Metamath Proof Explorer


Theorem poimirlem4

Description: Lemma for poimir connecting the admissible faces on the back face of the ( M + 1 ) -cube to admissible simplices in the M -cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem4.1 φK
poimirlem4.2 φM0
poimirlem4.3 φM<N
Assertion poimirlem4 φs0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBs0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem4.1 φK
3 poimirlem4.2 φM0
4 poimirlem4.3 φM<N
5 1 adantr φt0..^K1M×f|f:1M1-1 onto1MN
6 2 adantr φt0..^K1M×f|f:1M1-1 onto1MK
7 3 adantr φt0..^K1M×f|f:1M1-1 onto1MM0
8 4 adantr φt0..^K1M×f|f:1M1-1 onto1MM<N
9 xp1st t0..^K1M×f|f:1M1-1 onto1M1stt0..^K1M
10 elmapi 1stt0..^K1M1stt:1M0..^K
11 9 10 syl t0..^K1M×f|f:1M1-1 onto1M1stt:1M0..^K
12 11 adantl φt0..^K1M×f|f:1M1-1 onto1M1stt:1M0..^K
13 xp2nd t0..^K1M×f|f:1M1-1 onto1M2ndtf|f:1M1-1 onto1M
14 fvex 2ndtV
15 f1oeq1 f=2ndtf:1M1-1 onto1M2ndt:1M1-1 onto1M
16 14 15 elab 2ndtf|f:1M1-1 onto1M2ndt:1M1-1 onto1M
17 13 16 sylib t0..^K1M×f|f:1M1-1 onto1M2ndt:1M1-1 onto1M
18 17 adantl φt0..^K1M×f|f:1M1-1 onto1M2ndt:1M1-1 onto1M
19 5 6 7 8 12 18 poimirlem3 φt0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB1sttM+102ndtM+1M+10..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0/pB1sttM+10M+1=02ndtM+1M+1M+1=M+1
20 fvex 1sttV
21 snex M+10V
22 20 21 unex 1sttM+10V
23 snex M+1M+1V
24 14 23 unex 2ndtM+1M+1V
25 22 24 op1std s=1sttM+102ndtM+1M+11sts=1sttM+10
26 22 24 op2ndd s=1sttM+102ndtM+1M+12nds=2ndtM+1M+1
27 26 imaeq1d s=1sttM+102ndtM+1M+12nds1j=2ndtM+1M+11j
28 27 xpeq1d s=1sttM+102ndtM+1M+12nds1j×1=2ndtM+1M+11j×1
29 26 imaeq1d s=1sttM+102ndtM+1M+12ndsj+1M+1=2ndtM+1M+1j+1M+1
30 29 xpeq1d s=1sttM+102ndtM+1M+12ndsj+1M+1×0=2ndtM+1M+1j+1M+1×0
31 28 30 uneq12d s=1sttM+102ndtM+1M+12nds1j×12ndsj+1M+1×0=2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0
32 25 31 oveq12d s=1sttM+102ndtM+1M+11sts+f2nds1j×12ndsj+1M+1×0=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0
33 32 uneq1d s=1sttM+102ndtM+1M+11sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0
34 33 csbeq1d s=1sttM+102ndtM+1M+11sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0/pB
35 34 eqeq2d s=1sttM+102ndtM+1M+1i=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pBi=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0/pB
36 35 rexbidv s=1sttM+102ndtM+1M+1j0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pBj0Mi=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0/pB
37 36 ralbidv s=1sttM+102ndtM+1M+1i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pBi0Mj0Mi=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0/pB
38 25 fveq1d s=1sttM+102ndtM+1M+11stsM+1=1sttM+10M+1
39 38 eqeq1d s=1sttM+102ndtM+1M+11stsM+1=01sttM+10M+1=0
40 26 fveq1d s=1sttM+102ndtM+1M+12ndsM+1=2ndtM+1M+1M+1
41 40 eqeq1d s=1sttM+102ndtM+1M+12ndsM+1=M+12ndtM+1M+1M+1=M+1
42 37 39 41 3anbi123d s=1sttM+102ndtM+1M+1i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1i0Mj0Mi=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0/pB1sttM+10M+1=02ndtM+1M+1M+1=M+1
43 42 elrab 1sttM+102ndtM+1M+1s0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+11sttM+102ndtM+1M+10..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1sttM+10+f2ndtM+1M+11j×12ndtM+1M+1j+1M+1×0M+1+1N×0/pB1sttM+10M+1=02ndtM+1M+1M+1=M+1
44 19 43 imbitrrdi φt0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1s0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1
45 44 ralrimiva φt0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1s0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1
46 fveq2 s=t1sts=1stt
47 fveq2 s=t2nds=2ndt
48 47 imaeq1d s=t2nds1j=2ndt1j
49 48 xpeq1d s=t2nds1j×1=2ndt1j×1
50 47 imaeq1d s=t2ndsj+1M=2ndtj+1M
51 50 xpeq1d s=t2ndsj+1M×0=2ndtj+1M×0
52 49 51 uneq12d s=t2nds1j×12ndsj+1M×0=2ndt1j×12ndtj+1M×0
53 46 52 oveq12d s=t1sts+f2nds1j×12ndsj+1M×0=1stt+f2ndt1j×12ndtj+1M×0
54 53 uneq1d s=t1sts+f2nds1j×12ndsj+1M×0M+1N×0=1stt+f2ndt1j×12ndtj+1M×0M+1N×0
55 54 csbeq1d s=t1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB
56 55 eqeq2d s=ti=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB
57 56 rexbidv s=tj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB
58 57 ralbidv s=ti0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB
59 58 ralrab ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1s0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1t0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1s0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1
60 45 59 sylibr φts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1s0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1
61 xp1st k0..^K1M+1×f|f:1M+11-1 onto1M+11stk0..^K1M+1
62 elmapi 1stk0..^K1M+11stk:1M+10..^K
63 61 62 syl k0..^K1M+1×f|f:1M+11-1 onto1M+11stk:1M+10..^K
64 fzssp1 1M1M+1
65 fssres 1stk:1M+10..^K1M1M+11stk1M:1M0..^K
66 63 64 65 sylancl k0..^K1M+1×f|f:1M+11-1 onto1M+11stk1M:1M0..^K
67 ovex 0..^KV
68 ovex 1MV
69 67 68 elmap 1stk1M0..^K1M1stk1M:1M0..^K
70 66 69 sylibr k0..^K1M+1×f|f:1M+11-1 onto1M+11stk1M0..^K1M
71 70 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+11stk1M0..^K1M
72 xp2nd k0..^K1M+1×f|f:1M+11-1 onto1M+12ndkf|f:1M+11-1 onto1M+1
73 fvex 2ndkV
74 f1oeq1 f=2ndkf:1M+11-1 onto1M+12ndk:1M+11-1 onto1M+1
75 73 74 elab 2ndkf|f:1M+11-1 onto1M+12ndk:1M+11-1 onto1M+1
76 72 75 sylib k0..^K1M+1×f|f:1M+11-1 onto1M+12ndk:1M+11-1 onto1M+1
77 f1of1 2ndk:1M+11-1 onto1M+12ndk:1M+11-11M+1
78 76 77 syl k0..^K1M+1×f|f:1M+11-1 onto1M+12ndk:1M+11-11M+1
79 f1ores 2ndk:1M+11-11M+11M1M+12ndk1M:1M1-1 onto2ndk1M
80 78 64 79 sylancl k0..^K1M+1×f|f:1M+11-1 onto1M+12ndk1M:1M1-1 onto2ndk1M
81 80 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M:1M1-1 onto2ndk1M
82 dff1o3 2ndk:1M+11-1 onto1M+12ndk:1M+1onto1M+1Fun2ndk-1
83 82 simprbi 2ndk:1M+11-1 onto1M+1Fun2ndk-1
84 imadif Fun2ndk-12ndk1M+1M+1=2ndk1M+12ndkM+1
85 76 83 84 3syl k0..^K1M+1×f|f:1M+11-1 onto1M+12ndk1M+1M+1=2ndk1M+12ndkM+1
86 85 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M+1M+1=2ndk1M+12ndkM+1
87 f1ofo 2ndk:1M+11-1 onto1M+12ndk:1M+1onto1M+1
88 foima 2ndk:1M+1onto1M+12ndk1M+1=1M+1
89 76 87 88 3syl k0..^K1M+1×f|f:1M+11-1 onto1M+12ndk1M+1=1M+1
90 89 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M+1=1M+1
91 f1ofn 2ndk:1M+11-1 onto1M+12ndkFn1M+1
92 76 91 syl k0..^K1M+1×f|f:1M+11-1 onto1M+12ndkFn1M+1
93 nn0p1nn M0M+1
94 3 93 syl φM+1
95 elfz1end M+1M+11M+1
96 94 95 sylib φM+11M+1
97 fnsnfv 2ndkFn1M+1M+11M+12ndkM+1=2ndkM+1
98 92 96 97 syl2anr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=2ndkM+1
99 sneq 2ndkM+1=M+12ndkM+1=M+1
100 98 99 sylan9req φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndkM+1=M+1
101 90 100 difeq12d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M+12ndkM+1=1M+1M+1
102 86 101 eqtrd φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M+1M+1=1M+1M+1
103 1z 1
104 nn0uz 0=0
105 1m1e0 11=0
106 105 fveq2i 11=0
107 104 106 eqtr4i 0=11
108 3 107 eleqtrdi φM11
109 fzsuc2 1M111M+1=1MM+1
110 103 108 109 sylancr φ1M+1=1MM+1
111 110 difeq1d φ1M+1M+1=1MM+1M+1
112 difun2 1MM+1M+1=1MM+1
113 111 112 eqtrdi φ1M+1M+1=1MM+1
114 3 nn0red φM
115 ltp1 MM<M+1
116 peano2re MM+1
117 ltnle MM+1M<M+1¬M+1M
118 116 117 mpdan MM<M+1¬M+1M
119 115 118 mpbid M¬M+1M
120 114 119 syl φ¬M+1M
121 elfzle2 M+11MM+1M
122 120 121 nsyl φ¬M+11M
123 difsn ¬M+11M1MM+1=1M
124 122 123 syl φ1MM+1=1M
125 113 124 eqtrd φ1M+1M+1=1M
126 125 imaeq2d φ2ndk1M+1M+1=2ndk1M
127 126 ad2antrr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M+1M+1=2ndk1M
128 125 ad2antrr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+11M+1M+1=1M
129 102 127 128 3eqtr3d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M=1M
130 129 f1oeq3d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M:1M1-1 onto2ndk1M2ndk1M:1M1-1 onto1M
131 81 130 mpbid φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M:1M1-1 onto1M
132 73 resex 2ndk1MV
133 f1oeq1 f=2ndk1Mf:1M1-1 onto1M2ndk1M:1M1-1 onto1M
134 132 133 elab 2ndk1Mf|f:1M1-1 onto1M2ndk1M:1M1-1 onto1M
135 131 134 sylibr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1Mf|f:1M1-1 onto1M
136 71 135 opelxpd φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+11stk1M2ndk1M0..^K1M×f|f:1M1-1 onto1M
137 136 3ad2antr3 φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+11stk1M2ndk1M0..^K1M×f|f:1M1-1 onto1M
138 3anass i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1
139 138 biancomi i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+11stkM+1=02ndkM+1=M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB
140 94 nnzd φM+1
141 uzid M+1M+1M+1
142 peano2uz M+1M+1M+1+1M+1
143 140 141 142 3syl φM+1+1M+1
144 3 nn0zd φM
145 1 nnzd φN
146 zltp1le MNM<NM+1N
147 peano2z MM+1
