Metamath Proof Explorer


Theorem poimirlem4

Description: Lemma for poimir connecting the admissible faces on the back face of the ( M + 1 ) -cube to admissible simplices in the M -cube. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem4.1 ( 𝜑𝐾 ∈ ℕ )
poimirlem4.2 ( 𝜑𝑀 ∈ ℕ0 )
poimirlem4.3 ( 𝜑𝑀 < 𝑁 )
Assertion poimirlem4 ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem4.1 ( 𝜑𝐾 ∈ ℕ )
3 poimirlem4.2 ( 𝜑𝑀 ∈ ℕ0 )
4 poimirlem4.3 ( 𝜑𝑀 < 𝑁 )
5 1 adantr ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝑁 ∈ ℕ )
6 2 adantr ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝐾 ∈ ℕ )
7 3 adantr ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝑀 ∈ ℕ0 )
8 4 adantr ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝑀 < 𝑁 )
9 xp1st ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 1st𝑡 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) )
10 elmapi ( ( 1st𝑡 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) → ( 1st𝑡 ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) )
11 9 10 syl ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 1st𝑡 ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) )
12 11 adantl ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( 1st𝑡 ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) )
13 xp2nd ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd𝑡 ) ∈ { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } )
14 fvex ( 2nd𝑡 ) ∈ V
15 f1oeq1 ( 𝑓 = ( 2nd𝑡 ) → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( 2nd𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) )
16 14 15 elab ( ( 2nd𝑡 ) ∈ { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ↔ ( 2nd𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )
17 13 16 sylib ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )
18 17 adantl ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( 2nd𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )
19 5 6 7 8 12 18 poimirlem3 ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 → ( ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) )
20 fvex ( 1st𝑡 ) ∈ V
21 snex { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ∈ V
22 20 21 unex ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∈ V
23 snex { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ∈ V
24 14 23 unex ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ∈ V
25 22 24 op1std ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( 1st𝑠 ) = ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
26 22 24 op2ndd ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( 2nd𝑠 ) = ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
27 26 imaeq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) )
28 27 xpeq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
29 26 imaeq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
30 29 xpeq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) )
31 28 30 uneq12d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) )
32 25 31 oveq12d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) )
33 32 uneq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
34 33 csbeq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
35 34 eqeq2d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
36 35 rexbidv ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
37 36 ralbidv ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
38 25 fveq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ‘ ( 𝑀 + 1 ) ) )
39 38 eqeq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ↔ ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ‘ ( 𝑀 + 1 ) ) = 0 ) )
40 26 fveq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ‘ ( 𝑀 + 1 ) ) )
41 40 eqeq1d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ↔ ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) )
42 37 39 41 3anbi123d ( 𝑠 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) )
43 42 elrab ( ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ↔ ( ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∘f + ( ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) )
44 19 43 syl6ibr ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 → ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) )
45 44 ralrimiva ( 𝜑 → ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 → ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) )
46 fveq2 ( 𝑠 = 𝑡 → ( 1st𝑠 ) = ( 1st𝑡 ) )
47 fveq2 ( 𝑠 = 𝑡 → ( 2nd𝑠 ) = ( 2nd𝑡 ) )
48 47 imaeq1d ( 𝑠 = 𝑡 → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) )
49 48 xpeq1d ( 𝑠 = 𝑡 → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
50 47 imaeq1d ( 𝑠 = 𝑡 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
51 50 xpeq1d ( 𝑠 = 𝑡 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) = ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) )
52 49 51 uneq12d ( 𝑠 = 𝑡 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) )
53 46 52 oveq12d ( 𝑠 = 𝑡 → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) = ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) )
54 53 uneq1d ( 𝑠 = 𝑡 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) )
55 54 csbeq1d ( 𝑠 = 𝑡 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
56 55 eqeq2d ( 𝑠 = 𝑡 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
57 56 rexbidv ( 𝑠 = 𝑡 → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
58 57 ralbidv ( 𝑠 = 𝑡 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
59 58 ralrab ( ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ↔ ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 → ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) )
60 45 59 sylibr ( 𝜑 → ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } )
61 xp1st ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 1st𝑘 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) )
62 elmapi ( ( 1st𝑘 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) → ( 1st𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) )
63 61 62 syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 1st𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) )
64 fzssp1 ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) )
65 fssres ( ( ( 1st𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ∧ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) )
