Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
2 |
|
poimirlem4.1 |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
3 |
|
poimirlem4.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
4 |
|
poimirlem4.3 |
⊢ ( 𝜑 → 𝑀 < 𝑁 ) |
5 |
|
poimirlem3.4 |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ) |
6 |
|
poimirlem3.5 |
⊢ ( 𝜑 → 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
7 |
5
|
ffnd |
⊢ ( 𝜑 → 𝑇 Fn ( 1 ... 𝑀 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 𝑇 Fn ( 1 ... 𝑀 ) ) |
9 |
|
1ex |
⊢ 1 ∈ V |
10 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑗 ) ) ) |
11 |
9 10
|
ax-mp |
⊢ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑗 ) ) |
12 |
|
c0ex |
⊢ 0 ∈ V |
13 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
15 |
11 14
|
pm3.2i |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑗 ) ) ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
16 |
|
dff1o3 |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ↔ ( 𝑈 : ( 1 ... 𝑀 ) –onto→ ( 1 ... 𝑀 ) ∧ Fun ◡ 𝑈 ) ) |
17 |
16
|
simprbi |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → Fun ◡ 𝑈 ) |
18 |
|
imain |
⊢ ( Fun ◡ 𝑈 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
19 |
6 17 18
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
20 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℕ0 ) |
21 |
20
|
nn0red |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 ∈ ℝ ) |
22 |
21
|
ltp1d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑗 < ( 𝑗 + 1 ) ) |
23 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ∅ ) |
24 |
22 23
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ∅ ) |
25 |
24
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( 𝑈 “ ∅ ) ) |
26 |
|
ima0 |
⊢ ( 𝑈 “ ∅ ) = ∅ |
27 |
25 26
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ ) |
28 |
19 27
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ ) |
29 |
|
fnun |
⊢ ( ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( 𝑈 “ ( 1 ... 𝑗 ) ) ∧ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) Fn ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ∧ ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∩ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ∅ ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
30 |
15 28 29
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
31 |
|
imaundi |
⊢ ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
32 |
|
nn0p1nn |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ ) |
33 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
34 |
32 33
|
eleqtrdi |
⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
35 |
20 34
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
36 |
|
elfzuz3 |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
37 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... 𝑀 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
38 |
35 36 37
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 1 ... 𝑀 ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
39 |
38
|
eqcomd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( 1 ... 𝑀 ) ) |
40 |
39
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( 𝑈 “ ( 1 ... 𝑀 ) ) ) |
41 |
|
f1ofo |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → 𝑈 : ( 1 ... 𝑀 ) –onto→ ( 1 ... 𝑀 ) ) |
42 |
|
foima |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –onto→ ( 1 ... 𝑀 ) → ( 𝑈 “ ( 1 ... 𝑀 ) ) = ( 1 ... 𝑀 ) ) |
43 |
6 41 42
|
3syl |
⊢ ( 𝜑 → ( 𝑈 “ ( 1 ... 𝑀 ) ) = ( 1 ... 𝑀 ) ) |
44 |
40 43
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑈 “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( 1 ... 𝑀 ) ) |
45 |
31 44
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( 1 ... 𝑀 ) ) |
46 |
45
|
fneq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ↔ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ) ) |
47 |
30 46
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) Fn ( 1 ... 𝑀 ) ) |
48 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... 𝑀 ) ∈ V ) |
49 |
|
inidm |
⊢ ( ( 1 ... 𝑀 ) ∩ ( 1 ... 𝑀 ) ) = ( 1 ... 𝑀 ) |
50 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( 𝑇 ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
51 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
52 |
8 47 48 48 49 50 51
|
offval |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ) |
53 |
|
nn0p1nn |
⊢ ( 𝑀 ∈ ℕ0 → ( 𝑀 + 1 ) ∈ ℕ ) |
54 |
3 53
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℕ ) |
55 |
54
|
nnzd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℤ ) |
56 |
|
uzid |
⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
57 |
|
peano2uz |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
58 |
55 56 57
|
3syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
59 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
60 |
1
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
61 |
|
