 |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) <-> ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -onto-> ( 1 ... ( M + 1 ) ) /\ Fun `' ( 2nd ` k ) ) ) |
83 |
82
|
simprbi |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> Fun `' ( 2nd ` k ) ) |
84 |
|
imadif |
|- ( Fun `' ( 2nd ` k ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
85 |
76 83 84
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
86 |
85
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
87 |
|
f1ofo |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -onto-> ( 1 ... ( M + 1 ) ) ) |
88 |
|
foima |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -onto-> ( 1 ... ( M + 1 ) ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) ) |
89 |
76 87 88
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) ) |
90 |
89
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) ) |
91 |
|
f1ofn |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
92 |
76 91
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
93 |
|
nn0p1nn |
|- ( M e. NN0 -> ( M + 1 ) e. NN ) |
94 |
3 93
|
syl |
|- ( ph -> ( M + 1 ) e. NN ) |
95 |
|
elfz1end |
|- ( ( M + 1 ) e. NN <-> ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) |
96 |
94 95
|
sylib |
|- ( ph -> ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) |
97 |
|
fnsnfv |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) -> { ( ( 2nd ` k ) ` ( M + 1 ) ) } = ( ( 2nd ` k ) " { ( M + 1 ) } ) ) |
98 |
92 96 97
|
syl2anr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> { ( ( 2nd ` k ) ` ( M + 1 ) ) } = ( ( 2nd ` k ) " { ( M + 1 ) } ) ) |
99 |
|
sneq |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> { ( ( 2nd ` k ) ` ( M + 1 ) ) } = { ( M + 1 ) } ) |
100 |
98 99
|
sylan9req |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " { ( M + 1 ) } ) = { ( M + 1 ) } ) |
101 |
90 100
|
difeq12d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) = ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) |
102 |
86 101
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) |
103 |
|
1z |
|- 1 e. ZZ |
104 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
105 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
106 |
105
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
107 |
104 106
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
108 |
3 107
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 1 - 1 ) ) ) |
109 |
|
fzsuc2 |
|- ( ( 1 e. ZZ /\ M e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
110 |
103 108 109
|
sylancr |
|- ( ph -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
111 |
110
|
difeq1d |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( ( ( 1 ... M ) u. { ( M + 1 ) } ) \ { ( M + 1 ) } ) ) |
112 |
|
difun2 |
|- ( ( ( 1 ... M ) u. { ( M + 1 ) } ) \ { ( M + 1 ) } ) = ( ( 1 ... M ) \ { ( M + 1 ) } ) |
113 |
111 112
|
eqtrdi |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( ( 1 ... M ) \ { ( M + 1 ) } ) ) |
114 |
3
|
nn0red |
|- ( ph -> M e. RR ) |
115 |
|
ltp1 |
|- ( M e. RR -> M < ( M + 1 ) ) |
116 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
117 |
|
ltnle |
|- ( ( M e. RR /\ ( M + 1 ) e. RR ) -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) |
118 |
116 117
|
mpdan |
|- ( M e. RR -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) |
119 |
115 118
|
mpbid |
|- ( M e. RR -> -. ( M + 1 ) <_ M ) |
120 |
114 119
|
syl |
|- ( ph -> -. ( M + 1 ) <_ M ) |
121 |
|
elfzle2 |
|- ( ( M + 1 ) e. ( 1 ... M ) -> ( M + 1 ) <_ M ) |
122 |
120 121
|
nsyl |
|- ( ph -> -. ( M + 1 ) e. ( 1 ... M ) ) |
123 |
|
difsn |
|- ( -. ( M + 1 ) e. ( 1 ... M ) -> ( ( 1 ... M ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
124 |
122 123
|
syl |
|- ( ph -> ( ( 1 ... M ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
125 |
113 124
|
eqtrd |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
126 |
125
|
imaeq2d |
|- ( ph -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
127 |
126
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
128 |
125
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
129 |
102 127 128
|
3eqtr3d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( 1 ... M ) ) = ( 1 ... M ) ) |
130 |
129
|
f1oeq3d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) <-> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
131 |
81 130
|
mpbid |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
132 |
73
|
resex |
|- ( ( 2nd ` k ) |` ( 1 ... M ) ) e. _V |
133 |
|
f1oeq1 |
|- ( f = ( ( 2nd ` k ) |` ( 1 ... M ) ) -> ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
134 |
132 133
|
elab |
|- ( ( ( 2nd ` k ) |` ( 1 ... M ) ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } <-> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
135 |
131 134
|
sylibr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) |
136 |
71 135
|
opelxpd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
137 |
136
|
3ad2antr3 |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
138 |
|
3anass |
|- ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
139 |
138
|
biancomi |
|- ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