66 63 64 65 sylancl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) )
67 ovex ( 0 ..^ 𝐾 ) ∈ V
68 ovex ( 1 ... 𝑀 ) ∈ V
69 67 68 elmap ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ↔ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) )
70 66 69 sylibr ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) )
71 70 ad2antlr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) )
72 xp2nd ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd𝑘 ) ∈ { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } )
73 fvex ( 2nd𝑘 ) ∈ V
74 f1oeq1 ( 𝑓 = ( 2nd𝑘 ) → ( 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ) )
75 73 74 elab ( ( 2nd𝑘 ) ∈ { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ↔ ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) )
76 72 75 sylib ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) )
77 f1of1 ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1→ ( 1 ... ( 𝑀 + 1 ) ) )
78 76 77 syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1→ ( 1 ... ( 𝑀 + 1 ) ) )
79 f1ores ( ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1→ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd𝑘 ) “ ( 1 ... 𝑀 ) ) )
80 78 64 79 sylancl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd𝑘 ) “ ( 1 ... 𝑀 ) ) )
81 80 ad2antlr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd𝑘 ) “ ( 1 ... 𝑀 ) ) )
82 dff1o3 ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –onto→ ( 1 ... ( 𝑀 + 1 ) ) ∧ Fun ( 2nd𝑘 ) ) )
83 82 simprbi ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → Fun ( 2nd𝑘 ) )
84 imadif ( Fun ( 2nd𝑘 ) → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) )
85 76 83 84 3syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) )
86 85 ad2antlr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) )
87 f1ofo ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –onto→ ( 1 ... ( 𝑀 + 1 ) ) )
88 foima ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) )
89 76 87 88 3syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) )
90 89 ad2antlr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) )
91 f1ofn ( ( 2nd𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( 2nd𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) )
92 76 91 syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) )
93 nn0p1nn ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ )
94 3 93 syl ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ )
95 elfz1end ( ( 𝑀 + 1 ) ∈ ℕ ↔ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) )
96 94 95 sylib ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) )
97 fnsnfv ( ( ( 2nd𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } = ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) )
98 92 96 97 syl2anr ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } = ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) )
99 sneq ( ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } = { ( 𝑀 + 1 ) } )
100 98 99 sylan9req ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) = { ( 𝑀 + 1 ) } )
101 90 100 difeq12d ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) )
102 86 101 eqtrd ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) )
103 1z 1 ∈ ℤ
104 nn0uz 0 = ( ℤ ‘ 0 )
105 1m1e0 ( 1 − 1 ) = 0
106 105 fveq2i ( ℤ ‘ ( 1 − 1 ) ) = ( ℤ ‘ 0 )
107 104 106 eqtr4i 0 = ( ℤ ‘ ( 1 − 1 ) )
108 3 107 eleqtrdi ( 𝜑𝑀 ∈ ( ℤ ‘ ( 1 − 1 ) ) )
109 fzsuc2 ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ( ℤ ‘ ( 1 − 1 ) ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) )
110 103 108 109 sylancr ( 𝜑 → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) )
111 110 difeq1d ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ∖ { ( 𝑀 + 1 ) } ) )
112 difun2 ( ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ∖ { ( 𝑀 + 1 ) } ) = ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } )
113 111 112 eqtrdi ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } ) )
114 3 nn0red ( 𝜑𝑀 ∈ ℝ )
115 ltp1 ( 𝑀 ∈ ℝ → 𝑀 < ( 𝑀 + 1 ) )
116 peano2re ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ )
117 ltnle ( ( 𝑀 ∈ ℝ ∧ ( 𝑀 + 1 ) ∈ ℝ ) → ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) )
118 116 117 mpdan ( 𝑀 ∈ ℝ → ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) )
119 115 118 mpbid ( 𝑀 ∈ ℝ → ¬ ( 𝑀 + 1 ) ≤ 𝑀 )
120 114 119 syl ( 𝜑 → ¬ ( 𝑀 + 1 ) ≤ 𝑀 )
121 elfzle2 ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) → ( 𝑀 + 1 ) ≤ 𝑀 )
122 120 121 nsyl ( 𝜑 → ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) )
123 difsn ( ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) → ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) )
124 122 123 syl ( 𝜑 → ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) )
125 113 124 eqtrd ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) )
126 125 imaeq2d ( 𝜑 → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd𝑘 ) “ ( 1 ... 𝑀 ) ) )
127 126 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd𝑘 ) “ ( 1 ... 𝑀 ) ) )
128 125 ad2antrr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) )
129 102 127 128 3eqtr3d ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ ( 1 ... 𝑀 ) ) = ( 1 ... 𝑀 ) )
130 129 f1oeq3d ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd𝑘 ) “ ( 1 ... 𝑀 ) ) ↔ ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) )
131 81 130 mpbid ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )
132 73 resex ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ V
133 f1oeq1 ( 𝑓 = ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) )
134 132 133 elab ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ↔ ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )
135 131 134 sylibr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } )
136 71 135 opelxpd ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) )
137 136 3ad2antr3 ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) )
138 3anass ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) )
139 138 biancomi ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
140 94 nnzd ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ )
141 uzid ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝑀 + 1 ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