zltp1le |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
62 |
|
peano2z |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) |
63 |
|
eluz |
⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
64 |
62 63
|
sylan |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) |
65 |
61 64
|
bitr4d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
66 |
59 60 65
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 < 𝑁 ↔ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
67 |
4 66
|
mpbid |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
68 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑀 + 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
69 |
58 67 68
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
70 |
|
fzsn |
⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) = { ( 𝑀 + 1 ) } ) |
71 |
55 70
|
syl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) = { ( 𝑀 + 1 ) } ) |
72 |
71
|
uneq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) ... ( 𝑀 + 1 ) ) ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) = ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
73 |
69 72
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) = ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) ) |
74 |
73
|
xpeq1d |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) = ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) |
75 |
|
xpundir |
⊢ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( { ( 𝑀 + 1 ) } × { 0 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
76 |
|
ovex |
⊢ ( 𝑀 + 1 ) ∈ V |
77 |
76 12
|
xpsn |
⊢ ( { ( 𝑀 + 1 ) } × { 0 } ) = { 〈 ( 𝑀 + 1 ) , 0 〉 } |
78 |
77
|
uneq1i |
⊢ ( ( { ( 𝑀 + 1 ) } × { 0 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
79 |
75 78
|
eqtri |
⊢ ( ( { ( 𝑀 + 1 ) } ∪ ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) |
80 |
74 79
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
81 |
80
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
82 |
52 81
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) ) |
83 |
|
unass |
⊢ ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
84 |
82 83
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
85 |
3
|
nn0red |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
86 |
85
|
ltp1d |
⊢ ( 𝜑 → 𝑀 < ( 𝑀 + 1 ) ) |
87 |
54
|
nnred |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
88 |
85 87
|
ltnled |
⊢ ( 𝜑 → ( 𝑀 < ( 𝑀 + 1 ) ↔ ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) ) |
89 |
86 88
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ≤ 𝑀 ) |
90 |
|
elfzle2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) → ( 𝑀 + 1 ) ≤ 𝑀 ) |
91 |
89 90
|
nsyl |
⊢ ( 𝜑 → ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
92 |
|
disjsn |
⊢ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ↔ ¬ ( 𝑀 + 1 ) ∈ ( 1 ... 𝑀 ) ) |
93 |
91 92
|
sylibr |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) |
94 |
|
eqid |
⊢ { 〈 ( 𝑀 + 1 ) , 0 〉 } = { 〈 ( 𝑀 + 1 ) , 0 〉 } |
95 |
76 12
|
fsn |
⊢ ( { 〈 ( 𝑀 + 1 ) , 0 〉 } : { ( 𝑀 + 1 ) } ⟶ { 0 } ↔ { 〈 ( 𝑀 + 1 ) , 0 〉 } = { 〈 ( 𝑀 + 1 ) , 0 〉 } ) |
96 |
94 95
|
mpbir |
⊢ { 〈 ( 𝑀 + 1 ) , 0 〉 } : { ( 𝑀 + 1 ) } ⟶ { 0 } |
97 |
|
fun |
⊢ ( ( ( 𝑇 : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ∧ { 〈 ( 𝑀 + 1 ) , 0 〉 } : { ( 𝑀 + 1 ) } ⟶ { 0 } ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ⟶ ( ( 0 ..^ 𝐾 ) ∪ { 0 } ) ) |
98 |
96 97
|
mpanl2 |
⊢ ( ( 𝑇 : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ⟶ ( ( 0 ..^ 𝐾 ) ∪ { 0 } ) ) |
99 |
5 93 98
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ⟶ ( ( 0 ..^ 𝐾 ) ∪ { 0 } ) ) |
100 |
|
1z |
⊢ 1 ∈ ℤ |
101 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
102 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
103 |
102
|
fveq2i |
⊢ ( ℤ≥ ‘ ( 1 − 1 ) ) = ( ℤ≥ ‘ 0 ) |
104 |
101 103
|
eqtr4i |
⊢ ℕ0 = ( ℤ≥ ‘ ( 1 − 1 ) ) |
105 |
3 104
|
eleqtrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) |
106 |
|
fzsuc2 |
⊢ ( ( 1 ∈ ℤ ∧ 𝑀 ∈ ( ℤ≥ ‘ ( 1 − 1 ) ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
107 |
100 105 106
|
sylancr |
⊢ ( 𝜑 → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
108 |
107
|
eqcomd |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
109 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝐾 ) ↔ 𝐾 ∈ ℕ ) |
110 |
2 109
|
sylibr |
⊢ ( 𝜑 → 0 ∈ ( 0 ..^ 𝐾 ) ) |
111 |
110
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ( 0 ..^ 𝐾 ) ) |
112 |
|
ssequn2 |
⊢ ( { 0 } ⊆ ( 0 ..^ 𝐾 ) ↔ ( ( 0 ..^ 𝐾 ) ∪ { 0 } ) = ( 0 ..^ 𝐾 ) ) |
113 |
111 112
|
sylib |
⊢ ( 𝜑 → ( ( 0 ..^ 𝐾 ) ∪ { 0 } ) = ( 0 ..^ 𝐾 ) ) |
114 |
108 113
|
feq23d |
⊢ ( 𝜑 → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ⟶ ( ( 0 ..^ 𝐾 ) ∪ { 0 } ) ↔ ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ) ) |
115 |
99 114
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ) |
116 |
115
|
ffnd |
⊢ ( 𝜑 → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
117 |
116
