Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem4.1 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
poimirlem4.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
poimirlem4.3 |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝑁 ∈ ℕ ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝐾 ∈ ℕ ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝑀 ∈ ℕ0 ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → 𝑀 < 𝑁 ) |
9 |
|
xp1st |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 1st ‘ 𝑡 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ) |
10 |
|
elmapi |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) → ( 1st ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 1st ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( 1st ‘ 𝑡 ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ) |
13 |
|
xp2nd |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd ‘ 𝑡 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) |
14 |
|
fvex |
⊢ ( 2nd ‘ 𝑡 ) ∈ V |
15 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ 𝑡 ) → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( 2nd ‘ 𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) |
16 |
14 15
|
elab |
⊢ ( ( 2nd ‘ 𝑡 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ↔ ( 2nd ‘ 𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
17 |
13 16
|
sylib |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd ‘ 𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( 2nd ‘ 𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
19 |
5 6 7 8 12 18
|
poimirlem3 |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → ( 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) ) |
20 |
|
fvex |
⊢ ( 1st ‘ 𝑡 ) ∈ V |
21 |
|
snex |
⊢ { 〈 ( 𝑀 + 1 ) , 0 〉 } ∈ V |
22 |
20 21
|
unex |
⊢ ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∈ V |
23 |
|
snex |
⊢ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ∈ V |
24 |
14 23
|
unex |
⊢ ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ V |
25 |
22 24
|
op1std |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( 1st ‘ 𝑠 ) = ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
26 |
22 24
|
op2ndd |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( 2nd ‘ 𝑠 ) = ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
27 |
26
|
imaeq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ) |
28 |
27
|
xpeq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
29 |
26
|
imaeq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
30 |
29
|
xpeq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) |
31 |
28 30
|
uneq12d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) |
32 |
25 31
|
oveq12d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ) |
33 |
32
|
uneq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
34 |
33
|
csbeq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
35 |
34
|
eqeq2d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
36 |
35
|
rexbidv |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
37 |
36
|
ralbidv |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
38 |
25
|
fveq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) ) |
39 |
38
|
eqeq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ↔ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ) ) |
40 |
26
|
fveq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) ) |
41 |
40
|
eqeq1d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ↔ ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) |
42 |
37 39 41
|
3anbi123d |
⊢ ( 𝑠 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) |
43 |
42
|
elrab |
⊢ ( 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ↔ ( 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) |
44 |
19 43
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) ) |
45 |
44
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) ) |
46 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 1st ‘ 𝑠 ) = ( 1st ‘ 𝑡 ) ) |
47 |
|
fveq2 |
⊢ ( 𝑠 = 𝑡 → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ 𝑡 ) ) |
48 |
47
|
imaeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) ) |
49 |
48
|
xpeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
50 |
47
|
imaeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
51 |
50
|
xpeq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
52 |
49 51
|
uneq12d |
⊢ ( 𝑠 = 𝑡 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) |
53 |
46 52
|
oveq12d |
⊢ ( 𝑠 = 𝑡 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ) |
54 |
53
|
uneq1d |
⊢ ( 𝑠 = 𝑡 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
55 |
54
|
csbeq1d |
⊢ ( 𝑠 = 𝑡 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
56 |
55
|
eqeq2d |
⊢ ( 𝑠 = 𝑡 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
57 |
56
|
rexbidv |
⊢ ( 𝑠 = 𝑡 → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
58 |
57
|
ralbidv |
⊢ ( 𝑠 = 𝑡 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
59 |
58
|
ralrab |
⊢ ( ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ↔ ∀ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) ) |
60 |
45 59
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) |
61 |
|
xp1st |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 1st ‘ 𝑘 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ) |
62 |
|
elmapi |
⊢ ( ( 1st ‘ 𝑘 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) → ( 1st ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ) |
63 |
61 62
|
syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 1st ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ) |
64 |
|
fzssp1 |
⊢ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) |
65 |
|
fssres |
⊢ ( ( ( 1st ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ∧ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ) |
66 |
63 64 65
|
sylancl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ) |
67 |
|
ovex |
⊢ ( 0 ..^ 𝐾 ) ∈ V |
68 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
69 |
67 68
|
elmap |
⊢ ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ↔ ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ) |
70 |
66 69
|
sylibr |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ) |
71 |
70
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ) |
72 |
|
xp2nd |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd ‘ 𝑘 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) |
73 |
|
fvex |
⊢ ( 2nd ‘ 𝑘 ) ∈ V |
74 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ 𝑘 ) → ( 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
75 |
73 74
|
elab |
⊢ ( ( 2nd ‘ 𝑘 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ↔ ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ) |