140 |
94
|
nnzd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
141 |
|
uzid |
|- ( ( M + 1 ) e. ZZ -> ( M + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
142 |
|
peano2uz |
|- ( ( M + 1 ) e. ( ZZ>= ` ( M + 1 ) ) -> ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
143 |
140 141 142
|
3syl |
|- ( ph -> ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
144 |
3
|
nn0zd |
|- ( ph -> M e. ZZ ) |
145 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
146 |
|
zltp1le |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
147 |
|
peano2z |
|- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
148 |
|
eluz |
|- ( ( ( M + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) <-> ( M + 1 ) <_ N ) ) |
149 |
147 148
|
sylan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) <-> ( M + 1 ) <_ N ) ) |
150 |
146 149
|
bitr4d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
151 |
144 145 150
|
syl2anc |
|- ( ph -> ( M < N <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
152 |
4 151
|
mpbid |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
153 |
|
fzsplit2 |
|- ( ( ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ... N ) = ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
154 |
143 152 153
|
syl2anc |
|- ( ph -> ( ( M + 1 ) ... N ) = ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
155 |
|
fzsn |
|- ( ( M + 1 ) e. ZZ -> ( ( M + 1 ) ... ( M + 1 ) ) = { ( M + 1 ) } ) |
156 |
140 155
|
syl |
|- ( ph -> ( ( M + 1 ) ... ( M + 1 ) ) = { ( M + 1 ) } ) |
157 |
156
|
uneq1d |
|- ( ph -> ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) = ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
158 |
154 157
|
eqtrd |
|- ( ph -> ( ( M + 1 ) ... N ) = ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
159 |
158
|
xpeq1d |
|- ( ph -> ( ( ( M + 1 ) ... N ) X. { 0 } ) = ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
160 |
159
|
uneq2d |
|- ( ph -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
161 |
|
xpundir |
|- ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( { ( M + 1 ) } X. { 0 } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
162 |
|
ovex |
|- ( M + 1 ) e. _V |
163 |
|
c0ex |
|- 0 e. _V |
164 |
162 163
|
xpsn |
|- ( { ( M + 1 ) } X. { 0 } ) = { <. ( M + 1 ) , 0 >. } |
165 |
164
|
uneq1i |
|- ( ( { ( M + 1 ) } X. { 0 } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
166 |
161 165
|
eqtri |
|- ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
167 |
166
|
uneq2i |
|- ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
168 |
|
unass |
|- ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
169 |
167 168
|
eqtr4i |
|- ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
170 |
160 169
|
eqtrdi |
|- ( ph -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
171 |
170
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
172 |
162
|
a1i |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( M + 1 ) e. _V ) |
173 |
163
|
a1i |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> 0 e. _V ) |
174 |
110
|
eqcomd |
|- ( ph -> ( ( 1 ... M ) u. { ( M + 1 ) } ) = ( 1 ... ( M + 1 ) ) ) |
175 |
174
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... M ) u. { ( M + 1 ) } ) = ( 1 ... ( M + 1 ) ) ) |
176 |
|
fveq2 |
|- ( n = ( M + 1 ) -> ( ( 1st ` k ) ` n ) = ( ( 1st ` k ) ` ( M + 1 ) ) ) |
177 |
|
fveq2 |
|- ( n = ( M + 1 ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) |
178 |
176 177
|
oveq12d |
|- ( n = ( M + 1 ) -> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` k ) ` ( M + 1 ) ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) ) |
179 |
|
simplrl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) |
180 |
|
imain |
|- ( Fun `' ( 2nd ` k ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
181 |
76 83 180
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
182 |
181
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
183 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
184 |
183
|
nn0red |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
185 |
184
|
ltp1d |
|- ( j e. ( 0 ... M ) -> j < ( j + 1 ) ) |
186 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) = (/) ) |
187 |
185 186
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) = (/) ) |
188 |
187
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( 2nd ` k ) " (/) ) ) |
189 |
|
ima0 |
|- ( ( 2nd ` k ) " (/) ) = (/) |
190 |
188 189
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
191 |
182 190
|
sylan9req |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
192 |
|
simplr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) |
193 |
92
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
194 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
195 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
196 |
194 195
|
eleqtrdi |
|- ( j e. NN0 -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
197 |
|
fzss1 |
|- ( ( j + 1 ) e. ( ZZ>= ` 1 ) -> ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) ) |
198 |
183 196 197
|
3syl |
|- ( j e. ( 0 ... M ) -> ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) ) |
199 |
|
