| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem4.1 |
|- ( ph -> K e. NN ) |
| 3 |
|
poimirlem4.2 |
|- ( ph -> M e. NN0 ) |
| 4 |
|
poimirlem4.3 |
|- ( ph -> M < N ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> N e. NN ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> K e. NN ) |
| 7 |
3
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> M e. NN0 ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> M < N ) |
| 9 |
|
xp1st |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 1st ` t ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
| 10 |
|
elmapi |
|- ( ( 1st ` t ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) -> ( 1st ` t ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
| 11 |
9 10
|
syl |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 1st ` t ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( 1st ` t ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
| 13 |
|
xp2nd |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` t ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) |
| 14 |
|
fvex |
|- ( 2nd ` t ) e. _V |
| 15 |
|
f1oeq1 |
|- ( f = ( 2nd ` t ) -> ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
| 16 |
14 15
|
elab |
|- ( ( 2nd ` t ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } <-> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 17 |
13 16
|
sylib |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 19 |
5 6 7 8 12 18
|
poimirlem3 |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) ) |
| 20 |
|
fvex |
|- ( 1st ` t ) e. _V |
| 21 |
|
snex |
|- { <. ( M + 1 ) , 0 >. } e. _V |
| 22 |
20 21
|
unex |
|- ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) e. _V |
| 23 |
|
snex |
|- { <. ( M + 1 ) , ( M + 1 ) >. } e. _V |
| 24 |
14 23
|
unex |
|- ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) e. _V |
| 25 |
22 24
|
op1std |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( 1st ` s ) = ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ) |
| 26 |
22 24
|
op2ndd |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( 2nd ` s ) = ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 27 |
26
|
imaeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) ) |
| 28 |
27
|
xpeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 29 |
26
|
imaeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 30 |
29
|
xpeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |
| 31 |
28 30
|
uneq12d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) |
| 32 |
25 31
|
oveq12d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) ) |
| 33 |
32
|
uneq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 34 |
33
|
csbeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 35 |
34
|
eqeq2d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 36 |
35
|
rexbidv |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 37 |
36
|
ralbidv |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 38 |
25
|
fveq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 1st ` s ) ` ( M + 1 ) ) = ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) ) |
| 39 |
38
|
eqeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 1st ` s ) ` ( M + 1 ) ) = 0 <-> ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 ) ) |
| 40 |
26
|
fveq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( 2nd ` s ) ` ( M + 1 ) ) = ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) ) |
| 41 |
40
|
eqeq1d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) <-> ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) |
| 42 |
37 39 41
|
3anbi123d |
|- ( s = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
| 43 |
42
|
elrab |
|- ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } <-> ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) oF + ( ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) ` ( M + 1 ) ) = 0 /\ ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
| 44 |
19 43
|
imbitrrdi |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) ) |
| 45 |
44
|
ralrimiva |
|- ( ph -> A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) ) |
| 46 |
|
fveq2 |
|- ( s = t -> ( 1st ` s ) = ( 1st ` t ) ) |
| 47 |
|
fveq2 |
|- ( s = t -> ( 2nd ` s ) = ( 2nd ` t ) ) |
| 48 |
47
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` t ) " ( 1 ... j ) ) ) |
| 49 |
48
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 50 |
47
|
imaeq1d |
|- ( s = t -> ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) = ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) ) |
| 51 |
50
|
xpeq1d |
|- ( s = t -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) = ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
| 52 |
49 51
|
uneq12d |
|- ( s = t -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
| 53 |
46 52
|
oveq12d |
|- ( s = t -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) = ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) ) |
| 54 |
53
|
uneq1d |
|- ( s = t -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
| 55 |
54
|
csbeq1d |
|- ( s = t -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 56 |
55
|
eqeq2d |
|- ( s = t -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 57 |
56
|
rexbidv |
|- ( s = t -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 58 |
57
|
ralbidv |
|- ( s = t -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 59 |
58
|
ralrab |
|- ( A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } <-> A. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) ) |
| 60 |
45 59
|
sylibr |
|- ( ph -> A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |
| 61 |
|
xp1st |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 1st ` k ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) ) |
| 62 |
|
elmapi |
|- ( ( 1st ` k ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) -> ( 1st ` k ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) |
| 63 |
61 62
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 1st ` k ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) ) |
| 64 |
|
fzssp1 |
|- ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) |
| 65 |
|
fssres |
|- ( ( ( 1st ` k ) : ( 1 ... ( M + 1 ) ) --> ( 0 ..^ K ) /\ ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
| 66 |
63 64 65
|
sylancl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
| 67 |
|
ovex |
|- ( 0 ..^ K ) e. _V |
| 68 |
|
ovex |
|- ( 1 ... M ) e. _V |
| 69 |
67 68
|
elmap |
|- ( ( ( 1st ` k ) |` ( 1 ... M ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) <-> ( ( 1st ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) --> ( 0 ..^ K ) ) |
| 70 |
66 69
|
sylibr |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
| 71 |
70
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
| 72 |
|
xp2nd |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) |
| 73 |
|
fvex |
|- ( 2nd ` k ) e. _V |
| 74 |
|
f1oeq1 |
|- ( f = ( 2nd ` k ) -> ( f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) <-> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) ) |
| 75 |
73 74
|
elab |
|- ( ( 2nd ` k ) e. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } <-> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) |