76 |
72 75
|
sylib |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ) |
77 |
|
f1of1 |
⊢ ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1→ ( 1 ... ( 𝑀 + 1 ) ) ) |
78 |
76 77
|
syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1→ ( 1 ... ( 𝑀 + 1 ) ) ) |
79 |
|
f1ores |
⊢ ( ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1→ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑀 ) ) ) |
80 |
78 64 79
|
sylancl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑀 ) ) ) |
81 |
80
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑀 ) ) ) |
82 |
|
dff1o3 |
⊢ ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –onto→ ( 1 ... ( 𝑀 + 1 ) ) ∧ Fun ◡ ( 2nd ‘ 𝑘 ) ) ) |
83 |
82
|
simprbi |
⊢ ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → Fun ◡ ( 2nd ‘ 𝑘 ) ) |
84 |
|
imadif |
⊢ ( Fun ◡ ( 2nd ‘ 𝑘 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) ) |
85 |
76 83 84
|
3syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) ) |
86 |
85
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) ) |
87 |
|
f1ofo |
⊢ ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –onto→ ( 1 ... ( 𝑀 + 1 ) ) ) |
88 |
|
foima |
⊢ ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
89 |
76 87 88
|
3syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
90 |
89
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
91 |
|
f1ofn |
⊢ ( ( 2nd ‘ 𝑘 ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) → ( 2nd ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
92 |
76 91
|
syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 2nd ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
93 |
|
nn0p1nn |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ ) |
94 |
3 93
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
95 |
|
elfz1end |
⊢ ( ( 𝑀 + 1 ) ∈ ℕ ↔ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
96 |
94 95
|
sylib |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
97 |
|
fnsnfv |
⊢ ( ( ( 2nd ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } = ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) |
98 |
92 96 97
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } = ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) |
99 |
|
sneq |
⊢ ( ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } = { ( 𝑀 + 1 ) } ) |
100 |
98 99
|
sylan9req |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) = { ( 𝑀 + 1 ) } ) |
101 |
90 100
|
difeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) |
102 |
86 101
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) |
103 |
|
1z |
⊢ 1 ∈ ℤ |
104 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
105 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
106 |
105
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
107 |
104 106
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
108 |
3 107
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
109 |
|
fzsuc2 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
110 |
103 108 109
|
sylancr |
⊢ ( 𝜑 → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
111 |
110
|
difeq1d |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ∖ { ( 𝑀 + 1 ) } ) ) |
112 |
|
difun2 |
⊢ ( ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ∖ { ( 𝑀 + 1 ) } ) = ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } ) |
113 |
111 112
|
eqtrdi |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } ) ) |
114 |
3
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
115 |
|
ltp1 |
⊢ ( 𝑀 ∈ ℝ → 𝑀 < ( 𝑀 + 1 ) ) |
116 |
|
peano2re |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) |
117 |
|
ltnle |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑀 + 1 ) ∈ ℝ ) → ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
118 |
116 117
|
mpdan |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
119 |
115 118
|
mpbid |
⊢ ( 𝑀 ∈ ℝ → ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) |
120 |
114 119
|
syl |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) |
121 |
|
elfzle2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) → ( 𝑀 + 1 ) ≤ 𝑀 ) |
122 |
120 121
|
nsyl |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
123 |
|
difsn |
⊢ ( ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) → ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) ) |
124 |
122 123
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) ) |
125 |
113 124
|
eqtrd |
⊢ ( 𝜑 → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) ) |
126 |
125
|
imaeq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑀 ) ) ) |
127 |
126
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑀 ) ) ) |
128 |
125
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) ) |
129 |
102 127 128
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑀 ) ) = ( 1 ... 𝑀 ) ) |
130 |
129
|
f1oeq3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑀 ) ) ↔ ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) |
131 |
81 130
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
132 |
73
|
resex |
⊢ ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ V |
133 |
|
f1oeq1 |
⊢ ( 𝑓 = ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) |
134 |
132 133
|
elab |
⊢ ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ↔ ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
135 |
131 134
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) |
136 |
71 135
|
opelxpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) |
137 |
136
|
3ad2antr3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) |
138 |
|
3anass |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) |
139 |
138
|
biancomi |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
140 |
94
|
nnzd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
141 |
|
uzid |
⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
142 |
|
peano2uz |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
143 |
140 141 142
|
3syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
144 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
145 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
146 |
|
zltp1le |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
147 |
|
peano2z |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) |
148 |
|
eluz |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
149 |
147 148
|
sylan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
150 |
146 149
|
bitr4d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
151 |
144 145 150
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
152 |
4 151
|
mpbid |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
153 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
154 |
143 152 153
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
155 |
|
fzsn |
⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) = { ( 𝑀 + 1 ) } ) |
156 |
140 155
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) = { ( 𝑀 + 1 ) } ) |
157 |
156
|
uneq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) = ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
158 |
154 157
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
159 |
158
|
xpeq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
160 |
159
|
uneq2d |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) |
161 |
|
xpundir |
⊢ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( { ( 𝑀 + 1 ) } × { 0 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
162 |
|
ovex |
⊢ ( 𝑀 + 1 ) ∈ V |
163 |
|
c0ex |
⊢ 0 ∈ V |
164 |
162 163
|
xpsn |
⊢ ( { ( 𝑀 + 1 ) } × { 0 } ) = { 〈 ( 𝑀 + 1 ) , 0 〉 } |
165 |
164
|
uneq1i |
⊢ ( ( { ( 𝑀 + 1 ) } × { 0 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
166 |
161 165
|
eqtri |
⊢ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
167 |
166
|
uneq2i |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
168 |
|
unass |
⊢ ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
169 |
167 168
|
eqtr4i |
⊢ ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
170 |
160 169
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
171 |
170
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
172 |
162
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 + 1 ) ∈ V ) |
173 |
163
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ V ) |
174 |
110
|
eqcomd |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
175 |
174
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
176 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑀 + 1 ) → ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) = ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) ) |
177 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑀 + 1 ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) |
178 |
176 177
|
oveq12d |
⊢ ( 𝑛 = ( 𝑀 + 1 ) → ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) ) |
179 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
180 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ 𝑘 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
181 |
76 83 180
|
3syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
182 |
181
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
183 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
184 |
183
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
185 |
184
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 < ( 𝑗 + 1 ) ) |
186 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ∅ ) |
187 |
185 186
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ∅ ) |
188 |
187
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( 2nd ‘ 𝑘 ) “ ∅ ) ) |
189 |
|
ima0 |
⊢ ( ( 2nd ‘ 𝑘 ) “ ∅ ) = ∅ |
190 |
188 189
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) |
191 |
182 190
|
sylan9req |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) |
192 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) |
193 |
92
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( 2nd ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
194 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
195 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
196 |
194 195
|
eleqtrdi |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
197 |
|
fzss1 |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) |
198 |
183 196 197
|
3syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) |
199 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
200 |
|
eluzp1p1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
201 |
|
eluzfz2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
202 |
199 200 201
|
3syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
203 |
198 202
|
jca |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
204 |
|
fnfvima |
⊢ ( ( ( 2nd ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) ∈ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
205 |
204
|
3expb |
⊢ ( ( ( 2nd ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) → ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) ∈ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
206 |
193 203 205
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) ∈ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
207 |
192 206
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 + 1 ) ∈ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
208 |
|
1ex |
⊢ 1 ∈ V |
209 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ) |
210 |
208 209
|
ax-mp |
⊢ ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) |
211 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
212 |
163 211
|
ax-mp |
⊢ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
213 |
|
fvun2 |
⊢ ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∧ ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ∧ ( 𝑀 + 1 ) ∈ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) ) |
214 |
210 212 213
|
mp3an12 |
⊢ ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ∧ ( 𝑀 + 1 ) ∈ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) ) |
215 |
191 207 214
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) ) |
216 |
163
|
fvconst2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
217 |
207 216
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
218 |
215 217
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
219 |
218
|
adantlrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
220 |
179 219
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) = ( 0 + 0 ) ) |
221 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
222 |
220 221
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) = 0 ) |
223 |
178 222
|
sylan9eqr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 = ( 𝑀 + 1 ) ) → ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) = 0 ) |
224 |
172 173 175 223
|
fmptapd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ) |
225 |
224
|
uneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
226 |
171 225
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
227 |
|
elmapfn |
⊢ ( ( 1st ‘ 𝑘 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) → ( 1st ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
228 |
61 227
|
syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( 1st ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
229 |
|
fnssres |