148 eluz M+1NNM+1M+1N
149 147 148 sylan MNNM+1M+1N
150 146 149 bitr4d MNM<NNM+1
151 144 145 150 syl2anc φM<NNM+1
152 4 151 mpbid φNM+1
153 fzsplit2 M+1+1M+1NM+1M+1N=M+1M+1M+1+1N
154 143 152 153 syl2anc φM+1N=M+1M+1M+1+1N
155 fzsn M+1M+1M+1=M+1
156 140 155 syl φM+1M+1=M+1
157 156 uneq1d φM+1M+1M+1+1N=M+1M+1+1N
158 154 157 eqtrd φM+1N=M+1M+1+1N
159 158 xpeq1d φM+1N×0=M+1M+1+1N×0
160 159 uneq2d φn1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1M+1+1N×0
161 xpundir M+1M+1+1N×0=M+1×0M+1+1N×0
162 ovex M+1V
163 c0ex 0V
164 162 163 xpsn M+1×0=M+10
165 164 uneq1i M+1×0M+1+1N×0=M+10M+1+1N×0
166 161 165 eqtri M+1M+1+1N×0=M+10M+1+1N×0
167 166 uneq2i n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1M+1+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10M+1+1N×0
168 unass n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10M+1+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10M+1+1N×0
169 167 168 eqtr4i n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1M+1+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10M+1+1N×0
170 160 169 eqtrdi φn1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10M+1+1N×0
171 170 ad3antrrr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0Mn1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10M+1+1N×0
172 162 a1i φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0MM+1V
173 163 a1i φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M0V
174 110 eqcomd φ1MM+1=1M+1
175 174 ad3antrrr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1MM+1=1M+1
176 fveq2 n=M+11stkn=1stkM+1
177 fveq2 n=M+12ndk1j×12ndkj+1M+1×0n=2ndk1j×12ndkj+1M+1×0M+1
178 176 177 oveq12d n=M+11stkn+2ndk1j×12ndkj+1M+1×0n=1stkM+1+2ndk1j×12ndkj+1M+1×0M+1
179 simplrl φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1stkM+1=0
180 imain Fun2ndk-12ndk1jj+1M+1=2ndk1j2ndkj+1M+1
181 76 83 180 3syl k0..^K1M+1×f|f:1M+11-1 onto1M+12ndk1jj+1M+1=2ndk1j2ndkj+1M+1
182 181 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1jj+1M+1=2ndk1j2ndkj+1M+1
183 elfznn0 j0Mj0
184 183 nn0red j0Mj
185 184 ltp1d j0Mj<j+1
186 fzdisj j<j+11jj+1M+1=
187 185 186 syl j0M1jj+1M+1=
188 187 imaeq2d j0M2ndk1jj+1M+1=2ndk
189 ima0 2ndk=
190 188 189 eqtrdi j0M2ndk1jj+1M+1=
191 182 190 sylan9req φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j2ndkj+1M+1=
192 simplr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndkM+1=M+1
193 92 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndkFn1M+1
194 nn0p1nn j0j+1
195 nnuz =1
196 194 195 eleqtrdi j0j+11
197 fzss1 j+11j+1M+11M+1
198 183 196 197 3syl j0Mj+1M+11M+1
199 elfzuz3 j0MMj
200 eluzp1p1 MjM+1j+1
201 eluzfz2 M+1j+1M+1j+1M+1
202 199 200 201 3syl j0MM+1j+1M+1
203 198 202 jca j0Mj+1M+11M+1M+1j+1M+1
204 fnfvima 2ndkFn1M+1j+1M+11M+1M+1j+1M+12ndkM+12ndkj+1M+1
205 204 3expb 2ndkFn1M+1j+1M+11M+1M+1j+1M+12ndkM+12ndkj+1M+1
206 193 203 205 syl2an φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndkM+12ndkj+1M+1
207 192 206 eqeltrrd φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0MM+12ndkj+1M+1
208 1ex 1V
209 fnconstg 1V2ndk1j×1Fn2ndk1j
210 208 209 ax-mp 2ndk1j×1Fn2ndk1j
211 fnconstg 0V2ndkj+1M+1×0Fn2ndkj+1M+1
212 163 211 ax-mp 2ndkj+1M+1×0Fn2ndkj+1M+1
213 fvun2 2ndk1j×1Fn2ndk1j2ndkj+1M+1×0Fn2ndkj+1M+12ndk1j2ndkj+1M+1=M+12ndkj+1M+12ndk1j×12ndkj+1M+1×0M+1=2ndkj+1M+1×0M+1
214 210 212 213 mp3an12 2ndk1j2ndkj+1M+1=M+12ndkj+1M+12ndk1j×12ndkj+1M+1×0M+1=2ndkj+1M+1×0M+1
215 191 207 214 syl2anc φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M+1×0M+1=2ndkj+1M+1×0M+1
216 163 fvconst2 M+12ndkj+1M+12ndkj+1M+1×0M+1=0
217 207 216 syl φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndkj+1M+1×0M+1=0
218 215 217 eqtrd φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M+1×0M+1=0
219 218 adantlrl φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M2ndk1j×12ndkj+1M+1×0M+1=0
220 179 219 oveq12d φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1stkM+1+2ndk1j×12ndkj+1M+1×0M+1=0+0
221 00id 0+0=0
222 220 221 eqtrdi φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1stkM+1+2ndk1j×12ndkj+1M+1×0M+1=0
223 178 222 sylan9eqr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0Mn=M+11stkn+2ndk1j×12ndkj+1M+1×0n=0
224 172 173 175 223 fmptapd φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0Mn1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10=n1M+11stkn+2ndk1j×12ndkj+1M+1×0n