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
118 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ) |
119 |
9 118
|
ax-mp |
⊢ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) |
120 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
121 |
12 120
|
ax-mp |
⊢ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
122 |
119 121
|
pm3.2i |
⊢ ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
123 |
76 76
|
f1osn |
⊢ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } : { ( 𝑀 + 1 ) } –1-1-onto→ { ( 𝑀 + 1 ) } |
124 |
|
f1oun |
⊢ ( ( ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ∧ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } : { ( 𝑀 + 1 ) } –1-1-onto→ { ( 𝑀 + 1 ) } ) ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) ) → ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
125 |
123 124
|
mpanl2 |
⊢ ( ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) ) → ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
126 |
6 93 93 125
|
syl12anc |
⊢ ( 𝜑 → ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
127 |
|
dff1o3 |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ↔ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ∧ Fun ◡ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) ) |
128 |
127
|
simprbi |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) → Fun ◡ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ) |
129 |
|
imain |
⊢ ( Fun ◡ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
130 |
126 128 129
|
3syl |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
131 |
|
fzdisj |
⊢ ( 𝑗 < ( 𝑗 + 1 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ∅ ) |
132 |
22 131
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ∅ ) |
133 |
132
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ∅ ) ) |
134 |
|
ima0 |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ∅ ) = ∅ |
135 |
133 134
|
eqtrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) |
136 |
130 135
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) |
137 |
|
fnun |
⊢ ( ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ∧ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
138 |
122 136 137
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
139 |
|
f1ofo |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) → ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
140 |
|
foima |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
141 |
126 139 140
|
3syl |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) |
142 |
107
|
imaeq2d |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) ) |
143 |
141 142 107
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
144 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
145 |
36 144
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
146 |
|
fzsplit2 |
⊢ ( ( ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
147 |
35 145 146
|
syl2anc |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
148 |
147
|
imaeq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... ( 𝑀 + 1 ) ) ) = ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
149 |
143 148
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
150 |
|
imaundi |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
151 |
149 150
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... ( 𝑀 + 1 ) ) = ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
152 |
151
|
fneq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( 1 ... ( 𝑀 + 1 ) ) ↔ ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∪ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) ) |
153 |
138 152
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) Fn ( 1 ... ( 𝑀 + 1 ) ) ) |
154 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 1 ... ( 𝑀 + 1 ) ) ∈ V ) |
155 |
|
inidm |
⊢ ( ( 1 ... ( 𝑀 + 1 ) ) ∩ ( 1 ... ( 𝑀 + 1 ) ) ) = ( 1 ... ( 𝑀 + 1 ) ) |
156 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) ) |
157 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
158 |
117 153 154 154 155 156 157
|
offval |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ) |
159 |
|
imadmrn |
⊢ ( ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) “ dom ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) ) = ran ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) |
160 |
76 76
|
xpsn |
⊢ ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) = { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } |
161 |
160
|
imaeq1i |
⊢ ( ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) “ dom ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) ) = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ dom ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) ) |
162 |
|
dmxpid |
⊢ dom ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) = { ( 𝑀 + 1 ) } |
163 |
162
|
imaeq2i |
⊢ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ dom ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) ) = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ { ( 𝑀 + 1 ) } ) |
164 |
161 163
|
eqtri |
⊢ ( ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) “ dom ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) ) = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ { ( 𝑀 + 1 ) } ) |
165 |
|
rnxpid |
⊢ ran ( { ( 𝑀 + 1 ) } × { ( 𝑀 + 1 ) } ) = { ( 𝑀 + 1 ) } |
166 |
159 164 165
|
3eqtr3ri |
⊢ { ( 𝑀 + 1 ) } = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ { ( 𝑀 + 1 ) } ) |
167 |
|
eluzp1p1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) |
168 |
|
eluzfz2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) → ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
169 |
36 167 168
|
3syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
170 |
169
|
snssd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → { ( 𝑀 + 1 ) } ⊆ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
171 |
|
imass2 |
⊢ ( { ( 𝑀 + 1 ) } ⊆ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) → ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ { ( 𝑀 + 1 ) } ) ⊆ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
172 |
170 171
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ { ( 𝑀 + 1 ) } ) ⊆ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
173 |
166 172
|
eqsstrid |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → { ( 𝑀 + 1 ) } ⊆ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
174 |
76
|
snid |
⊢ ( 𝑀 + 1 ) ∈ { ( 𝑀 + 1 ) } |
175 |
|
ssel |
⊢ ( { ( 𝑀 + 1 ) } ⊆ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( ( 𝑀 + 1 ) ∈ { ( 𝑀 + 1 ) } → ( 𝑀 + 1 ) ∈ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
176 |
173 174 175
|
mpisyl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
177 |
|
elun2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( 𝑀 + 1 ) ∈ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
178 |
176 177
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) |
179 |
|
imaundir |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
180 |
178 179
|
eleqtrrdi |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
181 |
180
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑀 + 1 ) ∈ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
182 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → 0 ∈ V ) |
183 |
108
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
184 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑀 + 1 ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) ) |
185 |
76 12
|
fnsn |
⊢ { 〈 ( 𝑀 + 1 ) , 0 〉 } Fn { ( 𝑀 + 1 ) } |
186 |
|
fvun2 |
⊢ ( ( 𝑇 Fn ( 1 ... 𝑀 ) ∧ { 〈 ( 𝑀 + 1 ) , 0 〉 } Fn { ( 𝑀 + 1 ) } ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ ( 𝑀 + 1 ) ∈ { ( 𝑀 + 1 ) } ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ‘ ( 𝑀 + 1 ) ) ) |
187 |
185 186
|
mp3an2 |
⊢ ( ( 𝑇 Fn ( 1 ... 𝑀 ) ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ ( 𝑀 + 1 ) ∈ { ( 𝑀 + 1 ) } ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ‘ ( 𝑀 + 1 ) ) ) |
188 |
174 187
|
mpanr2 |
⊢ ( ( 𝑇 Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ‘ ( 𝑀 + 1 ) ) ) |
189 |
7 93 188
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ‘ ( 𝑀 + 1 ) ) ) |
190 |
76 12
|
fvsn |
⊢ ( { 〈 ( 𝑀 + 1 ) , 0 〉 } ‘ ( 𝑀 + 1 ) ) = 0 |
191 |
189 190
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
192 |
184 191
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑛 = ( 𝑀 + 1 ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = 0 ) |
193 |
192
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 = ( 𝑀 + 1 ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = 0 ) |
194 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑀 + 1 ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) ) |
195 |
|
fvun2 |
⊢ ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∧ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∧ ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) ) |
196 |
119 121 195
|
mp3an12 |
⊢ ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) ∩ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) = ∅ ∧ ( 𝑀 + 1 ) ∈ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) ) |
197 |
136 181 196
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) ) |
198 |
12
|
fvconst2 |
⊢ ( ( 𝑀 + 1 ) ∈ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
199 |
180 198
|
syl |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
200 |
199
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
201 |
197 200
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ ( 𝑀 + 1 ) ) = 0 ) |
202 |
194 201
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 = ( 𝑀 + 1 ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = 0 ) |
203 |
193 202
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 = ( 𝑀 + 1 ) ) → ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( 0 + 0 ) ) |
204 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
205 |
203 204
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 = ( 𝑀 + 1 ) ) → ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) = 0 ) |
206 |
181 182 183 205
|
fmptapd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( 𝑛 ∈ ( 1 ... ( 𝑀 + 1 ) ) ↦ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ) |
207 |
7 93
|
jca |
⊢ ( 𝜑 → ( 𝑇 Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) ) |
208 |
|
fvun1 |
⊢ ( ( 𝑇 Fn ( 1 ... 𝑀 ) ∧ { 〈 ( 𝑀 + 1 ) , 0 〉 } Fn { ( 𝑀 + 1 ) } ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
209 |
185 208
|
mp3an2 |
⊢ ( ( 𝑇 Fn ( 1 ... 𝑀 ) ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
210 |
209
|
anassrs |
⊢ ( ( ( 𝑇 Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
211 |
207 210
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
212 |
211
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) = ( 𝑇 ‘ 𝑛 ) ) |
213 |
|
fvres |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → ( ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑛 ) = ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
214 |
213
|
eqcomd |
⊢ ( 𝑛 ∈ ( 1 ... 𝑀 ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑛 ) ) |
215 |
|
resundir |
⊢ ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ↾ ( 1 ... 𝑀 ) ) = ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ) |
216 |
|
relxp |
⊢ Rel ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) |
217 |
|
dmxpss |
⊢ dom ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ⊆ ( 𝑈 “ ( 1 ... 𝑗 ) ) |
218 |
|
imassrn |
⊢ ( 𝑈 “ ( 1 ... 𝑗 ) ) ⊆ ran 𝑈 |
219 |
217 218
|
sstri |
⊢ dom ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ⊆ ran 𝑈 |
220 |
|
f1of |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → 𝑈 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
221 |
|
frn |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) → ran 𝑈 ⊆ ( 1 ... 𝑀 ) ) |
222 |
6 220 221
|
3syl |
⊢ ( 𝜑 → ran 𝑈 ⊆ ( 1 ... 𝑀 ) ) |
223 |
219 222
|
sstrid |
⊢ ( 𝜑 → dom ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ⊆ ( 1 ... 𝑀 ) ) |
224 |
|
relssres |
⊢ ( ( Rel ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∧ dom ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ⊆ ( 1 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
225 |
216 223 224
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
226 |
225
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
227 |
|
imassrn |
⊢ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ⊆ ran { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } |
228 |
76
|
rnsnop |
⊢ ran { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } = { ( 𝑀 + 1 ) } |
229 |
227 228
|
sseqtri |
⊢ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ⊆ { ( 𝑀 + 1 ) } |
230 |
|
ssrin |
⊢ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ⊆ { ( 𝑀 + 1 ) } → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ( { ( 𝑀 + 1 ) } ∩ ( 1 ... 𝑀 ) ) ) |
231 |
229 230
|
ax-mp |
⊢ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ( { ( 𝑀 + 1 ) } ∩ ( 1 ... 𝑀 ) ) |
232 |
|
incom |
⊢ ( { ( 𝑀 + 1 ) } ∩ ( 1 ... 𝑀 ) ) = ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) |
233 |
232 93
|
syl5eq |
⊢ ( 𝜑 → ( { ( 𝑀 + 1 ) } ∩ ( 1 ... 𝑀 ) ) = ∅ ) |
234 |
231 233
|
sseqtrid |
⊢ ( 𝜑 → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ∅ ) |
235 |
|
ss0 |
⊢ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ∅ → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ) |
236 |
234 235
|
syl |
⊢ ( 𝜑 → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ) |
237 |
|
fnconstg |
⊢ ( 1 ∈ V → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ) |
238 |
|
fnresdisj |
⊢ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) Fn ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) → ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ↔ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) ) |
239 |
9 237 238
|
mp2b |
⊢ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ↔ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) |
240 |
236 239
|
sylib |
⊢ ( 𝜑 → ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) |
241 |
240
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) |
242 |
226 241
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ∅ ) ) |
243 |
|
imaundir |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ) |
244 |
243
|
xpeq1i |
⊢ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ) × { 1 } ) |
245 |
|
xpundir |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) ) × { 1 } ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
246 |
244 245
|
eqtri |
⊢ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
247 |
246
|
reseq1i |
⊢ ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ) ↾ ( 1 ... 𝑀 ) ) |
248 |
|
resundir |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ) ↾ ( 1 ... 𝑀 ) ) = ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ) |
249 |
247 248
|
eqtr2i |
⊢ ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ) = ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) |
250 |
|
un0 |
⊢ ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ∅ ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) |
251 |
242 249 250
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ) |
252 |
|
f1odm |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → dom 𝑈 = ( 1 ... 𝑀 ) ) |
253 |
6 252
|
syl |
⊢ ( 𝜑 → dom 𝑈 = ( 1 ... 𝑀 ) ) |
254 |
253
|
ineq2d |
⊢ ( 𝜑 → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ dom 𝑈 ) = ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑀 ) ) ) |
255 |
254
|
reseq2d |
⊢ ( 𝜑 → ( 𝑈 ↾ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ dom 𝑈 ) ) = ( 𝑈 ↾ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑀 ) ) ) ) |
256 |
|
f1orel |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → Rel 𝑈 ) |
257 |
|
resindm |
⊢ ( Rel 𝑈 → ( 𝑈 ↾ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ dom 𝑈 ) ) = ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
258 |
6 256 257
|
3syl |
⊢ ( 𝜑 → ( 𝑈 ↾ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ dom 𝑈 ) ) = ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
259 |
255 258
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑈 ↾ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑀 ) ) ) = ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
260 |
38
|
ineq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑀 ) ) = ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) ) |
261 |
|
fzssp1 |
⊢ ( ( 𝑗 + 1 ) ... 𝑀 ) ⊆ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) |
262 |
|
sseqin2 |
⊢ ( ( ( 𝑗 + 1 ) ... 𝑀 ) ⊆ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ↔ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
263 |
261 262
|
mpbi |
⊢ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 𝑗 + 1 ) ... 𝑀 ) |
264 |
263
|
a1i |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
265 |
|
incom |
⊢ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑗 ) ) = ( ( 1 ... 𝑗 ) ∩ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
266 |
265 132
|
syl5eq |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑗 ) ) = ∅ ) |
267 |
264 266
|
uneq12d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑗 ) ) ) = ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ ∅ ) ) |
268 |
|
uncom |
⊢ ( ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑗 ) ) ) = ( ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑗 ) ) ∪ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
269 |
|
indi |
⊢ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑗 ) ) ∪ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
270 |
268 269
|
eqtr4i |
⊢ ( ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ∪ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑗 ) ) ) = ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
271 |
|
un0 |
⊢ ( ( ( 𝑗 + 1 ) ... 𝑀 ) ∪ ∅ ) = ( ( 𝑗 + 1 ) ... 𝑀 ) |
272 |
267 270 271
|
3eqtr3g |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( ( 1 ... 𝑗 ) ∪ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) = ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
273 |
260 272
|
eqtrd |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑀 ) ) = ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
274 |
273
|
reseq2d |
⊢ ( 𝑗 ∈ ( 0 ... 𝑀 ) → ( 𝑈 ↾ ( ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ∩ ( 1 ... 𝑀 ) ) ) = ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
275 |
259 274
|
sylan9req |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
276 |
275
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ran ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ran ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
277 |
|
df-ima |
⊢ ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ran ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) |
278 |
|
df-ima |
⊢ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) = ran ( 𝑈 ↾ ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
279 |
276 277 278
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) = ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ) |
280 |
279
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
281 |
280
|
reseq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ) |
282 |
|
relxp |
⊢ Rel ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) |
283 |
|
dmxpss |
⊢ dom ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ⊆ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) |
284 |
|
imassrn |
⊢ ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) ⊆ ran 𝑈 |
285 |
283 284
|
sstri |
⊢ dom ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ⊆ ran 𝑈 |
286 |
285 222
|
sstrid |
⊢ ( 𝜑 → dom ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ⊆ ( 1 ... 𝑀 ) ) |
287 |
|