elfzuz3 |
|- ( j e. ( 0 ... M ) -> M e. ( ZZ>= ` j ) ) |
200 |
|
eluzp1p1 |
|- ( M e. ( ZZ>= ` j ) -> ( M + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
201 |
|
eluzfz2 |
|- ( ( M + 1 ) e. ( ZZ>= ` ( j + 1 ) ) -> ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) |
202 |
199 200 201
|
3syl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) |
203 |
198 202
|
jca |
|- ( j e. ( 0 ... M ) -> ( ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
204 |
|
fnfvima |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
205 |
204
|
3expb |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
206 |
193 203 205
|
syl2an |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
207 |
192 206
|
eqeltrrd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
208 |
|
1ex |
|- 1 e. _V |
209 |
|
fnconstg |
|- ( 1 e. _V -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
210 |
208 209
|
ax-mp |
|- ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) |
211 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
212 |
163 211
|
ax-mp |
|- ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) |
213 |
|
fvun2 |
|- ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) /\ ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) /\ ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
214 |
210 212 213
|
mp3an12 |
|- ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) /\ ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
215 |
191 207 214
|
syl2anc |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
216 |
163
|
fvconst2 |
|- ( ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) = 0 ) |
217 |
207 216
|
syl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) = 0 ) |
218 |
215 217
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = 0 ) |
219 |
218
|
adantlrl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = 0 ) |
220 |
179 219
|
oveq12d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) ` ( M + 1 ) ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) = ( 0 + 0 ) ) |
221 |
|
00id |
|- ( 0 + 0 ) = 0 |
222 |
220 221
|
eqtrdi |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) ` ( M + 1 ) ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) = 0 ) |
223 |
178 222
|
sylan9eqr |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) /\ n = ( M + 1 ) ) -> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) = 0 ) |
224 |
172 173 175 223
|
fmptapd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) = ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
225 |
224
|
uneq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
226 |
171 225
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
227 |
|
elmapfn |
|- ( ( 1st ` k ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) -> ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
228 |
61 227
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
229 |
|
fnssres |
|- ( ( ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) Fn ( 1 ... M ) ) |
230 |
228 64 229
|
sylancl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) Fn ( 1 ... M ) ) |
231 |
230
|
ad3antlr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) Fn ( 1 ... M ) ) |
232 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
233 |
163 232
|
ax-mp |
|- ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) |
234 |
210 233
|
pm3.2i |
|- ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
235 |
|
imain |
|- ( Fun `' ( 2nd ` k ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
236 |
76 83 235
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
237 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) = (/) ) |
238 |
185 237
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) = (/) ) |
239 |
238
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( 2nd ` k ) " (/) ) ) |
240 |
239 189
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = (/) ) |
241 |
236 240
|
sylan9req |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) = (/) ) |
242 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) /\ ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) = (/) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
243 |
234 241 242
|
sylancr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
244 |
243
|
ad4ant24 |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
245 |
101
|
adantr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) = ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) |
246 |
85
|
ad3antlr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
247 |
183 194
|
syl |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. NN ) |
248 |
247 195
|
eleqtrdi |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
249 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ M e. ( ZZ>= ` j ) ) -> ( 1 ... M ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
250 |
248 199 249
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( 1 ... M ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
251 |
128 250
|
sylan9eq |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
252 |
251
|
imaeq2d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) ) |
253 |