142 peano2uz ( ( 𝑀 + 1 ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) → ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
143 140 141 142 3syl ( 𝜑 → ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
144 3 nn0zd ( 𝜑𝑀 ∈ ℤ )
145 1 nnzd ( 𝜑𝑁 ∈ ℤ )
146 zltp1le ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )
147 peano2z ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ )
148 eluz ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )
149 147 148 sylan ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) )
150 146 149 bitr4d ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
151 144 145 150 syl2anc ( 𝜑 → ( 𝑀 < 𝑁𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) )
152 4 151 mpbid ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) )
153 fzsplit2 ( ( ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) )
154 143 152 153 syl2anc ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) )
155 fzsn ( ( 𝑀 + 1 ) ∈ ℤ → ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) = { ( 𝑀 + 1 ) } )
156 140 155 syl ( 𝜑 → ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) = { ( 𝑀 + 1 ) } )
157 156 uneq1d ( 𝜑 → ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) = ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) )
158 154 157 eqtrd ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) )
159 158 xpeq1d ( 𝜑 → ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) )
160 159 uneq2d ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
161 xpundir ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( { ( 𝑀 + 1 ) } × { 0 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) )
162 ovex ( 𝑀 + 1 ) ∈ V
163 c0ex 0 ∈ V
164 162 163 xpsn ( { ( 𝑀 + 1 ) } × { 0 } ) = { ⟨ ( 𝑀 + 1 ) , 0 ⟩ }
165 164 uneq1i ( ( { ( 𝑀 + 1 ) } × { 0 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) )
166 161 165 eqtri ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) = ( { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) )
167 166 uneq2i ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
168 unass ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
169 167 168 eqtr4i ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) )
170 160 169 eqtrdi ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
171 170 ad3antrrr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
172 162 a1i ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 + 1 ) ∈ V )
173 163 a1i ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ V )
174 110 eqcomd ( 𝜑 → ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) = ( 1 ... ( 𝑀 + 1 ) ) )
175 174 ad3antrrr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) = ( 1 ... ( 𝑀 + 1 ) ) )
176 fveq2 ( 𝑛 = ( 𝑀 + 1 ) → ( ( 1st𝑘 ) ‘ 𝑛 ) = ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) )
177 fveq2 ( 𝑛 = ( 𝑀 + 1 ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) )
178 176 177 oveq12d ( 𝑛 = ( 𝑀 + 1 ) → ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) )
179 simplrl ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 )
180 imain ( Fun ( 2nd𝑘 ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) )
181 76 83 180 3syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) )
182 181 ad2antlr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) )
183 elfznn0 ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 )
184 183 nn0red ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ )
185 184 ltp1d ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 < ( 𝑗 + 1 ) )
186 fzdisj ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ∅ )
187 185 186 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ∅ )
188 187 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( 2nd𝑘 ) “ ∅ ) )
189 ima0 ( ( 2nd𝑘 ) “ ∅ ) = ∅
190 188 189 eqtrdi ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ )
191 182 190 sylan9req ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ )
192 simplr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) )
193 92 ad2antlr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( 2nd𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) )
194 nn0p1nn ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ )
195 nnuz ℕ = ( ℤ ‘ 1 )
196 194 195 eleqtrdi ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) )
197 fzss1 ( ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) )
198 183 196 197 3syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) )
199 elfzuz3 ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ𝑗 ) )
200 eluzp1p1 ( 𝑀 ∈ ( ℤ𝑗 ) → ( 𝑀 + 1 ) ∈ ( ℤ ‘ ( 𝑗 + 1 ) ) )
201 eluzfz2 ( ( 𝑀 + 1 ) ∈ ( ℤ ‘ ( 𝑗 + 1 ) ) → ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) )
202 199 200 201 3syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) )
203 198 202 jca ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
204 fnfvima ( ( ( 2nd𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ∈ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
205 204 3expb ( ( ( 2nd𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) → ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ∈ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
206 193 203 205 syl2an ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ∈ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
207 192 206 eqeltrrd ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 + 1 ) ∈ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
208 1ex 1 ∈ V
209 fnconstg ( 1 ∈ V → ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) )
210 208 209 ax-mp ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) )
211 fnconstg ( 0 ∈ V → ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
212 163 211 ax-mp ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) )
213 fvun2 ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∧ ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ∧ ( 𝑀 + 1 ) ∈ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) )
214 210 212 213 mp3an12 ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ∧ ( 𝑀 + 1 ) ∈ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) )
215 191 207 214 syl2anc ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) )
216 163 fvconst2 ( ( 𝑀 + 1 ) ∈ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) = 0 )
217 207 216 syl ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) = 0 )