⊢ ( ( ( 1st ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 1 ... 𝑀 ) ⊆ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) Fn ( 1 ... 𝑀 ) ) |
230 |
228 64 229
|
sylancl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) Fn ( 1 ... 𝑀 ) ) |
231 |
230
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) Fn ( 1 ... 𝑀 ) ) |
232 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
233 |
163 232
|
ax-mp |
⊢ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
234 |
210 233
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
235 |
|
imain |
⊢ ( Fun ◡ ( 2nd ‘ 𝑘 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
236 |
76 83 235
|
3syl |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
237 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ∅ ) |
238 |
185 237
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ∅ ) |
239 |
238
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( 2nd ‘ 𝑘 ) “ ∅ ) ) |
240 |
239 189
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ ) |
241 |
236 240
|
sylan9req |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ ) |
242 |
|
fnun |
⊢ ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ∧ ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
243 |
234 241 242
|
sylancr |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
244 |
243
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
245 |
101
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) |
246 |
85
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) ) |
247 |
183 194
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ℕ ) |
248 |
247 195
|
eleqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
249 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑀 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
250 |
248 199 249
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
251 |
128 250
|
sylan9eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
252 |
251
|
imaeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
253 |
246 252
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ∖ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
254 |
125
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) = ( 1 ... 𝑀 ) ) |
255 |
245 253 254
|
3eqtr3rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... 𝑀 ) = ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
256 |
|
imaundi |
⊢ ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
257 |
255 256
|
eqtrdi |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... 𝑀 ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
258 |
257
|
fneq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ↔ ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) ) |
259 |
244 258
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ) |
260 |
|
fzss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 1 ... 𝑗 ) ⊆ ( 1 ... 𝑀 ) ) |
261 |
|
resima2 |
⊢ ( ( 1 ... 𝑗 ) ⊆ ( 1 ... 𝑀 ) → ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ) |
262 |
199 260 261
|
3syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ) |
263 |
262
|
xpeq1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
264 |
183 196
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
265 |
|
fzss1 |
⊢ ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) → ( ( 𝑗 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) ) |
266 |
|
resima2 |
⊢ ( ( ( 𝑗 + 1 ) ... 𝑀 ) ⊆ ( 1 ... 𝑀 ) → ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
267 |
264 265 266
|
3syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
268 |
267
|
xpeq1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
269 |
263 268
|
uneq12d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) |
270 |
269
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) |
271 |
270
|
fneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ↔ ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ) ) |
272 |
259 271
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ) |
273 |
|
fzfid |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... 𝑀 ) ∈ Fin ) |
274 |
|
inidm |
⊢ ( ( 1 ... 𝑀 ) ∩ ( 1 ... 𝑀 ) ) = ( 1 ... 𝑀 ) |
275 |
|
fvres |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑛 ) = ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) ) |
276 |
275
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑛 ) = ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) ) |
277 |
|
disjsn |
⊢ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ↔ ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
278 |
122 277
|
sylibr |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) |
279 |
278
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) |
280 |
259 279
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) ) |
281 |
|
fnconstg |
⊢ ( 0 ∈ V → ( { ( 𝑀 + 1 ) } × { 0 } ) Fn { ( 𝑀 + 1 ) } ) |
282 |
163 281
|
ax-mp |
⊢ ( { ( 𝑀 + 1 ) } × { 0 } ) Fn { ( 𝑀 + 1 ) } |
283 |
|
fvun1 |
⊢ ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( { ( 𝑀 + 1 ) } × { 0 } ) Fn { ( 𝑀 + 1 ) } ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
284 |
282 283
|
mp3an2 |
⊢ ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
285 |
284
|
anassrs |
⊢ ( ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
286 |
280 285
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
287 |
247
|
nnzd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ℤ ) |
288 |
183
|
nn0cnd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℂ ) |
289 |
|
pncan1 |
⊢ ( 𝑗 ∈ ℂ → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
290 |
288 289
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 ) |
291 |
290
|
fveq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ℤ≥ ‘ ( ( 𝑗 + 1 ) − 1 ) ) = ( ℤ≥ ‘ 𝑗 ) ) |
292 |
199 291
|
eleqtrrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑗 + 1 ) − 1 ) ) ) |
293 |
|
fzsuc2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ℤ ∧ 𝑀 ∈ ( ℤ≥ ‘ ( ( 𝑗 + 1 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) = ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
294 |
287 292 293
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) = ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
295 |
294
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( 2nd ‘ 𝑘 ) “ ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) ) |
296 |
|
imaundi |
⊢ ( ( 2nd ‘ 𝑘 ) “ ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) |
297 |
295 296
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) ) |
298 |
297
|
xpeq1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) × { 0 } ) ) |
299 |
|
xpundir |
⊢ ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) ) × { 0 } ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) |