relssres |
⊢ ( ( Rel ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∧ dom ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ⊆ ( 1 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
288 |
282 286 287
|
sylancr |
⊢ ( 𝜑 → ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
289 |
288
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
290 |
281 289
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
291 |
|
imassrn |
⊢ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ⊆ ran { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } |
292 |
291 228
|
sseqtri |
⊢ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ⊆ { ( 𝑀 + 1 ) } |
293 |
|
ssrin |
⊢ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ⊆ { ( 𝑀 + 1 ) } → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ( { ( 𝑀 + 1 ) } ∩ ( 1 ... 𝑀 ) ) ) |
294 |
292 293
|
ax-mp |
⊢ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ( { ( 𝑀 + 1 ) } ∩ ( 1 ... 𝑀 ) ) |
295 |
294 233
|
sseqtrid |
⊢ ( 𝜑 → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ∅ ) |
296 |
|
ss0 |
⊢ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) ⊆ ∅ → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ) |
297 |
295 296
|
syl |
⊢ ( 𝜑 → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ) |
298 |
|
fnconstg |
⊢ ( 0 ∈ V → ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) |
299 |
|
fnresdisj |
⊢ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) Fn ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) → ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ↔ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) ) |
300 |
12 298 299
|
mp2b |
⊢ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∩ ( 1 ... 𝑀 ) ) = ∅ ↔ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) |
301 |
297 300
|
sylib |
⊢ ( 𝜑 → ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) |
302 |
301
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ∅ ) |
303 |
290 302
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ∅ ) ) |
304 |
179
|
xpeq1i |
⊢ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) × { 0 } ) |
305 |
|
xpundir |
⊢ ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ∪ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) ) × { 0 } ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) |
306 |
304 305
|
eqtri |
⊢ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) = ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) |
307 |
306
|
reseq1i |
⊢ ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ↾ ( 1 ... 𝑀 ) ) |
308 |
|
resundir |
⊢ ( ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ∪ ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ↾ ( 1 ... 𝑀 ) ) = ( ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ) |
309 |
307 308
|
eqtr2i |
⊢ ( ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ) = ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) |
310 |
|
un0 |
⊢ ( ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ∪ ∅ ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) |
311 |
303 309 310
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) = ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) |
312 |
251 311
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ↾ ( 1 ... 𝑀 ) ) ∪ ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ↾ ( 1 ... 𝑀 ) ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) |
313 |
215 312
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ↾ ( 1 ... 𝑀 ) ) = ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) |
314 |
313
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ↾ ( 1 ... 𝑀 ) ) ‘ 𝑛 ) = ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
315 |
214 314
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) |
316 |
212 315
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) |
317 |
316
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ) |
318 |
317
|
uneq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ 𝑛 ) + ( ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
319 |
158 206 318
|
3eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ) |
320 |
319
|
uneq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 𝑛 ∈ ( 1 ... 𝑀 ) ↦ ( ( 𝑇 ‘ 𝑛 ) + ( ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
321 |
84 320
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) = ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) ) |
322 |
321
|
csbeq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) |
323 |
322
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 0 ... 𝑀 ) ) → ( 𝑖 = ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
324 |
323
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
325 |
324
|
ralbidv |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ↔ ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
326 |
325
|
biimpd |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ) ) |
327 |
|
f1ofn |