218 215 217 eqtrd ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = 0 )
219 218 adantlrl ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = 0 )
220 179 219 oveq12d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) = ( 0 + 0 ) )
221 00id ( 0 + 0 ) = 0
222 220 221 eqtrdi ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) = 0 )
223 178 222 sylan9eqr ( ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 = ( 𝑀 + 1 ) ) → ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) = 0 )
224 172 173 175 223 fmptapd ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
225 224 uneq1d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
226 171 225 eqtrd ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
227 elmapfn ( ( 1st𝑘 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) → ( 1st𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) )
228 61 227 syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 1st𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) )
229 fnssres ( ( ( 1st𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) Fn ( 1 ... 𝑀 ) )
230 228 64 229 sylancl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) Fn ( 1 ... 𝑀 ) )
231 230 ad3antlr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) Fn ( 1 ... 𝑀 ) )
232 fnconstg ( 0 ∈ V → ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
233 163 232 ax-mp ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) )
234 210 233 pm3.2i ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
235 imain ( Fun ( 2nd𝑘 ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
236 76 83 235 3syl ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
237 fzdisj ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ∅ )
238 185 237 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ∅ )
239 238 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( 2nd𝑘 ) “ ∅ ) )
240 239 189 eqtrdi ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ )
241 236 240 sylan9req ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ )
242 fnun ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ∧ ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
243 234 241 242 sylancr ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
244 243 ad4ant24 ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
245 101 adantr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) )
246 85 ad3antlr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) )
247 183 194 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ℕ )
248 247 195 eleqtrdi ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) )
249 fzsplit2 ( ( ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑀 ∈ ( ℤ𝑗 ) ) → ( 1 ... 𝑀 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
250 248 199 249 syl2anc ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
251 128 250 sylan9eq ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
252 251 imaeq2d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
253 246 252 eqtr3d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
254 125 ad3antrrr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) )
255 245 253 254 3eqtr3rd ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... 𝑀 ) = ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
256 imaundi ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
257 255 256 eqtrdi ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... 𝑀 ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) )
258 257 fneq2d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ↔ ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) )
259 244 258 mpbird ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) )
260 fzss2 ( 𝑀 ∈ ( ℤ𝑗 ) → ( 1 ... 𝑗 ) ⊆ ( 1 ... 𝑀 ) )
261 resima2 ( ( 1 ... 𝑗 ) ⊆ ( 1 ... 𝑀 ) → ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) )
262 199 260 261 3syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) )
263 262 xpeq1d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
264 183 196 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) )
265 fzss1 ( ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑗 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) )
266 resima2 ( ( ( 𝑗 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) → ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
267 264 265 266 3syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
268 267 xpeq1d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) = ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) )
269 263 268 uneq12d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) )
270 269 adantl ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) )
271 270 fneq1d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ↔ ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ) )
272 259 271 mpbird ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) )
273 fzfid ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... 𝑀 ) ∈ Fin )
274 inidm ( ( 1 ... 𝑀 ) ∩ ( 1 ... 𝑀 ) ) = ( 1 ... 𝑀 )
275 fvres ( 𝑛 ∈ ( 1 ... 𝑀 ) → ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑛 ) = ( ( 1st𝑘 ) ‘ 𝑛 ) )
276 275 adantl ( ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑛 ) = ( ( 1st𝑘 ) ‘ 𝑛 ) )
277 disjsn ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ↔ ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) )
278 122 277 sylibr ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ )
279 278 ad3antrrr ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ )
280 259 279 jca ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) )
281 fnconstg ( 0 ∈ V → ( { ( 𝑀 + 1 ) } × { 0 } ) Fn { ( 𝑀 + 1 ) } )
282 163 281 ax-mp ( { ( 𝑀 + 1 ) } × { 0 } ) Fn { ( 𝑀 + 1 ) }
283 fvun1 ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( { ( 𝑀 + 1 ) } × { 0 } ) Fn { ( 𝑀 + 1 ) } ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) )
284 282 283 mp3an2 ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) )
285 284 anassrs ( ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) )
286 280 285 sylan ( ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) )
287 247 nnzd ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ℤ )
288 183 nn0cnd ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℂ )
289 pncan1 ( 𝑗 ∈ ℂ → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 )
290 288 289 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 )
291 290 fveq2d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ℤ ‘ ( ( 𝑗 + 1 ) − 1 ) ) = ( ℤ𝑗 ) )
292 199 291 eleqtrrd ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ ‘ ( ( 𝑗 + 1 ) − 1 ) ) )
293 fzsuc2 ( ( ( 𝑗 + 1 ) ∈ ℤ ∧ 𝑀 ∈ ( ℤ ‘ ( ( 𝑗 + 1 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) = ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) )
294 287 292 293 syl2anc ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) = ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) )
295 294 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( 2nd𝑘 ) “ ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) )
296 imaundi ( ( 2nd𝑘 ) “ ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) )
297 295 296 eqtrdi ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) )
298 297 xpeq1d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) × { 0 } ) )
299 xpundir ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) ) × { 0 } ) = ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) )
300 298 299 eqtrdi ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) )
301 300 uneq2d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) )
302 unass ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) = ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) )
303 301 302 eqtr4di ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) )
304 303 adantl ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) )
305 98 xpeq1d ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) = ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) )
306 305 uneq2d ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) )
307 306 adantr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) )
308 304 307 eqtr4d ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) )
309 99 xpeq1d ( ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → ( { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) = ( { ( 𝑀 + 1 ) } × { 0 } ) )
310 309 uneq2d ( ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) )
311 308 310 sylan9eq ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) )
312 311 an32s ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) )
313 312 fveq1d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
314 313 adantr ( ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
315 269 fveq1d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) )
316 315 ad2antlr ( ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) )
317 286 314 316 3eqtr4rd ( ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) )
318 231 272 273 273 274 276 317 offval ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
319 318 uneq1d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) )
320 319 adantlrl ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) )
321 228 adantr ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1st𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) )
322 210 212 pm3.2i ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
323 181 190 sylan9req ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ )
324 fnun ( ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ∧ ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) )
325 322 323 324 sylancr ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) )
326 peano2uz ( 𝑀 ∈ ( ℤ𝑗 ) → ( 𝑀 + 1 ) ∈ ( ℤ𝑗 ) )
327 199 326 syl ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ𝑗 ) )
328 fzsplit2 ( ( ( 𝑗 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ ( 𝑀 + 1 ) ∈ ( ℤ𝑗 ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
329 264 327 328 syl2anc ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
330 329 imaeq2d ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) )
331 imaundi ( ( 2nd𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
332 330 331 eqtr2di ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( 2nd𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) )
333 332 89 sylan9eqr ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) )
334 333 fneq2d ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ↔ ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) )
335 325 334 mpbid ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( 1 ... ( 𝑀 + 1 ) ) )
336 fzfid ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... ( 𝑀 + 1 ) ) ∈ Fin )
337 inidm ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) )
338 eqidd ( ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 1st𝑘 ) ‘ 𝑛 ) = ( ( 1st𝑘 ) ‘ 𝑛 ) )
339 eqidd ( ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) )
340 321 335 336 336 337 338 339 offval ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
341 340 uneq1d ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
342 341 ad4ant24 ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
343 226 320 342 3eqtr4rd ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) )
344 343 csbeq1d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
345 344 eqeq2d ( ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
346 345 rexbidva ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
347 346 ralbidv ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
348 347 biimpd ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
349 348 impr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
350 139 349 sylan2b ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
351 1st2nd2 ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → 𝑘 = ⟨ ( 1st𝑘 ) , ( 2nd𝑘 ) ⟩ )
352 351 ad2antlr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 𝑘 = ⟨ ( 1st𝑘 ) , ( 2nd𝑘 ) ⟩ )
353 fnsnsplit ( ( ( 1st𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( 1st𝑘 ) = ( ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) )
354 228 96 353 syl2anr ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( 1st𝑘 ) = ( ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) )
355 354 adantr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) → ( 1st𝑘 ) = ( ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) )
356 125 reseq2d ( 𝜑 → ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) )
357 356 adantr ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) )