300 |
298 299
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) |
301 |
300
|
uneq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) ) |
302 |
|
unass |
⊢ ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) |
303 |
301 302
|
eqtr4di |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) |
304 |
303
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) |
305 |
98
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) = ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) |
306 |
305
|
uneq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) |
307 |
306
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ { ( 𝑀 + 1 ) } ) × { 0 } ) ) ) |
308 |
304 307
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) ) |
309 |
99
|
xpeq1d |
⊢ ( ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → ( { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) = ( { ( 𝑀 + 1 ) } × { 0 } ) ) |
310 |
309
|
uneq2d |
⊢ ( ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) } × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ) |
311 |
308 310
|
sylan9eq |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ) |
312 |
311
|
an32s |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ) |
313 |
312
|
fveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) ) |
314 |
313
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ∪ ( { ( 𝑀 + 1 ) } × { 0 } ) ) ‘ 𝑛 ) ) |
315 |
269
|
fveq1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
316 |
315
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
317 |
286 314 316
|
3eqtr4rd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
318 |
231 272 273 273 274 276 317
|
offval |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ) |
319 |
318
|
uneq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
320 |
319
|
adantlrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
321 |
228
|
adantr |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1st ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
322 |
210 212
|
pm3.2i |
⊢ ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
323 |
181 190
|
sylan9req |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) |
324 |
|
fnun |
⊢ ( ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ∧ ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
325 |
322 323 324
|
sylancr |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
326 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
327 |
199 326
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
328 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
329 |
264 327 328
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
330 |
329
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
331 |
|
imaundi |
⊢ ( ( 2nd ‘ 𝑘 ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
332 |
330 331
|
eqtr2di |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( 2nd ‘ 𝑘 ) “ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
333 |
332 89
|
sylan9eqr |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
334 |
333
|
fneq2d |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ↔ ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) ) |
335 |
325 334
|
mpbid |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
336 |
|
fzfid |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... ( 𝑀 + 1 ) ) ∈ Fin ) |
337 |
|
inidm |
⊢ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) |
338 |
|
eqidd |
⊢ ( ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) = ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) ) |
339 |
|
eqidd |
⊢ ( ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
340 |
321 335 336 336 337 338 339
|
offval |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ) |
341 |
340
|
uneq1d |
⊢ ( ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
342 |
341
|
ad4ant24 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 1st ‘ 𝑘 ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
343 |
226 320 342
|
3eqtr4rd |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
344 |
343
|
csbeq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
345 |
344
|
eqeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
346 |
345
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
347 |
346
|
ralbidv |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
348 |
347
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
349 |
348
|
impr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ∧ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
350 |
139 349
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
351 |
|
1st2nd2 |
⊢ ( 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) → 𝑘 = 〈 ( 1st ‘ 𝑘 ) , ( 2nd ‘ 𝑘 ) 〉 ) |
352 |
351
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 𝑘 = 〈 ( 1st ‘ 𝑘 ) , ( 2nd ‘ 𝑘 ) 〉 ) |
353 |
|
fnsnsplit |
⊢ ( ( ( 1st ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( 1st ‘ 𝑘 ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) ) |
354 |
228 96 353
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( 1st ‘ 𝑘 ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) ) |
355 |
354
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) → ( 1st ‘ 𝑘 ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) ) |
356 |
125
|
reseq2d |
⊢ ( 𝜑 → ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ) |
357 |
356
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ) |
358 |
|
opeq2 |
⊢ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 → 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 = 〈 ( 𝑀 + 1 ) , 0 〉 ) |
359 |
358
|
sneqd |
⊢ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 → { 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } = { 〈 ( 𝑀 + 1 ) , 0 〉 } ) |
360 |
|
uneq12 |
⊢ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∧ { 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } = { 〈 ( 𝑀 + 1 ) , 0 〉 } ) → ( ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
361 |
357 359 360
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) → ( ( ( 1st ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
362 |
355 361
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) → ( 1st ‘ 𝑘 ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
363 |
362
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( 1st ‘ 𝑘 ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
364 |
|
fnsnsplit |
⊢ ( ( ( 2nd ‘ 𝑘 ) Fn ( 1 ... ( 𝑀 + 1 ) ) ∧ ( 𝑀 + 1 ) ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( 2nd ‘ 𝑘 ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) ) |
365 |
92 96 364
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( 2nd ‘ 𝑘 ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) ) |