225 224 uneq1d φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0Mn1M1stkn+2ndk1j×12ndkj+1M+1×0nM+10M+1+1N×0=n1M+11stkn+2ndk1j×12ndkj+1M+1×0nM+1+1N×0
226 171 225 eqtrd φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0Mn1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1N×0=n1M+11stkn+2ndk1j×12ndkj+1M+1×0nM+1+1N×0
227 elmapfn 1stk0..^K1M+11stkFn1M+1
228 61 227 syl k0..^K1M+1×f|f:1M+11-1 onto1M+11stkFn1M+1
229 fnssres 1stkFn1M+11M1M+11stk1MFn1M
230 228 64 229 sylancl k0..^K1M+1×f|f:1M+11-1 onto1M+11stk1MFn1M
231 230 ad3antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1stk1MFn1M
232 fnconstg 0V2ndkj+1M×0Fn2ndkj+1M
233 163 232 ax-mp 2ndkj+1M×0Fn2ndkj+1M
234 210 233 pm3.2i 2ndk1j×1Fn2ndk1j2ndkj+1M×0Fn2ndkj+1M
235 imain Fun2ndk-12ndk1jj+1M=2ndk1j2ndkj+1M
236 76 83 235 3syl k0..^K1M+1×f|f:1M+11-1 onto1M+12ndk1jj+1M=2ndk1j2ndkj+1M
237 fzdisj j<j+11jj+1M=
238 185 237 syl j0M1jj+1M=
239 238 imaeq2d j0M2ndk1jj+1M=2ndk
240 239 189 eqtrdi j0M2ndk1jj+1M=
241 236 240 sylan9req k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j2ndkj+1M=
242 fnun 2ndk1j×1Fn2ndk1j2ndkj+1M×0Fn2ndkj+1M2ndk1j2ndkj+1M=2ndk1j×12ndkj+1M×0Fn2ndk1j2ndkj+1M
243 234 241 242 sylancr k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j×12ndkj+1M×0Fn2ndk1j2ndkj+1M
244 243 ad4ant24 φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M×0Fn2ndk1j2ndkj+1M
245 101 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1M+12ndkM+1=1M+1M+1
246 85 ad3antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1M+1M+1=2ndk1M+12ndkM+1
247 183 194 syl j0Mj+1
248 247 195 eleqtrdi j0Mj+11
249 fzsplit2 j+11Mj1M=1jj+1M
250 248 199 249 syl2anc j0M1M=1jj+1M
251 128 250 sylan9eq φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1M+1M+1=1jj+1M
252 251 imaeq2d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1M+1M+1=2ndk1jj+1M
253 246 252 eqtr3d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1M+12ndkM+1=2ndk1jj+1M
254 125 ad3antrrr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1M+1M+1=1M
255 245 253 254 3eqtr3rd φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1M=2ndk1jj+1M
256 imaundi 2ndk1jj+1M=2ndk1j2ndkj+1M
257 255 256 eqtrdi φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1M=2ndk1j2ndkj+1M
258 257 fneq2d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M×0Fn1M2ndk1j×12ndkj+1M×0Fn2ndk1j2ndkj+1M
259 244 258 mpbird φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M×0Fn1M
260 fzss2 Mj1j1M
261 resima2 1j1M2ndk1M1j=2ndk1j
262 199 260 261 3syl j0M2ndk1M1j=2ndk1j
263 262 xpeq1d j0M2ndk1M1j×1=2ndk1j×1
264 183 196 syl j0Mj+11
265 fzss1 j+11j+1M1M
266 resima2 j+1M1M2ndk1Mj+1M=2ndkj+1M
267 264 265 266 3syl j0M2ndk1Mj+1M=2ndkj+1M
268 267 xpeq1d j0M2ndk1Mj+1M×0=2ndkj+1M×0
269 263 268 uneq12d j0M2ndk1M1j×12ndk1Mj+1M×0=2ndk1j×12ndkj+1M×0
270 269 adantl φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1M1j×12ndk1Mj+1M×0=2ndk1j×12ndkj+1M×0
271 270 fneq1d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1M1j×12ndk1Mj+1M×0Fn1M2ndk1j×12ndkj+1M×0Fn1M
272 259 271 mpbird φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1M1j×12ndk1Mj+1M×0Fn1M
273 fzfid φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1MFin
274 inidm 1M1M=1M
275 fvres n1M1stk1Mn=1stkn
276 275 adantl φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0Mn1M1stk1Mn=1stkn
277 disjsn 1MM+1=¬M+11M
278 122 277 sylibr φ1MM+1=
279 278 ad3antrrr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1MM+1=
280 259 279 jca φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M×0Fn1M1MM+1=
281 fnconstg 0VM+1×0FnM+1
282 163 281 ax-mp M+1×0FnM+1
283 fvun1 2ndk1j×12ndkj+1M×0Fn1MM+1×0FnM+11MM+1=n1M2ndk1j×12ndkj+1M×0M+1×0n=2ndk1j×12ndkj+1M×0n
284 282 283 mp3an2 2ndk1j×12ndkj+1M×0Fn1M1MM+1=n1M2ndk1j×12ndkj+1M×0M+1×0n=2ndk1j×12ndkj+1M×0n
285 284 anassrs 2ndk1j×12ndkj+1M×0Fn1M1MM+1=n1M2ndk1j×12ndkj+1M×0M+1×0n=2ndk1j×12ndkj+1M×0n
286 280 285 sylan φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0Mn1M2ndk1j×12ndkj+1M×0M+1×0n=2ndk1j×12ndkj+1M×0n
287 247 nnzd j0Mj+1
288 183 nn0cnd j0Mj
289 pncan1 jj+1-1=j
290 288 289 syl j0Mj+1-1=j
291 290 fveq2d j0Mj+1-1=j
292 199 291 eleqtrrd j0MMj+1-1
293 fzsuc2 j+1Mj+1-1j+1M+1=j+1MM+1
294 287 292 293 syl2anc j0Mj+1M+1=j+1MM+1
295 294 imaeq2d j0M2ndkj+1M+1=2ndkj+1MM+1
296 imaundi 2ndkj+1MM+1=2ndkj+1M2ndkM+1
297 295 296 eqtrdi j0M2ndkj+1M+1=2ndkj+1M2ndkM+1