358 opeq2 ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 → ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ = ⟨ ( 𝑀 + 1 ) , 0 ⟩ )
359 358 sneqd ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 → { ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } = { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } )
360 uneq12 ( ( ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∧ { ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } = { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) → ( ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) = ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
361 357 359 360 syl2an ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) → ( ( ( 1st𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) = ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
362 355 361 eqtrd ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) → ( 1st𝑘 ) = ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
363 362 adantrr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( 1st𝑘 ) = ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
364 fnsnsplit ( ( ( 2nd𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( 2nd𝑘 ) = ( ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) )
365 92 96 364 syl2anr ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( 2nd𝑘 ) = ( ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) )
366 365 adantr ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( 2nd𝑘 ) = ( ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) )
367 125 reseq2d ( 𝜑 → ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) )
368 367 adantr ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) )
369 opeq2 ( ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ = ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ )
370 369 sneqd ( ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → { ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } = { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } )
371 uneq12 ( ( ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∧ { ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } = { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) → ( ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) = ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
372 368 370 371 syl2an ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( 2nd𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) ⟩ } ) = ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
373 366 372 eqtrd ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( 2nd𝑘 ) = ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
374 373 adantrl ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( 2nd𝑘 ) = ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
375 363 374 opeq12d ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ⟨ ( 1st𝑘 ) , ( 2nd𝑘 ) ⟩ = ⟨ ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
376 352 375 eqtrd ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 𝑘 = ⟨ ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
377 376 3adantr1 ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 𝑘 = ⟨ ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
378 fvex ( 1st𝑘 ) ∈ V
379 378 resex ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ V
380 379 132 op1std ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( 1st𝑡 ) = ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) )
381 379 132 op2ndd ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( 2nd𝑡 ) = ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) )
382 381 imaeq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) = ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) )
383 382 xpeq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
384 381 imaeq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) )
385 384 xpeq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) = ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) )
386 383 385 uneq12d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) )
387 380 386 oveq12d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) = ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) )
388 387 uneq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) )
389 388 csbeq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
390 389 eqeq2d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
391 390 rexbidv ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
392 391 ralbidv ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
393 380 uneq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
394 381 uneq1d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
395 393 394 opeq12d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ = ⟨ ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
396 395 eqeq2d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ↔ 𝑘 = ⟨ ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
397 392 396 anbi12d ( 𝑡 = ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) ) )
398 397 rspcev ( ( ⟨ ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ⟩ ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( ( 1st𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( ( 2nd𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) ) → ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
399 137 350 377 398 syl12anc ( ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
400 399 ex ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) ) )
401 elrabi ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } → 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) )
402 elrabi ( 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } → 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) )
403 401 402 anim12i ( ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∧ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) → ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) )
404 eqtr2 ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
405 22 24 opth ( ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ↔ ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∧ ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ) )