366 |
365
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( 2nd ‘ 𝑘 ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) ) |
367 |
125
|
reseq2d |
⊢ ( 𝜑 → ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ) |
368 |
367
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ) |
369 |
|
opeq2 |
⊢ ( ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 = 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ) |
370 |
369
|
sneqd |
⊢ ( ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) → { 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } = { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) |
371 |
|
uneq12 |
⊢ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) = ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∧ { 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } = { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) → ( ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
372 |
368 370 371
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ( ( 2nd ‘ 𝑘 ) ↾ ( ( 1 ... ( 𝑀 + 1 ) ) ∖ { ( 𝑀 + 1 ) } ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) 〉 } ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
373 |
366 372
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( 2nd ‘ 𝑘 ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
374 |
373
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ( 2nd ‘ 𝑘 ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
375 |
363 374
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 〈 ( 1st ‘ 𝑘 ) , ( 2nd ‘ 𝑘 ) 〉 = 〈 ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
376 |
352 375
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 𝑘 = 〈 ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
377 |
376
|
3adantr1 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → 𝑘 = 〈 ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
378 |
|
fvex |
⊢ ( 1st ‘ 𝑘 ) ∈ V |
379 |
378
|
resex |
⊢ ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∈ V |
380 |
379 132
|
op1std |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( 1st ‘ 𝑡 ) = ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ) |
381 |
379 132
|
op2ndd |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( 2nd ‘ 𝑡 ) = ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ) |
382 |
381
|
imaeq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) ) |
383 |
382
|
xpeq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
384 |
381
|
imaeq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
385 |
384
|
xpeq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) = ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
386 |
383 385
|
uneq12d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) |
387 |
380 386
|
oveq12d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ) |
388 |
387
|
uneq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
389 |
388
|
csbeq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
390 |
389
|
eqeq2d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
391 |
390
|
rexbidv |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
392 |
391
|
ralbidv |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
393 |
380
|
uneq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
394 |
381
|
uneq1d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
395 |
393 394
|
opeq12d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 = 〈 ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
396 |
395
|
eqeq2d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ↔ 𝑘 = 〈 ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
397 |
392 396
|
anbi12d |
⊢ ( 𝑡 = 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) ) |
398 |
397
|
rspcev |
⊢ ( ( 〈 ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) , ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∘f + ( ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( ( 1st ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( ( 2nd ‘ 𝑘 ) ↾ ( 1 ... 𝑀 ) ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) → ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
399 |
137 350 377 398
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) → ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
400 |
399
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) ) |
401 |
|
elrabi |
⊢ ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } → 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) |
402 |
|
elrabi |
⊢ ( 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } → 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) |
403 |
401 402
|
anim12i |
⊢ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∧ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) → ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) |
404 |
|
eqtr2 |
⊢ ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
405 |
22 24
|
opth |
⊢ ( 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ↔ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∧ ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) ) |
406 |
|
difeq1 |
⊢ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) → ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
407 |
|
difun2 |
⊢ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) |
408 |
|
difun2 |
⊢ ( ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) |
409 |
406 407 408
|
3eqtr3g |
⊢ ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) → ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
410 |
|
difeq1 |
⊢ ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) → ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
411 |
|
difun2 |
⊢ ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) |
412 |
|
difun2 |
⊢ ( ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) |
413 |
410 411 412
|
3eqtr3g |
⊢ ( ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) → ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
414 |
409 413
|
anim12i |
⊢ ( ( ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∧ ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) → ( ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∧ ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) ) |
415 |
405 414
|
sylbi |
⊢ ( 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 → ( ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∧ ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) ) |
416 |
404 415
|
syl |
⊢ ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → ( ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∧ ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) ) |
417 |
|
elmapfn |