⊢ ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) → 𝑈 Fn ( 1 ... 𝑀 ) ) |
328 |
6 327
|
syl |
⊢ ( 𝜑 → 𝑈 Fn ( 1 ... 𝑀 ) ) |
329 |
76 76
|
fnsn |
⊢ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } Fn { ( 𝑀 + 1 ) } |
330 |
|
fvun2 |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑀 ) ∧ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } Fn { ( 𝑀 + 1 ) } ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ ( 𝑀 + 1 ) ∈ { ( 𝑀 + 1 ) } ) ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ‘ ( 𝑀 + 1 ) ) ) |
331 |
329 330
|
mp3an2 |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑀 ) ∧ ( ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ∧ ( 𝑀 + 1 ) ∈ { ( 𝑀 + 1 ) } ) ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ‘ ( 𝑀 + 1 ) ) ) |
332 |
174 331
|
mpanr2 |
⊢ ( ( 𝑈 Fn ( 1 ... 𝑀 ) ∧ ( ( 1 ... 𝑀 ) ∩ { ( 𝑀 + 1 ) } ) = ∅ ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ‘ ( 𝑀 + 1 ) ) ) |
333 |
328 93 332
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ‘ ( 𝑀 + 1 ) ) ) |
334 |
76 76
|
fvsn |
⊢ ( { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) |
335 |
333 334
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) |
336 |
191 335
|
jca |
⊢ ( 𝜑 → ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) |
337 |
326 336
|
jctird |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) ) |
338 |
|
3anass |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) |
339 |
337 338
|
syl6ibr |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) |
340 |
5 96
|
jctir |
⊢ ( 𝜑 → ( 𝑇 : ( 1 ... 𝑀 ) ⟶ ( 0 ..^ 𝐾 ) ∧ { 〈 ( 𝑀 + 1 ) , 0 〉 } : { ( 𝑀 + 1 ) } ⟶ { 0 } ) ) |
341 |
340 93 97
|
syl2anc |
⊢ ( 𝜑 → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ⟶ ( ( 0 ..^ 𝐾 ) ∪ { 0 } ) ) |
342 |
341 114
|
mpbid |
⊢ ( 𝜑 → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ) |
343 |
|
ovex |
⊢ ( 0 ..^ 𝐾 ) ∈ V |
344 |
|
ovex |
⊢ ( 1 ... ( 𝑀 + 1 ) ) ∈ V |
345 |
343 344
|
elmap |
⊢ ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ↔ ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) ⟶ ( 0 ..^ 𝐾 ) ) |
346 |
342 345
|
sylibr |
⊢ ( 𝜑 → ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) ) |
347 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
348 |
|
f1oexrnex |
⊢ ( ( 𝑈 : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝑈 ∈ V ) |
349 |
6 347 348
|
sylancl |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
350 |
|
snex |
⊢ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ∈ V |
351 |
|
unexg |
⊢ ( ( 𝑈 ∈ V ∧ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ∈ V ) → ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ V ) |
352 |
349 350 351
|
sylancl |
⊢ ( 𝜑 → ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ V ) |
353 |
|
f1oeq1 |
⊢ ( 𝑓 = ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) → ( 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
354 |
353
|
elabg |
⊢ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ V → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ↔ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
355 |
352 354
|
syl |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ↔ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
356 |
|
f1oeq23 |
⊢ ( ( ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ∧ ( 1 ... ( 𝑀 + 1 ) ) = ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) ) |
357 |
107 107 356
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) ↔ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) ) |
358 |
355 357
|
bitrd |
⊢ ( 𝜑 → ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ↔ ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) : ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) –1-1-onto→ ( ( 1 ... 𝑀 ) ∪ { ( 𝑀 + 1 ) } ) ) ) |
359 |
126 358
|
mpbird |
⊢ ( 𝜑 → ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ∈ { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) |
360 |
346 359
|
opelxpd |
⊢ ( 𝜑 → 〈 ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ) |
361 |
339 360
|
jctild |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( 𝑇 ∘f + ( ( ( 𝑈 “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( 𝑈 “ ( ( 𝑗 + 1 ) ... 𝑀 ) ) × { 0 } ) ) ) ∪ ( ( ( 𝑀 + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 → ( 〈 ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) , ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) 〉 ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... ( 𝑀 + 1 ) ) ) × { 𝑓 ∣ 𝑓 : ( 1 ... ( 𝑀 + 1 ) ) –1-1-onto→ ( 1 ... ( 𝑀 + 1 ) ) } ) ∧ ( ∀ 𝑖 ∈ ( 0 ... 𝑀 ) ∃ 𝑗 ∈ ( 0 ... 𝑀 ) 𝑖 = ⦋ ( ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ∘f + ( ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) “ ( ( 𝑗 + 1 ) ... ( 𝑀 + 1 ) ) ) × { 0 } ) ) ) ∪ ( ( ( ( 𝑀 + 1 ) + 1 ) ... 𝑁 ) × { 0 } ) ) / 𝑝 ⦌ 𝐵 ∧ ( ( 𝑇 ∪ { 〈 ( 𝑀 + 1 ) , 0 〉 } ) ‘ ( 𝑀 + 1 ) ) = 0 ∧ ( ( 𝑈 ∪ { 〈 ( 𝑀 + 1 ) , ( 𝑀 + 1 ) 〉 } ) ‘ ( 𝑀 + 1 ) ) = ( 𝑀 + 1 ) ) ) ) ) |