298 297 xpeq1d j0M2ndkj+1M+1×0=2ndkj+1M2ndkM+1×0
299 xpundir 2ndkj+1M2ndkM+1×0=2ndkj+1M×02ndkM+1×0
300 298 299 eqtrdi j0M2ndkj+1M+1×0=2ndkj+1M×02ndkM+1×0
301 300 uneq2d j0M2ndk1j×12ndkj+1M+1×0=2ndk1j×12ndkj+1M×02ndkM+1×0
302 unass 2ndk1j×12ndkj+1M×02ndkM+1×0=2ndk1j×12ndkj+1M×02ndkM+1×0
303 301 302 eqtr4di j0M2ndk1j×12ndkj+1M+1×0=2ndk1j×12ndkj+1M×02ndkM+1×0
304 303 adantl φk0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j×12ndkj+1M+1×0=2ndk1j×12ndkj+1M×02ndkM+1×0
305 98 xpeq1d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1×0=2ndkM+1×0
306 305 uneq2d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndk1j×12ndkj+1M×02ndkM+1×0=2ndk1j×12ndkj+1M×02ndkM+1×0
307 306 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j×12ndkj+1M×02ndkM+1×0=2ndk1j×12ndkj+1M×02ndkM+1×0
308 304 307 eqtr4d φk0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j×12ndkj+1M+1×0=2ndk1j×12ndkj+1M×02ndkM+1×0
309 99 xpeq1d 2ndkM+1=M+12ndkM+1×0=M+1×0
310 309 uneq2d 2ndkM+1=M+12ndk1j×12ndkj+1M×02ndkM+1×0=2ndk1j×12ndkj+1M×0M+1×0
311 308 310 sylan9eq φk0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndkM+1=M+12ndk1j×12ndkj+1M+1×0=2ndk1j×12ndkj+1M×0M+1×0
312 311 an32s φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M+1×0=2ndk1j×12ndkj+1M×0M+1×0
313 312 fveq1d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M2ndk1j×12ndkj+1M+1×0n=2ndk1j×12ndkj+1M×0M+1×0n
314 313 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0Mn1M2ndk1j×12ndkj+1M+1×0n=2ndk1j×12ndkj+1M×0M+1×0n
315 269 fveq1d j0M2ndk1M1j×12ndk1Mj+1M×0n=2ndk1j×12ndkj+1M×0n
316 315 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0Mn1M2ndk1M1j×12ndk1Mj+1M×0n=2ndk1j×12ndkj+1M×0n
317 286 314 316 3eqtr4rd φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0Mn1M2ndk1M1j×12ndk1Mj+1M×0n=2ndk1j×12ndkj+1M+1×0n
318 231 272 273 273 274 276 317 offval φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1stk1M+f2ndk1M1j×12ndk1Mj+1M×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0n
319 318 uneq1d φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+1j0M1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1N×0
320 319 adantlrl φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0=n1M1stkn+2ndk1j×12ndkj+1M+1×0nM+1N×0
321 228 adantr k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M1stkFn1M+1
322 210 212 pm3.2i 2ndk1j×1Fn2ndk1j2ndkj+1M+1×0Fn2ndkj+1M+1
323 181 190 sylan9req k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j2ndkj+1M+1=
324 fnun 2ndk1j×1Fn2ndk1j2ndkj+1M+1×0Fn2ndkj+1M+12ndk1j2ndkj+1M+1=2ndk1j×12ndkj+1M+1×0Fn2ndk1j2ndkj+1M+1
325 322 323 324 sylancr k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j×12ndkj+1M+1×0Fn2ndk1j2ndkj+1M+1
326 peano2uz MjM+1j
327 199 326 syl j0MM+1j
328 fzsplit2 j+11M+1j1M+1=1jj+1M+1
329 264 327 328 syl2anc j0M1M+1=1jj+1M+1
330 329 imaeq2d j0M2ndk1M+1=2ndk1jj+1M+1
331 imaundi 2ndk1jj+1M+1=2ndk1j2ndkj+1M+1
332 330 331 eqtr2di j0M2ndk1j2ndkj+1M+1=2ndk1M+1
333 332 89 sylan9eqr k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j2ndkj+1M+1=1M+1
334 333 fneq2d k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j×12ndkj+1M+1×0Fn2ndk1j2ndkj+1M+12ndk1j×12ndkj+1M+1×0Fn1M+1
335 325 334 mpbid k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M2ndk1j×12ndkj+1M+1×0Fn1M+1
336 fzfid k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M1M+1Fin
337 inidm 1M+11M+1=1M+1
338 eqidd k0..^K1M+1×f|f:1M+11-1 onto1M+1j0Mn1M+11stkn=1stkn
339 eqidd k0..^K1M+1×f|f:1M+11-1 onto1M+1j0Mn1M+12ndk1j×12ndkj+1M+1×0n=2ndk1j×12ndkj+1M+1×0n
340 321 335 336 336 337 338 339 offval k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M1stk+f2ndk1j×12ndkj+1M+1×0=n1M+11stkn+2ndk1j×12ndkj+1M+1×0n
341 340 uneq1d k0..^K1M+1×f|f:1M+11-1 onto1M+1j0M1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0=n1M+11stkn+2ndk1j×12ndkj+1M+1×0nM+1+1N×0
342 341 ad4ant24 φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0=n1M+11stkn+2ndk1j×12ndkj+1M+1×0nM+1+1N×0
343 226 320 342 3eqtr4rd φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0
344 343 csbeq1d φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0M1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
345 344 eqeq2d φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pBi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