| 76 |
72 75
|
sylib |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) ) |
| 77 |
|
f1of1 |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-> ( 1 ... ( M + 1 ) ) ) |
| 78 |
76 77
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-> ( 1 ... ( M + 1 ) ) ) |
| 79 |
|
f1ores |
|- ( ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-> ( 1 ... ( M + 1 ) ) /\ ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
| 80 |
78 64 79
|
sylancl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
| 81 |
80
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
| 82 |
|
dff1o3 |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) <-> ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -onto-> ( 1 ... ( M + 1 ) ) /\ Fun `' ( 2nd ` k ) ) ) |
| 83 |
82
|
simprbi |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> Fun `' ( 2nd ` k ) ) |
| 84 |
|
imadif |
|- ( Fun `' ( 2nd ` k ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
| 85 |
76 83 84
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
| 86 |
85
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
| 87 |
|
f1ofo |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -onto-> ( 1 ... ( M + 1 ) ) ) |
| 88 |
|
foima |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -onto-> ( 1 ... ( M + 1 ) ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) ) |
| 89 |
76 87 88
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) ) |
| 90 |
89
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) ) |
| 91 |
|
f1ofn |
|- ( ( 2nd ` k ) : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) -> ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
| 92 |
76 91
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
| 93 |
|
nn0p1nn |
|- ( M e. NN0 -> ( M + 1 ) e. NN ) |
| 94 |
3 93
|
syl |
|- ( ph -> ( M + 1 ) e. NN ) |
| 95 |
|
elfz1end |
|- ( ( M + 1 ) e. NN <-> ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) |
| 96 |
94 95
|
sylib |
|- ( ph -> ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) |
| 97 |
|
fnsnfv |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) -> { ( ( 2nd ` k ) ` ( M + 1 ) ) } = ( ( 2nd ` k ) " { ( M + 1 ) } ) ) |
| 98 |
92 96 97
|
syl2anr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> { ( ( 2nd ` k ) ` ( M + 1 ) ) } = ( ( 2nd ` k ) " { ( M + 1 ) } ) ) |
| 99 |
|
sneq |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> { ( ( 2nd ` k ) ` ( M + 1 ) ) } = { ( M + 1 ) } ) |
| 100 |
98 99
|
sylan9req |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " { ( M + 1 ) } ) = { ( M + 1 ) } ) |
| 101 |
90 100
|
difeq12d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) = ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) |
| 102 |
86 101
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) |
| 103 |
|
1z |
|- 1 e. ZZ |
| 104 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 105 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 106 |
105
|
fveq2i |
|- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
| 107 |
104 106
|
eqtr4i |
|- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
| 108 |
3 107
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 109 |
|
fzsuc2 |
|- ( ( 1 e. ZZ /\ M e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
| 110 |
103 108 109
|
sylancr |
|- ( ph -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... M ) u. { ( M + 1 ) } ) ) |
| 111 |
110
|
difeq1d |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( ( ( 1 ... M ) u. { ( M + 1 ) } ) \ { ( M + 1 ) } ) ) |
| 112 |
|
difun2 |
|- ( ( ( 1 ... M ) u. { ( M + 1 ) } ) \ { ( M + 1 ) } ) = ( ( 1 ... M ) \ { ( M + 1 ) } ) |
| 113 |
111 112
|
eqtrdi |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( ( 1 ... M ) \ { ( M + 1 ) } ) ) |
| 114 |
3
|
nn0red |
|- ( ph -> M e. RR ) |
| 115 |
|
ltp1 |
|- ( M e. RR -> M < ( M + 1 ) ) |
| 116 |
|
peano2re |
|- ( M e. RR -> ( M + 1 ) e. RR ) |
| 117 |
|
ltnle |
|- ( ( M e. RR /\ ( M + 1 ) e. RR ) -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) |
| 118 |
116 117
|
mpdan |
|- ( M e. RR -> ( M < ( M + 1 ) <-> -. ( M + 1 ) <_ M ) ) |
| 119 |
115 118
|
mpbid |
|- ( M e. RR -> -. ( M + 1 ) <_ M ) |
| 120 |
114 119
|
syl |
|- ( ph -> -. ( M + 1 ) <_ M ) |
| 121 |
|
elfzle2 |
|- ( ( M + 1 ) e. ( 1 ... M ) -> ( M + 1 ) <_ M ) |
| 122 |
120 121
|
nsyl |
|- ( ph -> -. ( M + 1 ) e. ( 1 ... M ) ) |
| 123 |
|
difsn |
|- ( -. ( M + 1 ) e. ( 1 ... M ) -> ( ( 1 ... M ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
| 124 |
122 123
|
syl |
|- ( ph -> ( ( 1 ... M ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
| 125 |
113 124
|
eqtrd |
|- ( ph -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
| 126 |
125
|
imaeq2d |
|- ( ph -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
| 127 |
126
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( 1 ... M ) ) ) |
| 128 |
125
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
| 129 |
102 127 128
|
3eqtr3d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( 1 ... M ) ) = ( 1 ... M ) ) |
| 130 |
129
|
f1oeq3d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( ( 2nd ` k ) " ( 1 ... M ) ) <-> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
| 131 |
81 130
|
mpbid |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 132 |
73
|
resex |
|- ( ( 2nd ` k ) |` ( 1 ... M ) ) e. _V |
| 133 |
|
f1oeq1 |
|- ( f = ( ( 2nd ` k ) |` ( 1 ... M ) ) -> ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
| 134 |
132 133
|
elab |
|- ( ( ( 2nd ` k ) |` ( 1 ... M ) ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } <-> ( ( 2nd ` k ) |` ( 1 ... M ) ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 135 |
131 134
|
sylibr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) |` ( 1 ... M ) ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) |
| 136 |
71 135
|
opelxpd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
| 137 |
136
|
3ad2antr3 |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
| 138 |
|
3anass |
|- ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
| 139 |
138
|
biancomi |
|- ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 140 |
94
|
nnzd |
|- ( ph -> ( M + 1 ) e. ZZ ) |
| 141 |
|
uzid |
|- ( ( M + 1 ) e. ZZ -> ( M + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 142 |
|
peano2uz |
|- ( ( M + 1 ) e. ( ZZ>= ` ( M + 1 ) ) -> ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 143 |
140 141 142
|
3syl |
|- ( ph -> ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) ) |
| 144 |
3
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 145 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 146 |
|
zltp1le |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
| 147 |
|
peano2z |
|- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
| 148 |
|
eluz |
|- ( ( ( M + 1 ) e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) <-> ( M + 1 ) <_ N ) ) |
| 149 |
147 148
|
sylan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N e. ( ZZ>= ` ( M + 1 ) ) <-> ( M + 1 ) <_ N ) ) |
| 150 |
146 149
|
bitr4d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 151 |
144 145 150
|
syl2anc |
|- ( ph -> ( M < N <-> N e. ( ZZ>= ` ( M + 1 ) ) ) ) |