406 difeq1 ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) → ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
407 difun2 ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } )
408 difun2 ( ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } )
409 406 407 408 3eqtr3g ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) → ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
410 difeq1 ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) → ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
411 difun2 ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } )
412 difun2 ( ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } )
413 410 411 412 3eqtr3g ( ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) → ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
414 409 413 anim12i ( ( ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∧ ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ) → ( ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∧ ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ) )
415 405 414 sylbi ( ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ → ( ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∧ ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ) )
416 404 415 syl ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → ( ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∧ ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ) )
417 elmapfn ( ( 1st𝑡 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) → ( 1st𝑡 ) Fn ( 1 ... 𝑀 ) )
418 fnop ( ( ( 1st𝑡 ) Fn ( 1 ... 𝑀 ) ∧ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑡 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) )
419 418 ex ( ( 1st𝑡 ) Fn ( 1 ... 𝑀 ) → ( ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
420 9 417 419 3syl ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
421 420 122 nsyli ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑡 ) ) )
422 421 impcom ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑡 ) )
423 difsn ( ¬ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑡 ) → ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( 1st𝑡 ) )
424 422 423 syl ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( 1st𝑡 ) )
425 xp1st ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 1st𝑛 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) )
426 elmapfn ( ( 1st𝑛 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) → ( 1st𝑛 ) Fn ( 1 ... 𝑀 ) )
427 fnop ( ( ( 1st𝑛 ) Fn ( 1 ... 𝑀 ) ∧ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑛 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) )
428 427 ex ( ( 1st𝑛 ) Fn ( 1 ... 𝑀 ) → ( ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
429 425 426 428 3syl ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
430 429 122 nsyli ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑛 ) ) )
431 430 impcom ( ( 𝜑𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑛 ) )
432 difsn ( ¬ ⟨ ( 𝑀 + 1 ) , 0 ⟩ ∈ ( 1st𝑛 ) → ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( 1st𝑛 ) )
433 431 432 syl ( ( 𝜑𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( 1st𝑛 ) )
434 424 433 eqeqan12d ( ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ∧ ( 𝜑𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ↔ ( 1st𝑡 ) = ( 1st𝑛 ) ) )
435 434 anandis ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ↔ ( 1st𝑡 ) = ( 1st𝑛 ) ) )
436 f1ofn ( ( 2nd𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → ( 2nd𝑡 ) Fn ( 1 ... 𝑀 ) )
437 fnop ( ( ( 2nd𝑡 ) Fn ( 1 ... 𝑀 ) ∧ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑡 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) )
438 437 ex ( ( 2nd𝑡 ) Fn ( 1 ... 𝑀 ) → ( ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
439 17 436 438 3syl ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
440 439 122 nsyli ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑡 ) ) )
441 440 impcom ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑡 ) )
442 difsn ( ¬ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑡 ) → ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( 2nd𝑡 ) )
443 441 442 syl ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( 2nd𝑡 ) )
444 xp2nd ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd𝑛 ) ∈ { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } )
445 fvex ( 2nd𝑛 ) ∈ V
446 f1oeq1 ( 𝑓 = ( 2nd𝑛 ) → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( 2nd𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) )
447 445 446 elab ( ( 2nd𝑛 ) ∈ { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ↔ ( 2nd𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )
448 444 447 sylib ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) )
449 f1ofn ( ( 2nd𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → ( 2nd𝑛 ) Fn ( 1 ... 𝑀 ) )
450 fnop ( ( ( 2nd𝑛 ) Fn ( 1 ... 𝑀 ) ∧ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑛 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) )
451 450 ex ( ( 2nd𝑛 ) Fn ( 1 ... 𝑀 ) → ( ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
452 448 449 451 3syl ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) )
453 452 122 nsyli ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑛 ) ) )
454 453 impcom ( ( 𝜑𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑛 ) )
455 difsn ( ¬ ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ ∈ ( 2nd𝑛 ) → ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( 2nd𝑛 ) )
456 454 455 syl ( ( 𝜑𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( 2nd𝑛 ) )
457 443 456 eqeqan12d ( ( ( 𝜑𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ∧ ( 𝜑𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ↔ ( 2nd𝑡 ) = ( 2nd𝑛 ) ) )
458 457 anandis ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ↔ ( 2nd𝑡 ) = ( 2nd𝑛 ) ) )
459 435 458 anbi12d ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∧ ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ) ↔ ( ( 1st𝑡 ) = ( 1st𝑛 ) ∧ ( 2nd𝑡 ) = ( 2nd𝑛 ) ) ) )
460 xpopth ( ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( ( 1st𝑡 ) = ( 1st𝑛 ) ∧ ( 2nd𝑡 ) = ( 2nd𝑛 ) ) ↔ 𝑡 = 𝑛 ) )
461 460 adantl ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 1st𝑡 ) = ( 1st𝑛 ) ∧ ( 2nd𝑡 ) = ( 2nd𝑛 ) ) ↔ 𝑡 = 𝑛 ) )