346 345 rexbidva φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1j0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pBj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
347 346 ralbidv φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pBi0Mj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
348 347 biimpd φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pBi0Mj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
349 348 impr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pBi0Mj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
350 139 349 sylan2b φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1i0Mj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
351 1st2nd2 k0..^K1M+1×f|f:1M+11-1 onto1M+1k=1stk2ndk
352 351 ad2antlr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1k=1stk2ndk
353 fnsnsplit 1stkFn1M+1M+11M+11stk=1stk1M+1M+1M+11stkM+1
354 228 96 353 syl2anr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stk=1stk1M+1M+1M+11stkM+1
355 354 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=01stk=1stk1M+1M+1M+11stkM+1
356 125 reseq2d φ1stk1M+1M+1=1stk1M
357 356 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stk1M+1M+1=1stk1M
358 opeq2 1stkM+1=0M+11stkM+1=M+10
359 358 sneqd 1stkM+1=0M+11stkM+1=M+10
360 uneq12 1stk1M+1M+1=1stk1MM+11stkM+1=M+101stk1M+1M+1M+11stkM+1=1stk1MM+10
361 357 359 360 syl2an φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=01stk1M+1M+1M+11stkM+1=1stk1MM+10
362 355 361 eqtrd φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=01stk=1stk1MM+10
363 362 adantrr φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+11stk=1stk1MM+10
364 fnsnsplit 2ndkFn1M+1M+11M+12ndk=2ndk1M+1M+1M+12ndkM+1
365 92 96 364 syl2anr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndk=2ndk1M+1M+1M+12ndkM+1
366 365 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk=2ndk1M+1M+1M+12ndkM+1
367 125 reseq2d φ2ndk1M+1M+1=2ndk1M
368 367 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndk1M+1M+1=2ndk1M
369 opeq2 2ndkM+1=M+1M+12ndkM+1=M+1M+1
370 369 sneqd 2ndkM+1=M+1M+12ndkM+1=M+1M+1
371 uneq12 2ndk1M+1M+1=2ndk1MM+12ndkM+1=M+1M+12ndk1M+1M+1M+12ndkM+1=2ndk1MM+1M+1
372 368 370 371 syl2an φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk1M+1M+1M+12ndkM+1=2ndk1MM+1M+1
373 366 372 eqtrd φk0..^K1M+1×f|f:1M+11-1 onto1M+12ndkM+1=M+12ndk=2ndk1MM+1M+1
374 373 adantrl φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+12ndk=2ndk1MM+1M+1
375 363 374 opeq12d φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+11stk2ndk=1stk1MM+102ndk1MM+1M+1
376 352 375 eqtrd φk0..^K1M+1×f|f:1M+11-1 onto1M+11stkM+1=02ndkM+1=M+1k=1stk1MM+102ndk1MM+1M+1
377 376 3adantr1 φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1k=1stk1MM+102ndk1MM+1M+1
378 fvex 1stkV
379 378 resex 1stk1MV
380 379 132 op1std t=1stk1M2ndk1M1stt=1stk1M
381 379 132 op2ndd t=1stk1M2ndk1M2ndt=2ndk1M
382 381 imaeq1d t=1stk1M2ndk1M2ndt1j=2ndk1M1j
383 382 xpeq1d t=1stk1M2ndk1M2ndt1j×1=2ndk1M1j×1
384 381 imaeq1d t=1stk1M2ndk1M2ndtj+1M=2ndk1Mj+1M
385 384 xpeq1d t=1stk1M2ndk1M2ndtj+1M×0=2ndk1Mj+1M×0
386 383 385 uneq12d t=1stk1M2ndk1M2ndt1j×12ndtj+1M×0=2ndk1M1j×12ndk1Mj+1M×0
387 380 386 oveq12d t=1stk1M2ndk1M1stt+f2ndt1j×12ndtj+1M×0=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0
388 387 uneq1d t=1stk1M2ndk1M1stt+f2ndt1j×12ndtj+1M×0M+1N×0=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0
389 388 csbeq1d t=1stk1M2ndk1M1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pB=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
390 389 eqeq2d t=1stk1M2ndk1Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
391 390 rexbidv t=1stk1M2ndk1Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
392 391 ralbidv t=1stk1M2ndk1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBi0Mj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pB
393 380 uneq1d t=1stk1M2ndk1M1sttM+10=1stk1MM+10
394 381 uneq1d t=1stk1M2ndk1M2ndtM+1M+1=2ndk1MM+1M+1
395 393 394 opeq12d t=1stk1M2ndk1M1sttM+102ndtM+1M+1=1stk1MM+102ndk1MM+1M+1
396 395 eqeq2d t=1stk1M2ndk1Mk=1sttM+102ndtM+1M+1k=1stk1MM+102ndk1MM+1M+1
397 392 396 anbi12d t=1stk1M2ndk1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1i0Mj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pBk=1stk1MM+102ndk1MM+1M+1
398 397 rspcev 1stk1M2ndk1M0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stk1M+f2ndk1M1j×12ndk1Mj+1M×0M+1N×0/pBk=1stk1MM+102ndk1MM+1M+1t0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
399 137 350 377 398 syl12anc φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1t0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
400 399 ex φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1t0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
401 elrabi ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBt0..^K1M×f|f:1M1-1 onto1M
402 elrabi ns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBn0..^K1M×f|f:1M1-1 onto1M
403 401 402 anim12i ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBt0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1M
404 eqtr2 k=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+11sttM+102ndtM+1M+1=1stnM+102ndnM+1M+1
405 22 24 opth 1sttM+102ndtM+1M+1=1stnM+102ndnM+1M+11sttM+10=1stnM+102ndtM+1M+1=2ndnM+1M+1
406 difeq1 1sttM+10=1stnM+101sttM+10M+10=1stnM+10M+10
407 difun2 1sttM+10M+10=1sttM+10
408 difun2 1stnM+10M+10=1stnM+10
409 406 407 408 3eqtr3g 1sttM+10=1stnM+101sttM+10=1stnM+10
410 difeq1 2ndtM+1M+1=2ndnM+1M+12ndtM+1M+1M+1M+1=2ndnM+1M+1M+1M+1
411 difun2 2ndtM+1M+1M+1M+1=2ndtM+1M+1
412 difun2 2ndnM+1M+1M+1M+1=2ndnM+1M+1
413 410 411 412 3eqtr3g 2ndtM+1M+1=2ndnM+1M+12ndtM+1M+1=2ndnM+1M+1
414 409 413 anim12i 1sttM+10=1stnM+102ndtM+1M+1=2ndnM+1M+11sttM+10=1stnM+102ndtM+1M+1=2ndnM+1M+1
415 405 414 sylbi 1sttM+102ndtM+1M+1=1stnM+102ndnM+1M+11sttM+10=1stnM+102ndtM+1M+1=2ndnM+1M+1
416 404 415 syl k=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+11sttM+10=1stnM+102ndtM+1M+1=2ndnM+1M+1
417 elmapfn 1stt0..^K1M1sttFn1M
418 fnop 1sttFn1MM+101sttM+11M
419 418 ex 1sttFn1MM+101sttM+11M
420 9 417 419 3syl t0..^K1M×f|f:1M1-1 onto1MM+101sttM+11M
421 420 122 nsyli t0..^K1M×f|f:1M1-1 onto1Mφ¬M+101stt
422 421 impcom φt0..^K1M×f|f:1M1-1 onto1M¬M+101stt
423 difsn ¬M+101stt1sttM+10=1stt
424 422 423 syl φt0..^K1M×f|f:1M1-1 onto1M1sttM+10=1stt
425 xp1st n0..^K1M×f|f:1M1-1 onto1M1stn0..^K1M
426 elmapfn 1stn0..^K1M1stnFn1M
427 fnop 1stnFn1MM+101stnM+11M
428 427 ex 1stnFn1MM+101stnM+11M
429 425 426 428 3syl n0..^K1M×f|f:1M1-1 onto1MM+101stnM+11M
430 429 122 nsyli n0..^K1M×f|f:1M1-1 onto1Mφ¬M+101stn
431 430 impcom φn0..^K1M×f|f:1M1-1 onto1M¬M+101stn
432 difsn ¬M+101stn1stnM+10=1stn
433 431 432 syl φn0..^K1M×f|f:1M1-1 onto1M1stnM+10=1stn
434 424 433 eqeqan12d φt0..^K1M×f|f:1M1-1 onto1Mφn0..^K1M×f|f:1M1-1 onto1M1sttM+10=1stnM+101stt=1stn
435 434 anandis φt0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1M1sttM+10=1stnM+101stt=1stn
436 f1ofn 2ndt:1M1-1 onto1M2ndtFn1M
437 fnop 2ndtFn1MM+1M+12ndtM+11M
438 437 ex 2ndtFn1MM+1M+12ndtM+11M
439 17 436 438 3syl t0..^K1M×f|f:1M1-1 onto1MM+1M+12ndtM+11M
440 439 122 nsyli t0..^K1M×f|f:1M1-1 onto1Mφ¬M+1M+12ndt
441 440 impcom φt0..^K1M×f|f:1M1-1 onto1M¬M+1M+12ndt
442 difsn ¬M+1M+12ndt2ndtM+1M+1=2ndt
443 441 442 syl φt0..^K1M×f|f:1M1-1 onto1M2ndtM+1M+1=2ndt
444 xp2nd n0..^K1M×f|f:1M1-1 onto1M2ndnf|f:1M1-1 onto1M
445 fvex 2ndnV
446 f1oeq1 f=2ndnf:1M1-1 onto1M2ndn:1M1-1 onto1M
447 445 446 elab 2ndnf|f:1M1-1 onto1M2ndn:1M1-1 onto1M
448 444 447 sylib n0..^K1M×f|f:1M1-1 onto1M2ndn:1M1-1 onto1M
449 f1ofn 2ndn:1M1-1 onto1M2ndnFn1M
450 fnop 2ndnFn1MM+1M+12ndnM+11M
451 450 ex 2ndnFn1MM+1M+12ndnM+11M
452 448 449 451 3syl n0..^K1M×f|f:1M1-1 onto1MM+1M+12ndnM+11M
453 452 122 nsyli n0..^K1M×f|f:1M1-1 onto1Mφ¬M+1M+12ndn
454 453 impcom φn0..^K1M×f|f:1M1-1 onto1M¬M+1M+12ndn
455 difsn ¬M+1M+12ndn2ndnM+1M+1=2ndn
456 454 455 syl φn0..^K1M×f|f:1M1-1 onto1M2ndnM+1M+1=2ndn
457 443 456 eqeqan12d φt0..^K1M×f|f:1M1-1 onto1Mφn0..^K1M×f|f:1M1-1 onto1M2ndtM+1M+1=2ndnM+1M+12ndt=2ndn
458 457 anandis φt0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1M2ndtM+1M+1=2ndnM+1M+12ndt=2ndn
459 435 458 anbi12d φt0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1M1sttM+10=1stnM+102ndtM+1M+1=2ndnM+1M+11stt=1stn2ndt=2ndn
460 xpopth t0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1M1stt=1stn2ndt=2ndnt=n
461 460 adantl φt0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1M1stt=1stn2ndt=2ndnt=n
462 459 461 bitrd φt0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1M1sttM+10=1stnM+102ndtM+1M+1=2ndnM+1M+1t=n
463 416 462 imbitrid φt0..^K1M×f|f:1M1-1 onto1Mn0..^K1M×f|f:1M1-1 onto1Mk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
464 403 463 sylan2 φts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
465 464 ralrimivva φts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
466 465 adantr φk0..^K1M+1×f|f:1M+11-1 onto1M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
467 400 466 jctird φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1t0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
468 fveq2 t=n1stt=1stn
469 468 uneq1d t=n1sttM+10=1stnM+10
470 fveq2 t=n2ndt=2ndn
471 470 uneq1d t=n2ndtM+1M+1=2ndnM+1M+1
472 469 471 opeq12d t=n1sttM+102ndtM+1M+1=1stnM+102ndnM+1M+1
473 472 eqeq2d t=nk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1
474 473 reu4 ∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
475 58 rexrab ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1t0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
476 475 anbi1i ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=nt0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
477 474 476 bitri ∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1t0..^K1M×f|f:1M1-1 onto1Mi0Mj0Mi=1stt+f2ndt1j×12ndtj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBns0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k=1stnM+102ndnM+1M+1t=n
478 467 477 imbitrrdi φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
479 478 ralrimiva φk0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
480 fveq2 s=k1sts=1stk
481 fveq2 s=k2nds=2ndk
482 481 imaeq1d s=k2nds1j=2ndk1j
483 482 xpeq1d s=k2nds1j×1=2ndk1j×1
484 481 imaeq1d s=k2ndsj+1M+1=2ndkj+1M+1
485 484 xpeq1d s=k2ndsj+1M+1×0=2ndkj+1M+1×0
486 483 485 uneq12d s=k2nds1j×12ndsj+1M+1×0=2ndk1j×12ndkj+1M+1×0
487 480 486 oveq12d s=k1sts+f2nds1j×12ndsj+1M+1×0=1stk+f2ndk1j×12ndkj+1M+1×0
488 487 uneq1d s=k1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0
489 488 csbeq1d s=k1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB
490 489 eqeq2d s=ki=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pBi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB
491 490 rexbidv s=kj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pBj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB
492 491 ralbidv s=ki0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pBi0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB
493 480 fveq1d s=k1stsM+1=1stkM+1
494 493 eqeq1d s=k1stsM+1=01stkM+1=0
495 481 fveq1d s=k2ndsM+1=2ndkM+1
496 495 eqeq1d s=k2ndsM+1=M+12ndkM+1=M+1
497 492 494 496 3anbi123d s=ki0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1
498 497 ralrab ks0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1k0..^K1M+1×f|f:1M+11-1 onto1M+1i0Mj0Mi=1stk+f2ndk1j×12ndkj+1M+1×0M+1+1N×0/pB1stkM+1=02ndkM+1=M+1∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
499 479 498 sylibr φks0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
500 eqid ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1=ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1
501 500 f1ompt ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1:s0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1-1 ontos0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1s0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1ks0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1∃!ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBk=1sttM+102ndtM+1M+1
502 60 499 501 sylanbrc φts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1:s0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1-1 ontos0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1
503 ovex 0..^K1MV
504 ovex 1M1MV
505 f1of f:1M1-1 onto1Mf:1M1M
506 505 ss2abi f|f:1M1-1 onto1Mf|f:1M1M
507 68 68 mapval 1M1M=f|f:1M1M
508 506 507 sseqtrri f|f:1M1-1 onto1M1M1M
509 504 508 ssexi f|f:1M1-1 onto1MV
510 503 509 xpex 0..^K1M×f|f:1M1-1 onto1MV
511 510 rabex s0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBV
512 511 f1oen ts0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1sttM+102ndtM+1M+1:s0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pB1-1 ontos0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1s0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBs0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1
513 502 512 syl φs0..^K1M×f|f:1M1-1 onto1M|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M×0M+1N×0/pBs0..^K1M+1×f|f:1M+11-1 onto1M+1|i0Mj0Mi=1sts+f2nds1j×12ndsj+1M+1×0M+1+1N×0/pB1stsM+1=02ndsM+1=M+1