| 152 |
4 151
|
mpbid |
|- ( ph -> N e. ( ZZ>= ` ( M + 1 ) ) ) |
| 153 |
|
fzsplit2 |
|- ( ( ( ( M + 1 ) + 1 ) e. ( ZZ>= ` ( M + 1 ) ) /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> ( ( M + 1 ) ... N ) = ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 154 |
143 152 153
|
syl2anc |
|- ( ph -> ( ( M + 1 ) ... N ) = ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 155 |
|
fzsn |
|- ( ( M + 1 ) e. ZZ -> ( ( M + 1 ) ... ( M + 1 ) ) = { ( M + 1 ) } ) |
| 156 |
140 155
|
syl |
|- ( ph -> ( ( M + 1 ) ... ( M + 1 ) ) = { ( M + 1 ) } ) |
| 157 |
156
|
uneq1d |
|- ( ph -> ( ( ( M + 1 ) ... ( M + 1 ) ) u. ( ( ( M + 1 ) + 1 ) ... N ) ) = ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 158 |
154 157
|
eqtrd |
|- ( ph -> ( ( M + 1 ) ... N ) = ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) ) |
| 159 |
158
|
xpeq1d |
|- ( ph -> ( ( ( M + 1 ) ... N ) X. { 0 } ) = ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
| 160 |
159
|
uneq2d |
|- ( ph -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 161 |
|
xpundir |
|- ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( { ( M + 1 ) } X. { 0 } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
| 162 |
|
ovex |
|- ( M + 1 ) e. _V |
| 163 |
|
c0ex |
|- 0 e. _V |
| 164 |
162 163
|
xpsn |
|- ( { ( M + 1 ) } X. { 0 } ) = { <. ( M + 1 ) , 0 >. } |
| 165 |
164
|
uneq1i |
|- ( ( { ( M + 1 ) } X. { 0 } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
| 166 |
161 165
|
eqtri |
|- ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
| 167 |
166
|
uneq2i |
|- ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 168 |
|
unass |
|- ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( { <. ( M + 1 ) , 0 >. } u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 169 |
167 168
|
eqtr4i |
|- ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( { ( M + 1 ) } u. ( ( ( M + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) |
| 170 |
160 169
|
eqtrdi |
|- ( ph -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 171 |
170
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 172 |
162
|
a1i |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( M + 1 ) e. _V ) |
| 173 |
163
|
a1i |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> 0 e. _V ) |
| 174 |
110
|
eqcomd |
|- ( ph -> ( ( 1 ... M ) u. { ( M + 1 ) } ) = ( 1 ... ( M + 1 ) ) ) |
| 175 |
174
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... M ) u. { ( M + 1 ) } ) = ( 1 ... ( M + 1 ) ) ) |
| 176 |
|
fveq2 |
|- ( n = ( M + 1 ) -> ( ( 1st ` k ) ` n ) = ( ( 1st ` k ) ` ( M + 1 ) ) ) |
| 177 |
|
fveq2 |
|- ( n = ( M + 1 ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) |
| 178 |
176 177
|
oveq12d |
|- ( n = ( M + 1 ) -> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` k ) ` ( M + 1 ) ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) ) |
| 179 |
|
simplrl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) |
| 180 |
|
imain |
|- ( Fun `' ( 2nd ` k ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
| 181 |
76 83 180
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
| 182 |
181
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
| 183 |
|
elfznn0 |
|- ( j e. ( 0 ... M ) -> j e. NN0 ) |
| 184 |
183
|
nn0red |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
| 185 |
184
|
ltp1d |
|- ( j e. ( 0 ... M ) -> j < ( j + 1 ) ) |
| 186 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) = (/) ) |
| 187 |
185 186
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) = (/) ) |
| 188 |
187
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( 2nd ` k ) " (/) ) ) |
| 189 |
|
ima0 |
|- ( ( 2nd ` k ) " (/) ) = (/) |
| 190 |
188 189
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
| 191 |
182 190
|
sylan9req |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
| 192 |
|
simplr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) |
| 193 |
92
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
| 194 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
| 195 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 196 |
194 195
|
eleqtrdi |
|- ( j e. NN0 -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 197 |
|
fzss1 |
|- ( ( j + 1 ) e. ( ZZ>= ` 1 ) -> ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) ) |
| 198 |
183 196 197
|
3syl |
|- ( j e. ( 0 ... M ) -> ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) ) |
| 199 |
|
elfzuz3 |
|- ( j e. ( 0 ... M ) -> M e. ( ZZ>= ` j ) ) |
| 200 |
|
eluzp1p1 |
|- ( M e. ( ZZ>= ` j ) -> ( M + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
| 201 |
|
eluzfz2 |
|- ( ( M + 1 ) e. ( ZZ>= ` ( j + 1 ) ) -> ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) |
| 202 |
199 200 201
|
3syl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) |
| 203 |
198 202
|
jca |
|- ( j e. ( 0 ... M ) -> ( ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 204 |
|
fnfvima |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 205 |
204
|
3expb |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( ( ( j + 1 ) ... ( M + 1 ) ) C_ ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( ( j + 1 ) ... ( M + 1 ) ) ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 206 |
193 203 205
|
syl2an |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) ` ( M + 1 ) ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 207 |
192 206
|
eqeltrrd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 208 |
|
1ex |
|- 1 e. _V |
| 209 |
|
fnconstg |
|- ( 1 e. _V -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
| 210 |
208 209
|
ax-mp |
|- ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) |
| 211 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 212 |
163 211
|
ax-mp |
|- ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) |
| 213 |
|
fvun2 |
|- ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) /\ ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) /\ ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
| 214 |
210 212 213
|
mp3an12 |
|- ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) /\ ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
| 215 |
191 207 214
|
syl2anc |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) ) |
| 216 |
163
|
fvconst2 |
|- ( ( M + 1 ) e. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) -> ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) = 0 ) |
| 217 |
207 216
|
syl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ` ( M + 1 ) ) = 0 ) |
| 218 |
215 217
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = 0 ) |
| 219 |
218
|
adantlrl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) = 0 ) |
| 220 |
179 219
|
oveq12d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) ` ( M + 1 ) ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) = ( 0 + 0 ) ) |
| 221 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 222 |
220 221
|
eqtrdi |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) ` ( M + 1 ) ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` ( M + 1 ) ) ) = 0 ) |
| 223 |
178 222
|
sylan9eqr |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) /\ n = ( M + 1 ) ) -> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) = 0 ) |
| 224 |
172 173 175 223
|
fmptapd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) = ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
| 225 |
224
|
uneq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. { <. ( M + 1 ) , 0 >. } ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 226 |
171 225
|
eqtrd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 227 |
|
elmapfn |
|- ( ( 1st ` k ) e. ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) -> ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
| 228 |
61 227
|
syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
| 229 |
|
fnssres |
|- ( ( ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( 1 ... M ) C_ ( 1 ... ( M + 1 ) ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) Fn ( 1 ... M ) ) |
| 230 |
228 64 229
|
sylancl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) Fn ( 1 ... M ) ) |
| 231 |
230
|
ad3antlr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1st ` k ) |` ( 1 ... M ) ) Fn ( 1 ... M ) ) |
| 232 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
| 233 |
163 232
|
ax-mp |
|- ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) |
| 234 |
210 233
|
pm3.2i |
|- ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
| 235 |
|
imain |
|- ( Fun `' ( 2nd ` k ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
| 236 |
76 83 235
|
3syl |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
| 237 |
|
fzdisj |
|- ( j < ( j + 1 ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) = (/) ) |
| 238 |
185 237
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) = (/) ) |
| 239 |
238
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = ( ( 2nd ` k ) " (/) ) ) |
| 240 |
239 189
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( 1 ... j ) i^i ( ( j + 1 ) ... M ) ) ) = (/) ) |
| 241 |
236 240
|
sylan9req |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) = (/) ) |
| 242 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) /\ ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) = (/) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
| 243 |
234 241 242
|
sylancr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
| 244 |
243
|
ad4ant24 |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
| 245 |
101
|
adantr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) = ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) |
| 246 |
85
|
ad3antlr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
| 247 |
183 194
|
syl |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. NN ) |
| 248 |
247 195
|
eleqtrdi |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 249 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ M e. ( ZZ>= ` j ) ) -> ( 1 ... M ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
| 250 |
248 199 249
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( 1 ... M ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
| 251 |
128 250
|
sylan9eq |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) |
| 252 |
251
|
imaeq2d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 2nd ` k ) " ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) ) |
| 253 |
246 252
|
eqtr3d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) \ ( ( 2nd ` k ) " { ( M + 1 ) } ) ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) ) |
| 254 |
125
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) = ( 1 ... M ) ) |
| 255 |
245 253 254
|
3eqtr3rd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( 1 ... M ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) ) |
| 256 |
|
imaundi |
|- ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... M ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
| 257 |
255 256
|
eqtrdi |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( 1 ... M ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) |
| 258 |
257
|
fneq2d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) <-> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) ) ) |
| 259 |
244 258
|
mpbird |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) |
| 260 |
|
fzss2 |
|- ( M e. ( ZZ>= ` j ) -> ( 1 ... j ) C_ ( 1 ... M ) ) |
| 261 |
|
resima2 |
|- ( ( 1 ... j ) C_ ( 1 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) = ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
| 262 |
199 260 261
|
3syl |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) = ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
| 263 |
262
|
xpeq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 264 |
183 196
|
syl |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
| 265 |
|
fzss1 |
|- ( ( j + 1 ) e. ( ZZ>= ` 1 ) -> ( ( j + 1 ) ... M ) C_ ( 1 ... M ) ) |
| 266 |
|
resima2 |
|- ( ( ( j + 1 ) ... M ) C_ ( 1 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) = ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
| 267 |
264 265 266
|
3syl |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) = ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) ) |
| 268 |
267
|
xpeq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
| 269 |
263 268
|
uneq12d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
| 270 |
269
|
adantl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
| 271 |
270
|
fneq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) <-> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) ) |
| 272 |
259 271
|
mpbird |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) ) |
| 273 |
|
fzfid |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( 1 ... M ) e. Fin ) |
| 274 |
|
inidm |
|- ( ( 1 ... M ) i^i ( 1 ... M ) ) = ( 1 ... M ) |
| 275 |
|
fvres |
|- ( n e. ( 1 ... M ) -> ( ( ( 1st ` k ) |` ( 1 ... M ) ) ` n ) = ( ( 1st ` k ) ` n ) ) |
| 276 |
275
|
adantl |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( 1st ` k ) |` ( 1 ... M ) ) ` n ) = ( ( 1st ` k ) ` n ) ) |
| 277 |
|
disjsn |
|- ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) <-> -. ( M + 1 ) e. ( 1 ... M ) ) |
| 278 |
122 277
|
sylibr |
|- ( ph -> ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) |
| 279 |
278
|
ad3antrrr |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) |
| 280 |
259 279
|
jca |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) ) |
| 281 |
|
fnconstg |
|- ( 0 e. _V -> ( { ( M + 1 ) } X. { 0 } ) Fn { ( M + 1 ) } ) |
| 282 |
163 281
|
ax-mp |
|- ( { ( M + 1 ) } X. { 0 } ) Fn { ( M + 1 ) } |
| 283 |
|
fvun1 |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( { ( M + 1 ) } X. { 0 } ) Fn { ( M + 1 ) } /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ n e. ( 1 ... M ) ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
| 284 |
282 283
|
mp3an2 |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) /\ n e. ( 1 ... M ) ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
| 285 |
284
|
anassrs |
|- ( ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) Fn ( 1 ... M ) /\ ( ( 1 ... M ) i^i { ( M + 1 ) } ) = (/) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
| 286 |
280 285
|
sylan |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
| 287 |
247
|
nnzd |
|- ( j e. ( 0 ... M ) -> ( j + 1 ) e. ZZ ) |
| 288 |
183
|
nn0cnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
| 289 |
|
pncan1 |
|- ( j e. CC -> ( ( j + 1 ) - 1 ) = j ) |
| 290 |
288 289
|
syl |
|- ( j e. ( 0 ... M ) -> ( ( j + 1 ) - 1 ) = j ) |
| 291 |
290
|
fveq2d |
|- ( j e. ( 0 ... M ) -> ( ZZ>= ` ( ( j + 1 ) - 1 ) ) = ( ZZ>= ` j ) ) |
| 292 |
199 291
|
eleqtrrd |
|- ( j e. ( 0 ... M ) -> M e. ( ZZ>= ` ( ( j + 1 ) - 1 ) ) ) |
| 293 |
|
fzsuc2 |
|- ( ( ( j + 1 ) e. ZZ /\ M e. ( ZZ>= ` ( ( j + 1 ) - 1 ) ) ) -> ( ( j + 1 ) ... ( M + 1 ) ) = ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) |
| 294 |
287 292 293
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( ( j + 1 ) ... ( M + 1 ) ) = ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) |
| 295 |
294
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( 2nd ` k ) " ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) ) |
| 296 |
|
imaundi |
|- ( ( 2nd ` k ) " ( ( ( j + 1 ) ... M ) u. { ( M + 1 ) } ) ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) |
| 297 |
295 296
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) ) |
| 298 |
297
|
xpeq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) X. { 0 } ) ) |
| 299 |
|
xpundir |
|- ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) u. ( ( 2nd ` k ) " { ( M + 1 ) } ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) |
| 300 |
298 299
|
eqtrdi |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
| 301 |
300
|
uneq2d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) ) |
| 302 |
|
unass |
|- ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
| 303 |
301 302
|
eqtr4di |
|- ( j e. ( 0 ... M ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
| 304 |
303
|
adantl |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
| 305 |
98
|
xpeq1d |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) = ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) |
| 306 |
305
|
uneq2d |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
| 307 |
306
|
adantr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( ( ( 2nd ` k ) " { ( M + 1 ) } ) X. { 0 } ) ) ) |
| 308 |
304 307
|
eqtr4d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) ) |
| 309 |
99
|
xpeq1d |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) = ( { ( M + 1 ) } X. { 0 } ) ) |
| 310 |
309
|
uneq2d |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` k ) ` ( M + 1 ) ) } X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ) |
| 311 |
308 310
|
sylan9eq |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ j e. ( 0 ... M ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ) |
| 312 |
311
|
an32s |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ) |
| 313 |
312
|
fveq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) ) |
| 314 |
313
|
adantr |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) u. ( { ( M + 1 ) } X. { 0 } ) ) ` n ) ) |
| 315 |
269
|
fveq1d |
|- ( j e. ( 0 ... M ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
| 316 |
315
|
ad2antlr |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) ) |
| 317 |
286 314 316
|
3eqtr4rd |
|- ( ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... M ) ) -> ( ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) |
| 318 |
231 272 273 273 274 276 317
|
offval |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
| 319 |
318
|
uneq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
| 320 |
319
|
adantlrl |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... M ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
| 321 |
228
|
adantr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) ) |
| 322 |
210 212
|
pm3.2i |
|- ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 323 |
181 190
|
sylan9req |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) |
| 324 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) Fn ( ( 2nd ` k ) " ( 1 ... j ) ) /\ ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) /\ ( ( ( 2nd ` k ) " ( 1 ... j ) ) i^i ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = (/) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
| 325 |
322 323 324
|
sylancr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
| 326 |
|
peano2uz |
|- ( M e. ( ZZ>= ` j ) -> ( M + 1 ) e. ( ZZ>= ` j ) ) |
| 327 |
199 326
|
syl |
|- ( j e. ( 0 ... M ) -> ( M + 1 ) e. ( ZZ>= ` j ) ) |
| 328 |
|
fzsplit2 |
|- ( ( ( j + 1 ) e. ( ZZ>= ` 1 ) /\ ( M + 1 ) e. ( ZZ>= ` j ) ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 329 |
264 327 328
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( 1 ... ( M + 1 ) ) = ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 330 |
329
|
imaeq2d |
|- ( j e. ( 0 ... M ) -> ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) = ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) ) |
| 331 |
|
imaundi |
|- ( ( 2nd ` k ) " ( ( 1 ... j ) u. ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 332 |
330 331
|
eqtr2di |
|- ( j e. ( 0 ... M ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( ( 2nd ` k ) " ( 1 ... ( M + 1 ) ) ) ) |
| 333 |
332 89
|
sylan9eqr |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) = ( 1 ... ( M + 1 ) ) ) |
| 334 |
333
|
fneq2d |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` k ) " ( 1 ... j ) ) u. ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) <-> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( 1 ... ( M + 1 ) ) ) ) |
| 335 |
325 334
|
mpbid |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) Fn ( 1 ... ( M + 1 ) ) ) |
| 336 |
|
fzfid |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( 1 ... ( M + 1 ) ) e. Fin ) |
| 337 |
|
inidm |
|- ( ( 1 ... ( M + 1 ) ) i^i ( 1 ... ( M + 1 ) ) ) = ( 1 ... ( M + 1 ) ) |
| 338 |
|
eqidd |
|- ( ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... ( M + 1 ) ) ) -> ( ( 1st ` k ) ` n ) = ( ( 1st ` k ) ` n ) ) |
| 339 |
|
eqidd |
|- ( ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) /\ n e. ( 1 ... ( M + 1 ) ) ) -> ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) |
| 340 |
321 335 336 336 337 338 339
|
offval |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) ) |
| 341 |
340
|
uneq1d |
|- ( ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 342 |
341
|
ad4ant24 |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( n e. ( 1 ... ( M + 1 ) ) |-> ( ( ( 1st ` k ) ` n ) + ( ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ` n ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 343 |
226 320 342
|
3eqtr4rd |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
| 344 |
343
|
csbeq1d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 345 |
344
|
eqeq2d |
|- ( ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) /\ j e. ( 0 ... M ) ) -> ( i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 346 |
345
|
rexbidva |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 347 |
346
|
ralbidv |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 348 |
347
|
biimpd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B -> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 349 |
348
|
impr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) /\ A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) -> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 350 |
139 349
|
sylan2b |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 351 |
|
1st2nd2 |
|- ( k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
| 352 |
351
|
ad2antlr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> k = <. ( 1st ` k ) , ( 2nd ` k ) >. ) |
| 353 |
|
fnsnsplit |
|- ( ( ( 1st ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) ) |
| 354 |
228 96 353
|
syl2anr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) ) |
| 355 |
354
|
adantr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) ) |
| 356 |
125
|
reseq2d |
|- ( ph -> ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1st ` k ) |` ( 1 ... M ) ) ) |
| 357 |
356
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1st ` k ) |` ( 1 ... M ) ) ) |
| 358 |
|
opeq2 |
|- ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 -> <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. = <. ( M + 1 ) , 0 >. ) |
| 359 |
358
|
sneqd |
|- ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 -> { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , 0 >. } ) |
| 360 |
|
uneq12 |
|- ( ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 1st ` k ) |` ( 1 ... M ) ) /\ { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , 0 >. } ) -> ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
| 361 |
357 359 360
|
syl2an |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) -> ( ( ( 1st ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 1st ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
| 362 |
355 361
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
| 363 |
362
|
adantrr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( 1st ` k ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
| 364 |
|
fnsnsplit |
|- ( ( ( 2nd ` k ) Fn ( 1 ... ( M + 1 ) ) /\ ( M + 1 ) e. ( 1 ... ( M + 1 ) ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) ) |
| 365 |
92 96 364
|
syl2anr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) ) |
| 366 |
365
|
adantr |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) ) |
| 367 |
125
|
reseq2d |
|- ( ph -> ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) ) |
| 368 |
367
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) ) |
| 369 |
|
opeq2 |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. = <. ( M + 1 ) , ( M + 1 ) >. ) |
| 370 |
369
|
sneqd |
|- ( ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) -> { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , ( M + 1 ) >. } ) |
| 371 |
|
uneq12 |
|- ( ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) /\ { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } = { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 372 |
368 370 371
|
syl2an |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( ( ( 2nd ` k ) |` ( ( 1 ... ( M + 1 ) ) \ { ( M + 1 ) } ) ) u. { <. ( M + 1 ) , ( ( 2nd ` k ) ` ( M + 1 ) ) >. } ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 373 |
366 372
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 374 |
373
|
adantrl |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> ( 2nd ` k ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 375 |
363 374
|
opeq12d |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> <. ( 1st ` k ) , ( 2nd ` k ) >. = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 376 |
352 375
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 377 |
376
|
3adantr1 |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 378 |
|
fvex |
|- ( 1st ` k ) e. _V |
| 379 |
378
|
resex |
|- ( ( 1st ` k ) |` ( 1 ... M ) ) e. _V |
| 380 |
379 132
|
op1std |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( 1st ` t ) = ( ( 1st ` k ) |` ( 1 ... M ) ) ) |
| 381 |
379 132
|
op2ndd |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( 2nd ` t ) = ( ( 2nd ` k ) |` ( 1 ... M ) ) ) |
| 382 |
381
|
imaeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 2nd ` t ) " ( 1 ... j ) ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) ) |
| 383 |
382
|
xpeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 384 |
381
|
imaeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) ) |
| 385 |
384
|
xpeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) = ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) |
| 386 |
383 385
|
uneq12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) |
| 387 |
380 386
|
oveq12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) ) |
| 388 |
387
|
uneq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) = ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) ) |
| 389 |
388
|
csbeq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 390 |
389
|
eqeq2d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 391 |
390
|
rexbidv |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 392 |
391
|
ralbidv |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 393 |
380
|
uneq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) ) |
| 394 |
381
|
uneq1d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 395 |
393 394
|
opeq12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 396 |
395
|
eqeq2d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 397 |
392 396
|
anbi12d |
|- ( t = <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) ) |
| 398 |
397
|
rspcev |
|- ( ( <. ( ( 1st ` k ) |` ( 1 ... M ) ) , ( ( 2nd ` k ) |` ( 1 ... M ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( ( 1st ` k ) |` ( 1 ... M ) ) oF + ( ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` k ) |` ( 1 ... M ) ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( ( 1st ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( ( 2nd ` k ) |` ( 1 ... M ) ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) -> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 399 |
137 350 377 398
|
syl12anc |
|- ( ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) /\ ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) -> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 400 |
399
|
ex |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) ) |
| 401 |
|
elrabi |
|- ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -> t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
| 402 |
|
elrabi |
|- ( n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -> n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) |
| 403 |
401 402
|
anim12i |
|- ( ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } /\ n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) -> ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) |
| 404 |
|
eqtr2 |
|- ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 405 |
22 24
|
opth |
|- ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
| 406 |
|
difeq1 |
|- ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) -> ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) ) |
| 407 |
|
difun2 |
|- ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) |
| 408 |
|
difun2 |
|- ( ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) |
| 409 |
406 407 408
|
3eqtr3g |
|- ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) -> ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) ) |
| 410 |
|
difeq1 |
|- ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 411 |
|
difun2 |
|- ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) |
| 412 |
|
difun2 |
|- ( ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) |
| 413 |
410 411 412
|
3eqtr3g |
|- ( ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) -> ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 414 |
409 413
|
anim12i |
|- ( ( ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
| 415 |
405 414
|
sylbi |
|- ( <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
| 416 |
404 415
|
syl |
|- ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) ) |
| 417 |
|
elmapfn |
|- ( ( 1st ` t ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) -> ( 1st ` t ) Fn ( 1 ... M ) ) |
| 418 |
|
fnop |
|- ( ( ( 1st ` t ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , 0 >. e. ( 1st ` t ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
| 419 |
418
|
ex |
|- ( ( 1st ` t ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 420 |
9 417 419
|
3syl |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 421 |
420 122
|
nsyli |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` t ) ) ) |
| 422 |
421
|
impcom |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` t ) ) |
| 423 |
|
difsn |
|- ( -. <. ( M + 1 ) , 0 >. e. ( 1st ` t ) -> ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` t ) ) |
| 424 |
422 423
|
syl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` t ) ) |
| 425 |
|
xp1st |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 1st ` n ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) ) |
| 426 |
|
elmapfn |
|- ( ( 1st ` n ) e. ( ( 0 ..^ K ) ^m ( 1 ... M ) ) -> ( 1st ` n ) Fn ( 1 ... M ) ) |
| 427 |
|
fnop |
|- ( ( ( 1st ` n ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , 0 >. e. ( 1st ` n ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
| 428 |
427
|
ex |
|- ( ( 1st ` n ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 429 |
425 426 428
|
3syl |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , 0 >. e. ( 1st ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 430 |
429 122
|
nsyli |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` n ) ) ) |
| 431 |
430
|
impcom |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , 0 >. e. ( 1st ` n ) ) |
| 432 |
|
difsn |
|- ( -. <. ( M + 1 ) , 0 >. e. ( 1st ` n ) -> ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` n ) ) |
| 433 |
431 432
|
syl |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) = ( 1st ` n ) ) |
| 434 |
424 433
|
eqeqan12d |
|- ( ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) /\ ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) <-> ( 1st ` t ) = ( 1st ` n ) ) ) |
| 435 |
434
|
anandis |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) <-> ( 1st ` t ) = ( 1st ` n ) ) ) |
| 436 |
|
f1ofn |
|- ( ( 2nd ` t ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> ( 2nd ` t ) Fn ( 1 ... M ) ) |
| 437 |
|
fnop |
|- ( ( ( 2nd ` t ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
| 438 |
437
|
ex |
|- ( ( 2nd ` t ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 439 |
17 436 438
|
3syl |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 440 |
439 122
|
nsyli |
|- ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) ) ) |
| 441 |
440
|
impcom |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) ) |
| 442 |
|
difsn |
|- ( -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` t ) -> ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` t ) ) |
| 443 |
441 442
|
syl |
|- ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` t ) ) |
| 444 |
|
xp2nd |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` n ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) |
| 445 |
|
fvex |
|- ( 2nd ` n ) e. _V |
| 446 |
|
f1oeq1 |
|- ( f = ( 2nd ` n ) -> ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) <-> ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) ) |
| 447 |
445 446
|
elab |
|- ( ( 2nd ` n ) e. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } <-> ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 448 |
444 447
|
sylib |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) ) |
| 449 |
|
f1ofn |
|- ( ( 2nd ` n ) : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> ( 2nd ` n ) Fn ( 1 ... M ) ) |
| 450 |
|
fnop |
|- ( ( ( 2nd ` n ) Fn ( 1 ... M ) /\ <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) ) -> ( M + 1 ) e. ( 1 ... M ) ) |
| 451 |
450
|
ex |
|- ( ( 2nd ` n ) Fn ( 1 ... M ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 452 |
448 449 451
|
3syl |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) -> ( M + 1 ) e. ( 1 ... M ) ) ) |
| 453 |
452 122
|
nsyli |
|- ( n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) -> ( ph -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) ) ) |
| 454 |
453
|
impcom |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) ) |
| 455 |
|
difsn |
|- ( -. <. ( M + 1 ) , ( M + 1 ) >. e. ( 2nd ` n ) -> ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` n ) ) |
| 456 |
454 455
|
syl |
|- ( ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( 2nd ` n ) ) |
| 457 |
443 456
|
eqeqan12d |
|- ( ( ( ph /\ t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) /\ ( ph /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) <-> ( 2nd ` t ) = ( 2nd ` n ) ) ) |
| 458 |
457
|
anandis |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) <-> ( 2nd ` t ) = ( 2nd ` n ) ) ) |
| 459 |
435 458
|
anbi12d |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) <-> ( ( 1st ` t ) = ( 1st ` n ) /\ ( 2nd ` t ) = ( 2nd ` n ) ) ) ) |
| 460 |
|
xpopth |
|- ( ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) -> ( ( ( 1st ` t ) = ( 1st ` n ) /\ ( 2nd ` t ) = ( 2nd ` n ) ) <-> t = n ) ) |
| 461 |
460
|
adantl |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( 1st ` t ) = ( 1st ` n ) /\ ( 2nd ` t ) = ( 2nd ` n ) ) <-> t = n ) ) |
| 462 |
459 461
|
bitrd |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( ( ( 1st ` t ) \ { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) \ { <. ( M + 1 ) , 0 >. } ) /\ ( ( 2nd ` t ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) \ { <. ( M + 1 ) , ( M + 1 ) >. } ) ) <-> t = n ) ) |
| 463 |
416 462
|
imbitrid |
|- ( ( ph /\ ( t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) /\ n e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ) ) -> ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
| 464 |
403 463
|
sylan2 |
|- ( ( ph /\ ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } /\ n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ) ) -> ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
| 465 |
464
|
ralrimivva |
|- ( ph -> A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
| 466 |
465
|
adantr |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) |
| 467 |
400 466
|
jctird |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> ( E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) ) |
| 468 |
|
fveq2 |
|- ( t = n -> ( 1st ` t ) = ( 1st ` n ) ) |
| 469 |
468
|
uneq1d |
|- ( t = n -> ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) = ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) ) |
| 470 |
|
fveq2 |
|- ( t = n -> ( 2nd ` t ) = ( 2nd ` n ) ) |
| 471 |
470
|
uneq1d |
|- ( t = n -> ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) = ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) ) |
| 472 |
469 471
|
opeq12d |
|- ( t = n -> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 473 |
472
|
eqeq2d |
|- ( t = n -> ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 474 |
473
|
reu4 |
|- ( E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> ( E. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) |
| 475 |
58
|
rexrab |
|- ( E. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 476 |
475
|
anbi1i |
|- ( ( E. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) <-> ( E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) |
| 477 |
474 476
|
bitri |
|- ( E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> ( E. t e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` t ) oF + ( ( ( ( 2nd ` t ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` t ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) /\ A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } A. n e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ( ( k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. /\ k = <. ( ( 1st ` n ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` n ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) -> t = n ) ) ) |
| 478 |
467 477
|
imbitrrdi |
|- ( ( ph /\ k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ) -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 479 |
478
|
ralrimiva |
|- ( ph -> A. k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 480 |
|
fveq2 |
|- ( s = k -> ( 1st ` s ) = ( 1st ` k ) ) |
| 481 |
|
fveq2 |
|- ( s = k -> ( 2nd ` s ) = ( 2nd ` k ) ) |
| 482 |
481
|
imaeq1d |
|- ( s = k -> ( ( 2nd ` s ) " ( 1 ... j ) ) = ( ( 2nd ` k ) " ( 1 ... j ) ) ) |
| 483 |
482
|
xpeq1d |
|- ( s = k -> ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 484 |
481
|
imaeq1d |
|- ( s = k -> ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) = ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) ) |
| 485 |
484
|
xpeq1d |
|- ( s = k -> ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) = ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) |
| 486 |
483 485
|
uneq12d |
|- ( s = k -> ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) |
| 487 |
480 486
|
oveq12d |
|- ( s = k -> ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) = ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) ) |
| 488 |
487
|
uneq1d |
|- ( s = k -> ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) = ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) ) |
| 489 |
488
|
csbeq1d |
|- ( s = k -> [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) |
| 490 |
489
|
eqeq2d |
|- ( s = k -> ( i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 491 |
490
|
rexbidv |
|- ( s = k -> ( E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 492 |
491
|
ralbidv |
|- ( s = k -> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B <-> A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B ) ) |
| 493 |
480
|
fveq1d |
|- ( s = k -> ( ( 1st ` s ) ` ( M + 1 ) ) = ( ( 1st ` k ) ` ( M + 1 ) ) ) |
| 494 |
493
|
eqeq1d |
|- ( s = k -> ( ( ( 1st ` s ) ` ( M + 1 ) ) = 0 <-> ( ( 1st ` k ) ` ( M + 1 ) ) = 0 ) ) |
| 495 |
481
|
fveq1d |
|- ( s = k -> ( ( 2nd ` s ) ` ( M + 1 ) ) = ( ( 2nd ` k ) ` ( M + 1 ) ) ) |
| 496 |
495
|
eqeq1d |
|- ( s = k -> ( ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) <-> ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) |
| 497 |
492 494 496
|
3anbi123d |
|- ( s = k -> ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) <-> ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) ) ) |
| 498 |
497
|
ralrab |
|- ( A. k e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. <-> A. k e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) ( ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` k ) oF + ( ( ( ( 2nd ` k ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` k ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` k ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` k ) ` ( M + 1 ) ) = ( M + 1 ) ) -> E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 499 |
479 498
|
sylibr |
|- ( ph -> A. k e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 500 |
|
eqid |
|- ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) = ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) |
| 501 |
500
|
f1ompt |
|- ( ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) : { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } <-> ( A. t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } /\ A. k e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } E! t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } k = <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) ) |
| 502 |
60 499 501
|
sylanbrc |
|- ( ph -> ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) : { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |
| 503 |
|
ovex |
|- ( ( 0 ..^ K ) ^m ( 1 ... M ) ) e. _V |
| 504 |
|
ovex |
|- ( ( 1 ... M ) ^m ( 1 ... M ) ) e. _V |
| 505 |
|
f1of |
|- ( f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) -> f : ( 1 ... M ) --> ( 1 ... M ) ) |
| 506 |
505
|
ss2abi |
|- { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } C_ { f | f : ( 1 ... M ) --> ( 1 ... M ) } |
| 507 |
68 68
|
mapval |
|- ( ( 1 ... M ) ^m ( 1 ... M ) ) = { f | f : ( 1 ... M ) --> ( 1 ... M ) } |
| 508 |
506 507
|
sseqtrri |
|- { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } C_ ( ( 1 ... M ) ^m ( 1 ... M ) ) |
| 509 |
504 508
|
ssexi |
|- { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } e. _V |
| 510 |
503 509
|
xpex |
|- ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) e. _V |
| 511 |
510
|
rabex |
|- { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } e. _V |
| 512 |
511
|
f1oen |
|- ( ( t e. { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } |-> <. ( ( 1st ` t ) u. { <. ( M + 1 ) , 0 >. } ) , ( ( 2nd ` t ) u. { <. ( M + 1 ) , ( M + 1 ) >. } ) >. ) : { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } -1-1-onto-> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |
| 513 |
502 512
|
syl |
|- ( ph -> { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... M ) ) X. { f | f : ( 1 ... M ) -1-1-onto-> ( 1 ... M ) } ) | A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... M ) ) X. { 0 } ) ) ) u. ( ( ( M + 1 ) ... N ) X. { 0 } ) ) / p ]_ B } ~~ { s e. ( ( ( 0 ..^ K ) ^m ( 1 ... ( M + 1 ) ) ) X. { f | f : ( 1 ... ( M + 1 ) ) -1-1-onto-> ( 1 ... ( M + 1 ) ) } ) | ( A. i e. ( 0 ... M ) E. j e. ( 0 ... M ) i = [_ ( ( ( 1st ` s ) oF + ( ( ( ( 2nd ` s ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` s ) " ( ( j + 1 ) ... ( M + 1 ) ) ) X. { 0 } ) ) ) u. ( ( ( ( M + 1 ) + 1 ) ... N ) X. { 0 } ) ) / p ]_ B /\ ( ( 1st ` s ) ` ( M + 1 ) ) = 0 /\ ( ( 2nd ` s ) ` ( M + 1 ) ) = ( M + 1 ) ) } ) |