462 459 461 bitrd ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( ( 1st𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) ∧ ( ( 2nd𝑡 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∖ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ) ↔ 𝑡 = 𝑛 ) )
463 416 462 syl5ib ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) )
464 403 463 sylan2 ( ( 𝜑 ∧ ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∧ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ) ) → ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) )
465 464 ralrimivva ( 𝜑 → ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) )
466 465 adantr ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) )
467 400 466 jctird ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) ) ) )
468 fveq2 ( 𝑡 = 𝑛 → ( 1st𝑡 ) = ( 1st𝑛 ) )
469 468 uneq1d ( 𝑡 = 𝑛 → ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) = ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) )
470 fveq2 ( 𝑡 = 𝑛 → ( 2nd𝑡 ) = ( 2nd𝑛 ) )
471 470 uneq1d ( 𝑡 = 𝑛 → ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) = ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) )
472 469 471 opeq12d ( 𝑡 = 𝑛 → ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
473 472 eqeq2d ( 𝑡 = 𝑛 → ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ↔ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
474 473 reu4 ( ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ↔ ( ∃ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) ) )
475 58 rexrab ( ∃ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ↔ ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
476 475 anbi1i ( ( ∃ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) ) ↔ ( ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) ) )
477 474 476 bitri ( ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ↔ ( ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑡 ) ∘f + ( ( ( ( 2nd𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ( ( 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∧ 𝑘 = ⟨ ( ( 1st𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑛 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) → 𝑡 = 𝑛 ) ) )
478 467 477 syl6ibr ( ( 𝜑𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
479 478 ralrimiva ( 𝜑 → ∀ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
480 fveq2 ( 𝑠 = 𝑘 → ( 1st𝑠 ) = ( 1st𝑘 ) )
481 fveq2 ( 𝑠 = 𝑘 → ( 2nd𝑠 ) = ( 2nd𝑘 ) )
482 481 imaeq1d ( 𝑠 = 𝑘 → ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) )
483 482 xpeq1d ( 𝑠 = 𝑘 → ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
484 481 imaeq1d ( 𝑠 = 𝑘 → ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) )
485 484 xpeq1d ( 𝑠 = 𝑘 → ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) )
486 483 485 uneq12d ( 𝑠 = 𝑘 → ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) )
487 480 486 oveq12d ( 𝑠 = 𝑘 → ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) )
488 487 uneq1d ( 𝑠 = 𝑘 → ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) )
489 488 csbeq1d ( 𝑠 = 𝑘 ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 )
490 489 eqeq2d ( 𝑠 = 𝑘 → ( 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
491 490 rexbidv ( 𝑠 = 𝑘 → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
492 491 ralbidv ( 𝑠 = 𝑘 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ) )
493 480 fveq1d ( 𝑠 = 𝑘 → ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) )
494 493 eqeq1d ( 𝑠 = 𝑘 → ( ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ↔ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) )
495 481 fveq1d ( 𝑠 = 𝑘 → ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) )
496 495 eqeq1d ( 𝑠 = 𝑘 → ( ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ↔ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) )
497 492 494 496 3anbi123d ( 𝑠 = 𝑘 → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) )
498 497 ralrab ( ∀ 𝑘 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ↔ ∀ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑘 ) ∘f + ( ( ( ( 2nd𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
499 479 498 sylibr ( 𝜑 → ∀ 𝑘 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
500 eqid ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ↦ ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) = ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ↦ ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ )
501 500 f1ompt ( ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ↦ ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) : { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ↔ ( ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∧ ∀ 𝑘 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } 𝑘 = ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) )
502 60 499 501 sylanbrc ( 𝜑 → ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ↦ ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) : { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } )
503 ovex ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ∈ V
504 ovex ( ( 1 ... 𝑀 ) ↑m ( 1 ... 𝑀 ) ) ∈ V
505 f1of ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → 𝑓 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) )
506 505 ss2abi { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ⊆ { 𝑓𝑓 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) }
507 68 68 mapval ( ( 1 ... 𝑀 ) ↑m ( 1 ... 𝑀 ) ) = { 𝑓𝑓 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) }
508 506 507 sseqtrri { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ⊆ ( ( 1 ... 𝑀 ) ↑m ( 1 ... 𝑀 ) )
509 504 508 ssexi { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ∈ V
510 503 509 xpex ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∈ V
511 510 rabex { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ∈ V
512 511 f1oen ( ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ↦ ⟨ ( ( 1st𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , 0 ⟩ } ) , ( ( 2nd𝑡 ) ∪ { ⟨ ( 𝑀 + 1 ) , ( 𝑀 + 1 ) ⟩ } ) ⟩ ) : { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } )
513 502 512 syl ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ( ( ( 1st𝑠 ) ∘f + ( ( ( ( 2nd𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 𝐵 ∧ ( ( 1st𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } )