| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
| 2 |
|
poimirlem22.s |
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
| 3 |
|
poimirlem22.1 |
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
| 4 |
|
poimirlem22.2 |
|- ( ph -> T e. S ) |
| 5 |
|
poimirlem18.3 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K ) |
| 6 |
|
poimirlem18.4 |
|- ( ph -> ( 2nd ` T ) = 0 ) |
| 7 |
1 2 3 4 5 6
|
poimirlem16 |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 8 |
|
elfznn0 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 ) |
| 9 |
8
|
nn0red |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) |
| 11 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 12 |
|
peano2zm |
|- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
| 13 |
11 12
|
syl |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 14 |
13
|
zred |
|- ( ph -> ( N - 1 ) e. RR ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) |
| 16 |
1
|
nnred |
|- ( ph -> N e. RR ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR ) |
| 18 |
|
elfzle2 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) ) |
| 20 |
16
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) |
| 22 |
10 15 17 19 21
|
lelttrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) |
| 23 |
22
|
adantlr |
|- ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) |
| 24 |
|
fveq2 |
|- ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( 2nd ` t ) = ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) |
| 25 |
|
opex |
|- <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. _V |
| 26 |
|
op2ndg |
|- ( ( <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. _V /\ N e. NN ) -> ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = N ) |
| 27 |
25 1 26
|
sylancr |
|- ( ph -> ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = N ) |
| 28 |
24 27
|
sylan9eqr |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 2nd ` t ) = N ) |
| 29 |
28
|
adantr |
|- ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` t ) = N ) |
| 30 |
23 29
|
breqtrrd |
|- ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < ( 2nd ` t ) ) |
| 31 |
30
|
iftrued |
|- ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = y ) |
| 32 |
31
|
csbeq1d |
|- ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 33 |
|
vex |
|- y e. _V |
| 34 |
|
oveq2 |
|- ( j = y -> ( 1 ... j ) = ( 1 ... y ) ) |
| 35 |
34
|
imaeq2d |
|- ( j = y -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) ) |
| 36 |
35
|
xpeq1d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
| 37 |
|
oveq1 |
|- ( j = y -> ( j + 1 ) = ( y + 1 ) ) |
| 38 |
37
|
oveq1d |
|- ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) ) |
| 39 |
38
|
imaeq2d |
|- ( j = y -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) ) |
| 40 |
39
|
xpeq1d |
|- ( j = y -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
| 41 |
36 40
|
uneq12d |
|- ( j = y -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 42 |
41
|
oveq2d |
|- ( j = y -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 43 |
33 42
|
csbie |
|- [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 44 |
|
2fveq3 |
|- ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) ) |
| 45 |
|
op1stg |
|- ( ( <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. _V /\ N e. NN ) -> ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) |
| 46 |
25 1 45
|
sylancr |
|- ( ph -> ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) |
| 47 |
46
|
fveq2d |
|- ( ph -> ( 1st ` ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) = ( 1st ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) ) |
| 48 |
|
ovex |
|- ( 1 ... N ) e. _V |
| 49 |
48
|
mptex |
|- ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) e. _V |
| 50 |
|
fvex |
|- ( 2nd ` ( 1st ` T ) ) e. _V |
| 51 |
48
|
mptex |
|- ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) e. _V |
| 52 |
50 51
|
coex |
|- ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) e. _V |
| 53 |
49 52
|
op1st |
|- ( 1st ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) |
| 54 |
47 53
|
eqtrdi |
|- ( ph -> ( 1st ` ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) ) |
| 55 |
44 54
|
sylan9eqr |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 1st ` ( 1st ` t ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) ) |
| 56 |
|
fveq2 |
|- ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( 1st ` t ) = ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) |
| 57 |
56 46
|
sylan9eqr |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) |
| 58 |
57
|
fveq2d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) ) |
| 59 |
49 52
|
op2nd |
|- ( 2nd ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) |
| 60 |
58 59
|
eqtrdi |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) ) |
| 61 |
60
|
imaeq1d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) ) |
| 62 |
61
|
xpeq1d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) ) |
| 63 |
60
|
imaeq1d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) |
| 64 |
63
|
xpeq1d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) |
| 65 |
62 64
|
uneq12d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 66 |
55 65
|
oveq12d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 67 |
43 66
|
eqtrid |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 68 |
67
|
adantr |
|- ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 69 |
32 68
|
eqtrd |
|- ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 70 |
69
|
mpteq2dva |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 71 |
70
|
eqeq2d |
|- ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 72 |
71
|
ex |
|- ( ph -> ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) ) |
| 73 |
72
|
alrimiv |
|- ( ph -> A. t ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) ) |
| 74 |
|
oveq2 |
|- ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) |
| 75 |
74
|
eleq1d |
|- ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) ) |
| 76 |
|
oveq2 |
|- ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) |
| 77 |
76
|
eleq1d |
|- ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) ) |
| 78 |
|
fveq2 |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) |
| 79 |
78
|
oveq1d |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 80 |
79
|
adantl |
|- ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 81 |
|
elrabi |
|- ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 82 |
81 2
|
eleq2s |
|- ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 83 |
|
xp1st |
|- ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 84 |
4 82 83
|
3syl |
|- ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 85 |
|
xp1st |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 86 |
|
elmapi |
|- ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 87 |
84 85 86
|
3syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 88 |
4 82
|
syl |
|- ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 89 |
|
xp2nd |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 90 |
88 83 89
|
3syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 91 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 92 |
50 91
|
elab |
|- ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 93 |
90 92
|
sylib |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 94 |
|
f1of |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) |
| 95 |
93 94
|
syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) |
| 96 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 97 |
1 96
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 98 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
| 99 |
97 98
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
| 100 |
95 99
|
ffvelcdmd |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) |
| 101 |
87 100
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) ) |
| 102 |
|
elfzonn0 |
|- ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 ) |
| 103 |
|
peano2nn0 |
|- ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. NN0 ) |
| 104 |
101 102 103
|
3syl |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. NN0 ) |
| 105 |
|
elfzo0 |
|- ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) ) |
| 106 |
101 105
|
sylib |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) ) |
| 107 |
106
|
simp2d |
|- ( ph -> K e. NN ) |
| 108 |
104
|
nn0red |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. RR ) |
| 109 |
107
|
nnred |
|- ( ph -> K e. RR ) |
| 110 |
|
elfzolt2 |
|- ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) |
| 111 |
101 110
|
syl |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) |
| 112 |
101 102
|
syl |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 ) |
| 113 |
112
|
nn0zd |
|- ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ZZ ) |
| 114 |
107
|
nnzd |
|- ( ph -> K e. ZZ ) |
| 115 |
|
zltp1le |
|- ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ZZ /\ K e. ZZ ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) <_ K ) ) |
| 116 |
113 114 115
|
syl2anc |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) <_ K ) ) |
| 117 |
111 116
|
mpbid |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) <_ K ) |
| 118 |
|
fvex |
|- ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. _V |
| 119 |
|
eleq1 |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( n e. ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) ) |
| 120 |
119
|
anbi2d |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ph /\ n e. ( 1 ... N ) ) <-> ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) ) ) |
| 121 |
|
fveq2 |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( p ` n ) = ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) |
| 122 |
121
|
neeq1d |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( p ` n ) =/= K <-> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) ) |
| 123 |
122
|
rexbidv |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( E. p e. ran F ( p ` n ) =/= K <-> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) ) |
| 124 |
120 123
|
imbi12d |
|- ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K ) <-> ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) ) ) |
| 125 |
118 124 5
|
vtocl |
|- ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) |
| 126 |
100 125
|
mpdan |
|- ( ph -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) |
| 127 |
|
fveq1 |
|- ( p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) |
| 128 |
87
|
ffnd |
|- ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 130 |
|
1ex |
|- 1 e. _V |
| 131 |
|
fnconstg |
|- ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 132 |
130 131
|
ax-mp |
|- ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) |
| 133 |
|
c0ex |
|- 0 e. _V |
| 134 |
|
fnconstg |
|- ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 135 |
133 134
|
ax-mp |
|- ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 136 |
132 135
|
pm3.2i |
|- ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 137 |
|
dff1o3 |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) ) |
| 138 |
137
|
simprbi |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) ) |
| 139 |
|
imain |
|- ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) |
| 140 |
93 138 139
|
3syl |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) |
| 141 |
|
nn0p1nn |
|- ( y e. NN0 -> ( y + 1 ) e. NN ) |
| 142 |
8 141
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN ) |
| 143 |
142
|
nnred |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR ) |
| 144 |
143
|
ltp1d |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) < ( ( y + 1 ) + 1 ) ) |
| 145 |
|
fzdisj |
|- ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) |
| 146 |
145
|
imaeq2d |
|- ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) |
| 147 |
|
ima0 |
|- ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/) |
| 148 |
146 147
|
eqtrdi |
|- ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 149 |
144 148
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 150 |
140 149
|
sylan9req |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) |
| 151 |
|
fnun |
|- ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) |
| 152 |
136 150 151
|
sylancr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) |
| 153 |
|
imaundi |
|- ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 154 |
142
|
peano2nnd |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. NN ) |
| 155 |
154 96
|
eleqtrdi |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 156 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
| 157 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
| 158 |
156 157
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 160 |
|
elfzuz3 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) |
| 161 |
|
eluzp1p1 |
|- ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
| 162 |
160 161
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
| 163 |
162
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) |
| 164 |
159 163
|
eqeltrrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) ) |
| 165 |
|
fzsplit2 |
|- ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 166 |
155 164 165
|
syl2an2 |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 167 |
166
|
imaeq2d |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) |
| 168 |
|
f1ofo |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) |
| 169 |
|
foima |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 170 |
93 168 169
|
3syl |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 171 |
170
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) |
| 172 |
167 171
|
eqtr3d |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 173 |
153 172
|
eqtr3id |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) |
| 174 |
173
|
fneq2d |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) |
| 175 |
152 174
|
mpbid |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) |
| 176 |
48
|
a1i |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V ) |
| 177 |
|
inidm |
|- ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) |
| 178 |
|
eqidd |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) |
| 179 |
|
f1ofn |
|- ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 180 |
93 179
|
syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 181 |
180
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) |
| 182 |
|
fzss2 |
|- ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) |
| 183 |
164 182
|
syl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) |
| 184 |
142 96
|
eleqtrdi |
|- ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) |
| 185 |
|
eluzfz1 |
|- ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( y + 1 ) ) ) |
| 186 |
184 185
|
syl |
|- ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) |
| 187 |
186
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) |
| 188 |
|
fnfvima |
|- ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) /\ 1 e. ( 1 ... ( y + 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 189 |
181 183 187 188
|
syl3anc |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 190 |
|
fvun1 |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) |
| 191 |
132 135 190
|
mp3an12 |
|- ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) |
| 192 |
150 189 191
|
syl2anc |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) |
| 193 |
130
|
fvconst2 |
|- ( ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) |
| 194 |
189 193
|
syl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) |
| 195 |
192 194
|
eqtrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) |
| 196 |
195
|
adantr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) |
| 197 |
129 175 176 176 177 178 196
|
ofval |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 198 |
100 197
|
mpidan |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 199 |
127 198
|
sylan9eqr |
|- ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 200 |
199
|
adantllr |
|- ( ( ( ( ph /\ p e. ran F ) /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 201 |
|
fveq2 |
|- ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) |
| 202 |
201
|
breq2d |
|- ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) |
| 203 |
202
|
ifbid |
|- ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) |
| 204 |
|
2fveq3 |
|- ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
| 205 |
|
2fveq3 |
|- ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) |
| 206 |
205
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) |
| 207 |
206
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
| 208 |
205
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) |
| 209 |
208
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
| 210 |
207 209
|
uneq12d |
|- ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 211 |
204 210
|
oveq12d |
|- ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 212 |
203 211
|
csbeq12dv |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 213 |
212
|
mpteq2dv |
|- ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 214 |
213
|
eqeq2d |
|- ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 215 |
214 2
|
elrab2 |
|- ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 216 |
215
|
simprbi |
|- ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 217 |
4 216
|
syl |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 218 |
217
|
rneqd |
|- ( ph -> ran F = ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 219 |
218
|
eleq2d |
|- ( ph -> ( p e. ran F <-> p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 220 |
|
eqid |
|- ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 221 |
|
ovex |
|- ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 222 |
221
|
csbex |
|- [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V |
| 223 |
220 222
|
elrnmpti |
|- ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> E. y e. ( 0 ... ( N - 1 ) ) p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 224 |
219 223
|
bitrdi |
|- ( ph -> ( p e. ran F <-> E. y e. ( 0 ... ( N - 1 ) ) p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 225 |
6
|
adantr |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = 0 ) |
| 226 |
|
elfzle1 |
|- ( y e. ( 0 ... ( N - 1 ) ) -> 0 <_ y ) |
| 227 |
226
|
adantl |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 0 <_ y ) |
| 228 |
225 227
|
eqbrtrd |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) <_ y ) |
| 229 |
|
0re |
|- 0 e. RR |
| 230 |
6 229
|
eqeltrdi |
|- ( ph -> ( 2nd ` T ) e. RR ) |
| 231 |
|
lenlt |
|- ( ( ( 2nd ` T ) e. RR /\ y e. RR ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) |
| 232 |
230 9 231
|
syl2an |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) |
| 233 |
228 232
|
mpbid |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. y < ( 2nd ` T ) ) |
| 234 |
233
|
iffalsed |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( y + 1 ) ) |
| 235 |
234
|
csbeq1d |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 236 |
|
ovex |
|- ( y + 1 ) e. _V |
| 237 |
|
oveq2 |
|- ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) ) |
| 238 |
237
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) |
| 239 |
238
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) |
| 240 |
|
oveq1 |
|- ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) ) |
| 241 |
240
|
oveq1d |
|- ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) ) |
| 242 |
241
|
imaeq2d |
|- ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) |
| 243 |
242
|
xpeq1d |
|- ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) |
| 244 |
239 243
|
uneq12d |
|- ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 245 |
244
|
oveq2d |
|- ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 246 |
236 245
|
csbie |
|- [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) |
| 247 |
235 246
|
eqtrdi |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 248 |
247
|
eqeq2d |
|- ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 249 |
248
|
rexbidva |
|- ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 250 |
224 249
|
bitrd |
|- ( ph -> ( p e. ran F <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
| 251 |
250
|
biimpa |
|- ( ( ph /\ p e. ran F ) -> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
| 252 |
200 251
|
r19.29a |
|- ( ( ph /\ p e. ran F ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 253 |
|
eqtr3 |
|- ( ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) /\ K = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = K ) |
| 254 |
253
|
ex |
|- ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) -> ( K = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = K ) ) |
| 255 |
252 254
|
syl |
|- ( ( ph /\ p e. ran F ) -> ( K = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = K ) ) |
| 256 |
255
|
necon3d |
|- ( ( ph /\ p e. ran F ) -> ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K -> K =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) ) |
| 257 |
256
|
rexlimdva |
|- ( ph -> ( E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K -> K =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) ) |
| 258 |
126 257
|
mpd |
|- ( ph -> K =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) |
| 259 |
108 109 117 258
|
leneltd |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) < K ) |
| 260 |
|
elfzo0 |
|- ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. ( 0 ..^ K ) <-> ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. NN0 /\ K e. NN /\ ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) < K ) ) |
| 261 |
104 107 259 260
|
syl3anbrc |
|- ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. ( 0 ..^ K ) ) |
| 262 |
261
|
adantr |
|- ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. ( 0 ..^ K ) ) |
| 263 |
80 262
|
eqeltrd |
|- ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) e. ( 0 ..^ K ) ) |
| 264 |
263
|
adantlr |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) e. ( 0 ..^ K ) ) |
| 265 |
87
|
ffvelcdmda |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) ) |
| 266 |
|
elfzonn0 |
|- ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) |
| 267 |
265 266
|
syl |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) |
| 268 |
267
|
nn0cnd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC ) |
| 269 |
268
|
addridd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` n ) ) |
| 270 |
269 265
|
eqeltrd |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) e. ( 0 ..^ K ) ) |
| 271 |
270
|
adantr |
|- ( ( ( ph /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) e. ( 0 ..^ K ) ) |
| 272 |
75 77 264 271
|
ifbothda |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) |
| 273 |
272
|
fmpttd |
|- ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 274 |
|
ovex |
|- ( 0 ..^ K ) e. _V |
| 275 |
274 48
|
elmap |
|- ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) <-> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
| 276 |
273 275
|
sylibr |
|- ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
| 277 |
|
simpr |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... ( N - 1 ) ) ) |
| 278 |
|
1z |
|- 1 e. ZZ |
| 279 |
13 278
|
jctil |
|- ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) ) |
| 280 |
|
elfzelz |
|- ( n e. ( 1 ... ( N - 1 ) ) -> n e. ZZ ) |
| 281 |
280 278
|
jctir |
|- ( n e. ( 1 ... ( N - 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) ) |
| 282 |
|
fzaddel |
|- ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) |
| 283 |
279 281 282
|
syl2an |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) |
| 284 |
277 283
|
mpbid |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) |
| 285 |
158
|
oveq2d |
|- ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) |
| 286 |
285
|
adantr |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) |
| 287 |
284 286
|
eleqtrd |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... N ) ) |
| 288 |
287
|
ralrimiva |
|- ( ph -> A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) ) |
| 289 |
|
simpr |
|- ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> y e. ( ( 1 + 1 ) ... N ) ) |
| 290 |
|
peano2z |
|- ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ ) |
| 291 |
278 290
|
ax-mp |
|- ( 1 + 1 ) e. ZZ |
| 292 |
11 291
|
jctil |
|- ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) ) |
| 293 |
|
elfzelz |
|- ( y e. ( ( 1 + 1 ) ... N ) -> y e. ZZ ) |
| 294 |
293 278
|
jctir |
|- ( y e. ( ( 1 + 1 ) ... N ) -> ( y e. ZZ /\ 1 e. ZZ ) ) |
| 295 |
|
fzsubel |
|- ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) |
| 296 |
292 294 295
|
syl2an |
|- ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) |
| 297 |
289 296
|
mpbid |
|- ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) |
| 298 |
|
ax-1cn |
|- 1 e. CC |
| 299 |
298 298
|
pncan3oi |
|- ( ( 1 + 1 ) - 1 ) = 1 |
| 300 |
299
|
oveq1i |
|- ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) |
| 301 |
297 300
|
eleqtrdi |
|- ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( 1 ... ( N - 1 ) ) ) |
| 302 |
293
|
zcnd |
|- ( y e. ( ( 1 + 1 ) ... N ) -> y e. CC ) |
| 303 |
|
elfznn |
|- ( n e. ( 1 ... ( N - 1 ) ) -> n e. NN ) |
| 304 |
303
|
nncnd |
|- ( n e. ( 1 ... ( N - 1 ) ) -> n e. CC ) |
| 305 |
|
subadd2 |
|- ( ( y e. CC /\ 1 e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) ) |
| 306 |
298 305
|
mp3an2 |
|- ( ( y e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) ) |
| 307 |
306
|
bicomd |
|- ( ( y e. CC /\ n e. CC ) -> ( ( n + 1 ) = y <-> ( y - 1 ) = n ) ) |
| 308 |
|
eqcom |
|- ( y = ( n + 1 ) <-> ( n + 1 ) = y ) |
| 309 |
|
eqcom |
|- ( n = ( y - 1 ) <-> ( y - 1 ) = n ) |
| 310 |
307 308 309
|
3bitr4g |
|- ( ( y e. CC /\ n e. CC ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) |
| 311 |
302 304 310
|
syl2an |
|- ( ( y e. ( ( 1 + 1 ) ... N ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) |
| 312 |
311
|
ralrimiva |
|- ( y e. ( ( 1 + 1 ) ... N ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) |
| 313 |
312
|
adantl |
|- ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) |
| 314 |
|
reu6i |
|- ( ( ( y - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) |
| 315 |
301 313 314
|
syl2anc |
|- ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) |
| 316 |
315
|
ralrimiva |
|- ( ph -> A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) |
| 317 |
|
eqid |
|- ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) |
| 318 |
317
|
f1ompt |
|- ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) <-> ( A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) ) |
| 319 |
288 316 318
|
sylanbrc |
|- ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) ) |
| 320 |
|
f1osng |
|- ( ( N e. NN /\ 1 e. _V ) -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) |
| 321 |
1 130 320
|
sylancl |
|- ( ph -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) |
| 322 |
14 16
|
ltnled |
|- ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) |
| 323 |
20 322
|
mpbid |
|- ( ph -> -. N <_ ( N - 1 ) ) |
| 324 |
|
elfzle2 |
|- ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) |
| 325 |
323 324
|
nsyl |
|- ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) |
| 326 |
|
disjsn |
|- ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) ) |
| 327 |
325 326
|
sylibr |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) |
| 328 |
|
1re |
|- 1 e. RR |
| 329 |
328
|
ltp1i |
|- 1 < ( 1 + 1 ) |
| 330 |
291
|
zrei |
|- ( 1 + 1 ) e. RR |
| 331 |
328 330
|
ltnlei |
|- ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 ) |
| 332 |
329 331
|
mpbi |
|- -. ( 1 + 1 ) <_ 1 |
| 333 |
|
elfzle1 |
|- ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 ) |
| 334 |
332 333
|
mto |
|- -. 1 e. ( ( 1 + 1 ) ... N ) |
| 335 |
|
disjsn |
|- ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) ) |
| 336 |
334 335
|
mpbir |
|- ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) |
| 337 |
336
|
a1i |
|- ( ph -> ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) ) |
| 338 |
|
f1oun |
|- ( ( ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) /\ { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) /\ ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) /\ ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) ) ) -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) |
| 339 |
319 321 327 337 338
|
syl22anc |
|- ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) |
| 340 |
130
|
a1i |
|- ( ph -> 1 e. _V ) |
| 341 |
158 97
|
eqeltrd |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) |
| 342 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 343 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 344 |
13 342 343
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
| 345 |
158 344
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 346 |
|
fzsplit2 |
|- ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
| 347 |
341 345 346
|
syl2anc |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
| 348 |
158
|
oveq1d |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) |
| 349 |
|
fzsn |
|- ( N e. ZZ -> ( N ... N ) = { N } ) |
| 350 |
11 349
|
syl |
|- ( ph -> ( N ... N ) = { N } ) |
| 351 |
348 350
|
eqtrd |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) |
| 352 |
351
|
uneq2d |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) |
| 353 |
347 352
|
eqtr2d |
|- ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) |
| 354 |
|
iftrue |
|- ( n = N -> if ( n = N , 1 , ( n + 1 ) ) = 1 ) |
| 355 |
354
|
adantl |
|- ( ( ph /\ n = N ) -> if ( n = N , 1 , ( n + 1 ) ) = 1 ) |
| 356 |
1 340 353 355
|
fmptapd |
|- ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) |
| 357 |
|
eleq1 |
|- ( n = N -> ( n e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) ) |
| 358 |
357
|
notbid |
|- ( n = N -> ( -. n e. ( 1 ... ( N - 1 ) ) <-> -. N e. ( 1 ... ( N - 1 ) ) ) ) |
| 359 |
325 358
|
syl5ibrcom |
|- ( ph -> ( n = N -> -. n e. ( 1 ... ( N - 1 ) ) ) ) |
| 360 |
359
|
necon2ad |
|- ( ph -> ( n e. ( 1 ... ( N - 1 ) ) -> n =/= N ) ) |
| 361 |
360
|
imp |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n =/= N ) |
| 362 |
|
ifnefalse |
|- ( n =/= N -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) |
| 363 |
361 362
|
syl |
|- ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) |
| 364 |
363
|
mpteq2dva |
|- ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) ) |
| 365 |
364
|
uneq1d |
|- ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) ) |
| 366 |
356 365
|
eqtr3d |
|- ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) ) |
| 367 |
347 352
|
eqtrd |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) |
| 368 |
|
uzid |
|- ( 1 e. ZZ -> 1 e. ( ZZ>= ` 1 ) ) |
| 369 |
|
peano2uz |
|- ( 1 e. ( ZZ>= ` 1 ) -> ( 1 + 1 ) e. ( ZZ>= ` 1 ) ) |
| 370 |
278 368 369
|
mp2b |
|- ( 1 + 1 ) e. ( ZZ>= ` 1 ) |
| 371 |
|
fzsplit2 |
|- ( ( ( 1 + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` 1 ) ) -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) ) |
| 372 |
370 97 371
|
sylancr |
|- ( ph -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) ) |
| 373 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 374 |
278 373
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 375 |
374
|
uneq1i |
|- ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) |
| 376 |
375
|
equncomi |
|- ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) |
| 377 |
372 376
|
eqtrdi |
|- ( ph -> ( 1 ... N ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) |
| 378 |
366 367 377
|
f1oeq123d |
|- ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) ) |
| 379 |
339 378
|
mpbird |
|- ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 380 |
|
f1oco |
|- ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 381 |
93 379 380
|
syl2anc |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 382 |
|
f1oeq1 |
|- ( f = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
| 383 |
52 382
|
elab |
|- ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
| 384 |
381 383
|
sylibr |
|- ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
| 385 |
276 384
|
opelxpd |
|- ( ph -> <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
| 386 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
| 387 |
|
nn0fz0 |
|- ( N e. NN0 <-> N e. ( 0 ... N ) ) |
| 388 |
386 387
|
sylib |
|- ( ph -> N e. ( 0 ... N ) ) |
| 389 |
385 388
|
opelxpd |
|- ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
| 390 |
|
elrab3t |
|- ( ( A. t ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) /\ <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 391 |
73 389 390
|
syl2anc |
|- ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
| 392 |
7 391
|
mpbird |
|- ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) |
| 393 |
392 2
|
eleqtrrdi |
|- ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. S ) |
| 394 |
|
fveqeq2 |
|- ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. = T -> ( ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = N <-> ( 2nd ` T ) = N ) ) |
| 395 |
27 394
|
syl5ibcom |
|- ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. = T -> ( 2nd ` T ) = N ) ) |
| 396 |
1
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 397 |
|
neeq1 |
|- ( ( 2nd ` T ) = N -> ( ( 2nd ` T ) =/= 0 <-> N =/= 0 ) ) |
| 398 |
396 397
|
syl5ibrcom |
|- ( ph -> ( ( 2nd ` T ) = N -> ( 2nd ` T ) =/= 0 ) ) |
| 399 |
395 398
|
syld |
|- ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. = T -> ( 2nd ` T ) =/= 0 ) ) |
| 400 |
399
|
necon2d |
|- ( ph -> ( ( 2nd ` T ) = 0 -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) ) |
| 401 |
6 400
|
mpd |
|- ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) |
| 402 |
|
neeq1 |
|- ( z = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( z =/= T <-> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) ) |
| 403 |
402
|
rspcev |
|- ( ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. S /\ <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) -> E. z e. S z =/= T ) |
| 404 |
393 401 403
|
syl2anc |
|- ( ph -> E. z e. S z =/= T ) |