⊢ ( ( 1st ‘ 𝑡 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) → ( 1st ‘ 𝑡 ) Fn ( 1 ... 𝑀 ) ) |
418 |
|
fnop |
⊢ ( ( ( 1st ‘ 𝑡 ) Fn ( 1 ... 𝑀 ) ∧ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑡 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
419 |
418
|
ex |
⊢ ( ( 1st ‘ 𝑡 ) Fn ( 1 ... 𝑀 ) → ( 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
420 |
9 417 419
|
3syl |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
421 |
420 122
|
nsyli |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑡 ) ) ) |
422 |
421
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑡 ) ) |
423 |
|
difsn |
⊢ ( ¬ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑡 ) → ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( 1st ‘ 𝑡 ) ) |
424 |
422 423
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( 1st ‘ 𝑡 ) ) |
425 |
|
xp1st |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 1st ‘ 𝑛 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ) |
426 |
|
elmapfn |
⊢ ( ( 1st ‘ 𝑛 ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) → ( 1st ‘ 𝑛 ) Fn ( 1 ... 𝑀 ) ) |
427 |
|
fnop |
⊢ ( ( ( 1st ‘ 𝑛 ) Fn ( 1 ... 𝑀 ) ∧ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑛 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
428 |
427
|
ex |
⊢ ( ( 1st ‘ 𝑛 ) Fn ( 1 ... 𝑀 ) → ( 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
429 |
425 426 428
|
3syl |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
430 |
429 122
|
nsyli |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑛 ) ) ) |
431 |
430
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑛 ) ) |
432 |
|
difsn |
⊢ ( ¬ 〈 ( 𝑀 + 1 ) , 0 〉 ∈ ( 1st ‘ 𝑛 ) → ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( 1st ‘ 𝑛 ) ) |
433 |
431 432
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( 1st ‘ 𝑛 ) ) |
434 |
424 433
|
eqeqan12d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ∧ ( 𝜑 ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ↔ ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑛 ) ) ) |
435 |
434
|
anandis |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ↔ ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑛 ) ) ) |
436 |
|
f1ofn |
⊢ ( ( 2nd ‘ 𝑡 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → ( 2nd ‘ 𝑡 ) Fn ( 1 ... 𝑀 ) ) |
437 |
|
fnop |
⊢ ( ( ( 2nd ‘ 𝑡 ) Fn ( 1 ... 𝑀 ) ∧ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑡 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
438 |
437
|
ex |
⊢ ( ( 2nd ‘ 𝑡 ) Fn ( 1 ... 𝑀 ) → ( 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
439 |
17 436 438
|
3syl |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑡 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
440 |
439 122
|
nsyli |
⊢ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑡 ) ) ) |
441 |
440
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑡 ) ) |
442 |
|
difsn |
⊢ ( ¬ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑡 ) → ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( 2nd ‘ 𝑡 ) ) |
443 |
441 442
|
syl |
⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( 2nd ‘ 𝑡 ) ) |
444 |
|
xp2nd |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd ‘ 𝑛 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) |
445 |
|
fvex |
⊢ ( 2nd ‘ 𝑛 ) ∈ V |
446 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 2nd ‘ 𝑛 ) → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( 2nd ‘ 𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) ) |
447 |
445 446
|
elab |
⊢ ( ( 2nd ‘ 𝑛 ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ↔ ( 2nd ‘ 𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
448 |
444 447
|
sylib |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 2nd ‘ 𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
449 |
|
f1ofn |
⊢ ( ( 2nd ‘ 𝑛 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → ( 2nd ‘ 𝑛 ) Fn ( 1 ... 𝑀 ) ) |
450 |
|
fnop |
⊢ ( ( ( 2nd ‘ 𝑛 ) Fn ( 1 ... 𝑀 ) ∧ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑛 ) ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
451 |
450
|
ex |
⊢ ( ( 2nd ‘ 𝑛 ) Fn ( 1 ... 𝑀 ) → ( 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
452 |
448 449 451
|
3syl |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑛 ) → ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) ) |
453 |
452 122
|
nsyli |
⊢ ( 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) → ( 𝜑 → ¬ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑛 ) ) ) |
454 |
453
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ¬ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑛 ) ) |
455 |
|
difsn |
⊢ ( ¬ 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 ∈ ( 2nd ‘ 𝑛 ) → ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( 2nd ‘ 𝑛 ) ) |
456 |
454 455
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( 2nd ‘ 𝑛 ) ) |
457 |
443 456
|
eqeqan12d |
⊢ ( ( ( 𝜑 ∧ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ∧ ( 𝜑 ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ↔ ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑛 ) ) ) |
458 |
457
|
anandis |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ↔ ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑛 ) ) ) |
459 |
435 458
|
anbi12d |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∧ ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) ↔ ( ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑛 ) ∧ ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑛 ) ) ) ) |
460 |
|
xpopth |
⊢ ( ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) → ( ( ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑛 ) ∧ ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑛 ) ) ↔ 𝑡 = 𝑛 ) ) |
461 |
460
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑛 ) ∧ ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑛 ) ) ↔ 𝑡 = 𝑛 ) ) |
462 |
459 461
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( ( ( 1st ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∧ ( ( 2nd ‘ 𝑡 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∖ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) ↔ 𝑡 = 𝑛 ) ) |
463 |
416 462
|
syl5ib |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∧ 𝑛 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ) ) → ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) |
464 |
403 463
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∧ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ) ) → ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) |
465 |
464
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) |
466 |
465
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) |
467 |
400 466
|
jctird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ( ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) ) ) |
468 |
|
fveq2 |
⊢ ( 𝑡 = 𝑛 → ( 1st ‘ 𝑡 ) = ( 1st ‘ 𝑛 ) ) |
469 |
468
|
uneq1d |
⊢ ( 𝑡 = 𝑛 → ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
470 |
|
fveq2 |
⊢ ( 𝑡 = 𝑛 → ( 2nd ‘ 𝑡 ) = ( 2nd ‘ 𝑛 ) ) |
471 |
470
|
uneq1d |
⊢ ( 𝑡 = 𝑛 → ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) = ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
472 |
469 471
|
opeq12d |
⊢ ( 𝑡 = 𝑛 → 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
473 |
472
|
eqeq2d |
⊢ ( 𝑡 = 𝑛 → ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ↔ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
474 |
473
|
reu4 |
⊢ ( ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ↔ ( ∃ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) ) |
475 |
58
|
rexrab |
⊢ ( ∃ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ↔ ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
476 |
475
|
anbi1i |
⊢ ( ( ∃ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) ↔ ( ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) ) |
477 |
474 476
|
bitri |
⊢ ( ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ↔ ( ∃ 𝑡 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑡 ) ∘f + ( ( ( ( 2nd ‘ 𝑡 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑡 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ∧ ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∀ 𝑛 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ( ( 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∧ 𝑘 = 〈 ( ( 1st ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑛 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) → 𝑡 = 𝑛 ) ) ) |
478 |
467 477
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
479 |
478
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
480 |
|
fveq2 |
⊢ ( 𝑠 = 𝑘 → ( 1st ‘ 𝑠 ) = ( 1st ‘ 𝑘 ) ) |
481 |
|
fveq2 |
⊢ ( 𝑠 = 𝑘 → ( 2nd ‘ 𝑠 ) = ( 2nd ‘ 𝑘 ) ) |
482 |
481
|
imaeq1d |
⊢ ( 𝑠 = 𝑘 → ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) ) |
483 |
482
|
xpeq1d |
⊢ ( 𝑠 = 𝑘 → ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
484 |
481
|
imaeq1d |
⊢ ( 𝑠 = 𝑘 → ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
485 |
484
|
xpeq1d |
⊢ ( 𝑠 = 𝑘 → ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) |
486 |
483 485
|
uneq12d |
⊢ ( 𝑠 = 𝑘 → ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) |
487 |
480 486
|
oveq12d |
⊢ ( 𝑠 = 𝑘 → ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ) |
488 |
487
|
uneq1d |
⊢ ( 𝑠 = 𝑘 → ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
489 |
488
|
csbeq1d |
⊢ ( 𝑠 = 𝑘 → ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
490 |
489
|
eqeq2d |
⊢ ( 𝑠 = 𝑘 → ( 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
491 |
490
|
rexbidv |
⊢ ( 𝑠 = 𝑘 → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
492 |
491
|
ralbidv |
⊢ ( 𝑠 = 𝑘 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
493 |
480
|
fveq1d |
⊢ ( 𝑠 = 𝑘 → ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) ) |
494 |
493
|
eqeq1d |
⊢ ( 𝑠 = 𝑘 → ( ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ↔ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ) ) |
495 |
481
|
fveq1d |
⊢ ( 𝑠 = 𝑘 → ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) ) |
496 |
495
|
eqeq1d |
⊢ ( 𝑠 = 𝑘 → ( ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ↔ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) |
497 |
492 494 496
|
3anbi123d |
⊢ ( 𝑠 = 𝑘 → ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) |
498 |
497
|
ralrab |
⊢ ( ∀ 𝑘 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ↔ ∀ 𝑘 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑘 ) ∘f + ( ( ( ( 2nd ‘ 𝑘 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑘 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑘 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) → ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
499 |
479 498
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
500 |
|
eqid |
⊢ ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ↦ 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) = ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ↦ 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) |
501 |
500
|
f1ompt |
⊢ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ↦ 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) : { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ↔ ( ∀ 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∧ ∀ 𝑘 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ∃! 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } 𝑘 = 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) ) |
502 |
60 499 501
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ↦ 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) : { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) |
503 |
|
ovex |
⊢ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) ∈ V |
504 |
|
ovex |
⊢ ( ( 1 ... 𝑀 ) ↑m ( 1 ... 𝑀 ) ) ∈ V |
505 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → 𝑓 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
506 |
505
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) } |
507 |
68 68
|
mapval |
⊢ ( ( 1 ... 𝑀 ) ↑m ( 1 ... 𝑀 ) ) = { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) } |
508 |
506 507
|
sseqtrri |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ⊆ ( ( 1 ... 𝑀 ) ↑m ( 1 ... 𝑀 ) ) |
509 |
504 508
|
ssexi |
⊢ { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ∈ V |
510 |
503 509
|
xpex |
⊢ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∈ V |
511 |
510
|
rabex |
⊢ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ∈ V |
512 |
511
|
f1oen |
⊢ ( ( 𝑡 ∈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ↦ 〈 ( ( 1st ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( ( 2nd ‘ 𝑡 ) ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ) : { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } –1-1-onto→ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) |
513 |
502 512
|
syl |
⊢ ( 𝜑 → { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑀 ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) } ) ∣ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 } ≈ { 𝑠 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∣ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 1st ‘ 𝑠 ) ∘f + ( ( ( ( 2nd ‘ 𝑠 ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ 𝑠 ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 1st ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 2nd ‘ 𝑠 ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) } ) |