246 252
|
eqtr3d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) ) |
254 |
125
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
255 |
245 253 254
|
3eqtr3rd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( 1 ... M ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) ) |
256 |
|
imaundi |
|- ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
257 |
255 256
|
eqtrdi |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( 1 ... M ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
258 |
257
|
fneq2d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) <-> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) ) |
259 |
244 258
|
mpbird |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) |
260 |
|
fzss2 |
|- ( M e. ( ZZ>= ` j ) -> ( 1 ... j ) C_ ( 1 ... M ) ) |
261 |
|
resima2 |
|- ( ( 1 ... j ) C_ ( 1 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) = ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
262 |
199 260 261
|
3syl |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) = ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
263 |
262
|
xpeq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) ) |
264 |
183 196
|
syl |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
265 |
|
fzss1 |
|- ( ( j + 1 ) e. ( ZZ>= ` 1 ) -> ( ( j + 1 ) ... M ) C_ ( 1 ... M ) ) |
266 |
|
resima2 |
|- ( ( ( j + 1 ) ... M ) C_ ( 1 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) = ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
267 |
264 265 266
|
3syl |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) = ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
268 |
267
|
xpeq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
269 |
263 268
|
uneq12d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
270 |
269
|
adantl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
271 |
270
|
fneq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) <-> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) ) |
272 |
259 271
|
mpbird |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) |
273 |
|
fzfid |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( 1 ... M ) e. Fin ) |
274 |
|
inidm |
|- ( ( 1 ... M ) i^i ( 1 ... M ) ) = ( 1 ... M ) |
275 |
|
fvres |
|- ( n e. ( 1 ... M ) -> ( ( ( 1st ` k ) |` ( 1 ... M ) ) ` n ) = ( ( 1st ` k ) ` n ) ) |
276 |
275
|
adantl |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( 1st ` k ) |` ( 1 ... M ) ) ` n ) = ( ( 1st ` k ) ` n ) ) |
277 |
|
disjsn |
|- ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) <-> -. ( M + 1 ) e. ( 1 ... M ) ) |
278 |
122 277
|
sylibr |
|- ( ph -> ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) |
279 |
278
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) |
280 |
259 279
|
jca |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) ) |
281 |
|
fnconstg |
|- ( 0 e. _V -> ( { ( M + 1 ) } X. { 0 } ) Fn { ( M + 1 ) } ) |
282 |
163 281
|
ax-mp |
|- ( { ( M + 1 ) } X. { 0 } ) Fn { ( M + 1 ) } |
283 |
|
fvun1 |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( { ( M + 1 ) } X. { 0 } ) Fn { ( M + 1 ) } /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ n e. ( 1 ... M ) ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
284 |
282 283
|
mp3an2 |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ n e. ( 1 ... M ) ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
285 |
284
|
anassrs |
|- ( ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
286 |
280 285
|
sylan |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
287 |
247
|
nnzd |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. ZZ ) |
288 |
183
|
nn0cnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
289 |
|
pncan1 |
|- ( j e. CC -> ( ( j + 1 ) - 1 ) = j ) |
290 |
288 289
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( j + 1 ) - 1 ) = j ) |
291 |
290
|
fveq2d |
|- ( j e. ( 0 ... M ) -> ( ZZ>= ` ( ( j + 1 ) - 1 ) ) = ( ZZ>= ` j ) ) |
292 |
199 291
|
eleqtrrd |
|- ( j e. ( 0 ... M ) -> M e. ( ZZ>= ` ( ( j + 1 ) - 1 ) ) ) |
293 |
|
fzsuc2 |
|- ( ( ( j + 1 ) e. ZZ /\ M e. ( ZZ>= ` ( ( j + 1 ) - 1 ) ) ) -> ( ( j + 1 ) ... ( M + 1 ) ) = ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) |
294 |
287 292 293
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( ( j + 1 ) ... ( M + 1 ) ) = ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) |
295 |
294
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( 2nd ` k ) " ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) ) |
296 |
|
imaundi |
|- ( ( 2nd ` k ) " ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) |
297 |
295 296
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
298 |
297
|
xpeq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) X. { 0 } ) ) |
299 |
|
xpundir |
|- ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) |
300 |
298 299
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
301 |
300
|
uneq2d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) ) |
302 |
|
unass |
|- ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
303 |
301 302
|
eqtr4di |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
304 |
303
|
adantl |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
305 |
98
|
xpeq1d |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) = ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) |
306 |
305
|
uneq2d |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
307 |
306
|
adantr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
308 |
304 307
|
eqtr4d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) ) |
309 |
99
|
xpeq1d |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) = ( { ( M + 1 ) } X. { 0 } ) ) |
310 |
309
|
uneq2d |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ) |
311 |
308 310
|
sylan9eq |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ) |
312 |
311
|
an32s |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ) |
313 |
312
|
fveq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) ) |
314 |
313
|
adantr |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) ) |
315 |
269
|
fveq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
316 |
315
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
317 |
286 314 316
|
3eqtr4rd |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) |
318 |
231 272 273 273 274 276 317
|
offval |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
319 |
318
|
uneq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
320 |
319
|
adantlrl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
321 |
228
|
adantr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
322 |
210 212
|
pm3.2i |
|- ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
323 |
181 190
|
sylan9req |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
324 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) /\ ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
325 |
322 323 324
|
sylancr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
326 |
|
peano2uz |
|- ( M e. ( ZZ>= ` j ) -> ( M + 1 ) e. ( ZZ>= ` j ) ) |
327 |
199 326
|
syl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ZZ>= ` j ) ) |
328 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ ( M + 1 ) e. ( ZZ>= ` j ) ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
329 |
264 327 328
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
330 |
329
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
331 |
|
imaundi |
|- ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
332 |
330 331
|
eqtr2di |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) ) |
333 |
332 89
|
sylan9eqr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( 1 ... ( M + 1 ) ) ) |
334 |
333
|
fneq2d |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) <-> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( 1 ... ( M + 1 ) ) ) ) |
335 |
325 334
|
mpbid |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( 1 ... ( M + 1 ) ) ) |
336 |
|
fzfid |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( 1 ... ( M + 1 ) ) e. Fin ) |
337 |
|
inidm |
|- ( ( 1 ... ( M + 1 ) ) i^i ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) |
338 |
|
eqidd |
|- ( ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... ( M + 1 ) ) ) -> ( ( 1st ` k ) ` n ) = ( ( 1st ` k ) ` n ) ) |
339 |
|
eqidd |
|- ( ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... ( M + 1 ) ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) |
340 |
321 335 336 336 337 338 339
|
offval |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
341 |
340
|
uneq1d |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
342 |
341
|
ad4ant24 |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
343 |
226 320 342
|
3eqtr4rd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
344 |
343
|
csbeq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
345 |
344
|
eqeq2d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
346 |
345
|
rexbidva |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
347 |
346
|
ralbidv |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
348 |
347
|
biimpd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
349 |
348
|
impr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) -> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
350 |
139 349
|
sylan2b |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
351 |
|
1st2nd2 |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
352 |
351
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
353 |
|
fnsnsplit |
|- ( ( ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) ) |
354 |
228 96 353
|
syl2anr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) ) |
355 |
354
|
adantr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) ) |
356 |
125
|
reseq2d |
|- ( ph -> ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1st ` k ) |` ( 1 ... M ) ) ) |
357 |
356
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1st ` k ) |` ( 1 ... M ) ) ) |
358 |
|
opeq2 |
|- ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 -> <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. = <. ( M + 1 ) , 0 >. ) |
359 |
358
|
sneqd |
|- ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 -> { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , 0 >. } ) |
360 |
|
uneq12 |
|- ( ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1st ` k ) |` ( 1 ... M ) ) /\ { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , 0 >. } ) -> ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
361 |
357 359 360
|
syl2an |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) -> ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
362 |
355 361
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
363 |
362
|
adantrr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
364 |
|
fnsnsplit |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) ) |
365 |
92 96 364
|
syl2anr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) ) |
366 |
365
|
adantr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) ) |
367 |
125
|
reseq2d |
|- ( ph -> ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) ) |
368 |
367
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) ) |
369 |
|
opeq2 |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. = <. ( M + 1 ) , ( M + 1 ) >. ) |
370 |
369
|
sneqd |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , ( M + 1 ) >. } ) |
371 |
|
uneq12 |
|- ( ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) /\ { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
372 |
368 370 371
|
syl2an |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
373 |
366 372
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
374 |
373
|
adantrl |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
375 |
363 374
|
opeq12d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
376 |
352 375
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
377 |
376
|
3adantr1 |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
378 |
|
fvex |
|- ( 1st ` k ) e. _V |
379 |
378
|
resex |
|- ( ( 1st ` k ) |` ( 1 ... M ) ) e. _V |
380 |
379 132
|
op1std |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( 1st ` t ) = ( ( 1st ` k ) |` ( 1 ... M ) ) ) |
381 |
379 132
|
op2ndd |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( 2nd ` t ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) ) |
382 |
381
|
imaeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 2nd ` t ) " ( 1 ... j ) ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) ) |
383 |
382
|
xpeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
384 |
381
|
imaeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) ) |
385 |
384
|
xpeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
386 |
383 385
|
uneq12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
387 |
380 386
|
oveq12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) ) |
388 |
387
|
uneq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
389 |
388
|
csbeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
390 |
389
|
eqeq2d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
391 |
390
|
rexbidv |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
392 |
391
|
ralbidv |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
393 |
380
|
uneq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
394 |
381
|
uneq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
395 |
393 394
|
opeq12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
396 |
395
|
eqeq2d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
397 |
392 396
|
anbi12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) ) |
398 |
397
|
rspcev |
|- ( ( <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) -> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
399 |
137 350 377 398
|
syl12anc |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
400 |
399
|
ex |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) ) |
401 |
|
elrabi |
|- ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -> t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
402 |
|
elrabi |
|- ( n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -> n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
403 |
401 402
|
anim12i |
|- ( ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } /\ n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) |
404 |
|
eqtr2 |
|- ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
405 |
22 24
|
opth |
|- ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
406 |
|
difeq1 |
|- ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) -> ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) ) |
407 |
|
difun2 |
|- ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) |
408 |
|
difun2 |
|- ( ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) |
409 |
406 407 408
|
3eqtr3g |
|- ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) -> ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) ) |
410 |
|
difeq1 |
|- ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
411 |
|
difun2 |
|- ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) |
412 |
|
difun2 |
|- ( ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) |
413 |
410 411 412
|
3eqtr3g |
|- ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
414 |
409 413
|
anim12i |
|- ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
415 |
405 414
|
sylbi |
|- ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
416 |
404 415
|
syl |
|- ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
417 |
|
elmapfn |
|- ( ( 1st ` t ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) -> ( 1st ` t ) Fn ( 1 ... M ) ) |
418 |
|
fnop |
|- ( ( ( 1st ` t ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , 0 >. e. ( 1st ` t ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
419 |
418
|
ex |
|- ( ( 1st ` t ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
420 |
9 417 419
|
3syl |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
421 |
420 122
|
nsyli |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` t ) ) ) |
422 |
421
|
impcom |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` t ) ) |
423 |
|
difsn |
|- ( -. <. ( M + 1 ) , 0 >. e. ( 1st ` t ) -> ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` t ) ) |
424 |
422 423
|
syl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` t ) ) |
425 |
|
xp1st |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 1st ` n ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
426 |
|
elmapfn |
|- ( ( 1st ` n ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) -> ( 1st ` n ) Fn ( 1 ... M ) ) |
427 |
|
fnop |
|- ( ( ( 1st ` n ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , 0 >. e. ( 1st ` n ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
428 |
427
|
ex |
|- ( ( 1st ` n ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
429 |
425 426 428
|
3syl |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
430 |
429 122
|
nsyli |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` n ) ) ) |
431 |
430
|
impcom |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` n ) ) |
432 |
|
difsn |
|- ( -. <. ( M + 1 ) , 0 >. e. ( 1st ` n ) -> ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` n ) ) |
433 |
431 432
|
syl |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` n ) ) |
434 |
424 433
|
eqeqan12d |
|- ( ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) /\ ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) <-> ( 1st ` t ) = ( 1st ` n ) ) ) |
435 |
434
|
anandis |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) <-> ( 1st ` t ) = ( 1st ` n ) ) ) |
436 |
|
f1ofn |
|- ( ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> ( 2nd ` t ) Fn ( 1 ... M ) ) |
437 |
|
fnop |
|- ( ( ( 2nd ` t ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
438 |
437
|
ex |
|- ( ( 2nd ` t ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
439 |
17 436 438
|
3syl |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
440 |
439 122
|
nsyli |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) ) ) |
441 |
440
|
impcom |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) ) |
442 |
|
difsn |
|- ( -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) -> ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` t ) ) |
443 |
441 442
|
syl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` t ) ) |
444 |
|
xp2nd |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` n ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) |
445 |
|
fvex |
|- ( 2nd ` n ) e. _V |
446 |
|
f1oeq1 |
|- ( f = ( 2nd ` n ) -> ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
447 |
445 446
|
elab |
|- ( ( 2nd ` n ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } <-> ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
448 |
444 447
|
sylib |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
449 |
|
f1ofn |
|- ( ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> ( 2nd ` n ) Fn ( 1 ... M ) ) |
450 |
|
fnop |
|- ( ( ( 2nd ` n ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
451 |
450
|
ex |
|- ( ( 2nd ` n ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
452 |
448 449 451
|
3syl |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
453 |
452 122
|
nsyli |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) ) ) |
454 |
453
|
impcom |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) ) |
455 |
|
difsn |
|- ( -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) -> ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` n ) ) |
456 |
454 455
|
syl |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` n ) ) |
457 |
443 456
|
eqeqan12d |
|- ( ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) /\ ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) <-> ( 2nd ` t ) = ( 2nd ` n ) ) ) |
458 |
457
|
anandis |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) <-> ( 2nd ` t ) = ( 2nd ` n ) ) ) |
459 |
435 458
|
anbi12d |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) <-> ( ( 1st ` t ) = ( 1st ` n ) /\ ( 2nd ` t ) = ( 2nd ` n ) ) ) ) |
460 |
|
xpopth |
|- ( ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( ( 1st ` t ) = ( 1st ` n ) /\ ( 2nd ` t ) = ( 2nd ` n ) ) <-> t = n ) ) |
461 |
460
|
adantl |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 1st ` t ) = ( 1st ` n ) /\ ( 2nd ` t ) = ( 2nd ` n ) ) <-> t = n ) ) |
462 |
459 461
|
bitrd |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) <-> t = n ) ) |
463 |
416 462
|
syl5ib |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
464 |
403 463
|
sylan2 |
|- ( ( ph /\ ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } /\ n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) -> ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
465 |
464
|
ralrimivva |
|- ( ph -> A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
466 |
465
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
467 |
400 466
|
jctird |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) ) |
468 |
|
fveq2 |
|- ( t = n -> ( 1st ` t ) = ( 1st ` n ) ) |
469 |
468
|
uneq1d |
|- ( t = n -> ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) ) |
470 |
|
fveq2 |
|- ( t = n -> ( 2nd ` t ) = ( 2nd ` n ) ) |
471 |
470
|
uneq1d |
|- ( t = n -> ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
472 |
469 471
|
opeq12d |
|- ( t = n -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
473 |
472
|
eqeq2d |
|- ( t = n -> ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
474 |
473
|
reu4 |
|- ( E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> ( E. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) |
475 |
58
|
rexrab |
|- ( E. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
476 |
475
|
anbi1i |
|- ( ( E. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) <-> ( E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) |
477 |
474 476
|
bitri |
|- ( E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> ( E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) |
478 |
467 477
|
syl6ibr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
479 |
478
|
ralrimiva |
|- ( ph -> A. k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
480 |
|
fveq2 |
|- ( s = k -> ( 1st ` s ) = ( 1st ` k ) ) |
481 |
|
fveq2 |
|- ( s = k -> ( 2nd ` s ) = ( 2nd ` k ) ) |
482 |
481
|
imaeq1d |
|- ( s = k -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
483 |
482
|
xpeq1d |
|- ( s = k -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) ) |
484 |
481
|
imaeq1d |
|- ( s = k -> ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
485 |
484
|
xpeq1d |
|- ( s = k -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |
486 |
483 485
|
uneq12d |
|- ( s = k -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) |
487 |
480 486
|
oveq12d |
|- ( s = k -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) ) |
488 |
487
|
uneq1d |
|- ( s = k -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
489 |
488
|
csbeq1d |
|- ( s = k -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
490 |
489
|
eqeq2d |
|- ( s = k -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
491 |
490
|
rexbidv |
|- ( s = k -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
492 |
491
|
ralbidv |
|- ( s = k -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
493 |
480
|
fveq1d |
|- ( s = k -> ( ( 1st ` s ) ` ( M + 1 ) ) = ( ( 1st ` k ) ` ( M + 1 ) ) ) |
494 |
493
|
eqeq1d |
|- ( s = k -> ( ( ( 1st ` s ) ` ( M + 1 ) ) = 0 <-> ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) ) |
495 |
481
|
fveq1d |
|- ( s = k -> ( ( 2nd ` s ) ` ( M + 1 ) ) = ( ( 2nd ` k ) ` ( M + 1 ) ) ) |
496 |
495
|
eqeq1d |
|- ( s = k -> ( ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) <-> ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) |
497 |
492 494 496
|
3anbi123d |
|- ( s = k -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
498 |
497
|
ralrab |
|- ( A. k e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> A. k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
499 |
479 498
|
sylibr |
|- ( ph -> A. k e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
500 |
|
eqid |
|- ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) = ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
501 |
500
|
f1ompt |
|- ( ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) : { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } <-> ( A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } /\ A. k e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
502 |
60 499 501
|
sylanbrc |
|- ( ph -> ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) : { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |
503 |
|
ovex |
|- ( ( 0 ..^ K ) ^m ( 1 ... M ) ) e. _V |
504 |
|
ovex |
|- ( ( 1 ... M ) ^m ( 1 ... M ) ) e. _V |
505 |
|
f1of |
|- ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> f : ( 1 ... M ) --> ( 1 ... M ) ) |
506 |
505
|
ss2abi |
|- { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } C_ { f | f : ( 1 ... M ) --> ( 1 ... M ) } |
507 |
68 68
|
mapval |
|- ( ( 1 ... M ) ^m ( 1 ... M ) ) = { f | f : ( 1 ... M ) --> ( 1 ... M ) } |
508 |
506 507
|
sseqtrri |
|- { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } C_ ( ( 1 ... M ) ^m ( 1 ... M ) ) |
509 |
504 508
|
ssexi |
|- { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } e. _V |
510 |
503 509
|
xpex |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) e. _V |
511 |
510
|
rabex |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. _V |
512 |
511
|
f1oen |
|- ( ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) : { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |
513 |
502 512
|
syl |
|- ( ph -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |