| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem22.s |  |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } | 
						
							| 3 |  | poimirlem22.1 |  |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 4 |  | poimirlem22.2 |  |-  ( ph -> T e. S ) | 
						
							| 5 |  | poimirlem18.3 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K ) | 
						
							| 6 |  | poimirlem18.4 |  |-  ( ph -> ( 2nd ` T ) = 0 ) | 
						
							| 7 | 1 2 3 4 5 6 | poimirlem16 |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 8 |  | elfznn0 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 ) | 
						
							| 9 | 8 | nn0red |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) | 
						
							| 11 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 12 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 14 | 13 | zred |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) | 
						
							| 16 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR ) | 
						
							| 18 |  | elfzle2 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) ) | 
						
							| 19 | 18 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) ) | 
						
							| 20 | 16 | ltm1d |  |-  ( ph -> ( N - 1 ) < N ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) | 
						
							| 22 | 10 15 17 19 21 | lelttrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) | 
						
							| 23 | 22 | adantlr |  |-  ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) | 
						
							| 24 |  | fveq2 |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( 2nd ` t ) = ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) | 
						
							| 25 |  | opex |  |-  <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. _V | 
						
							| 26 |  | op2ndg |  |-  ( ( <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. _V /\ N e. NN ) -> ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = N ) | 
						
							| 27 | 25 1 26 | sylancr |  |-  ( ph -> ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = N ) | 
						
							| 28 | 24 27 | sylan9eqr |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 2nd ` t ) = N ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` t ) = N ) | 
						
							| 30 | 23 29 | breqtrrd |  |-  ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < ( 2nd ` t ) ) | 
						
							| 31 | 30 | iftrued |  |-  ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = y ) | 
						
							| 32 | 31 | csbeq1d |  |-  ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 33 |  | vex |  |-  y e. _V | 
						
							| 34 |  | oveq2 |  |-  ( j = y -> ( 1 ... j ) = ( 1 ... y ) ) | 
						
							| 35 | 34 | imaeq2d |  |-  ( j = y -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) ) | 
						
							| 36 | 35 | xpeq1d |  |-  ( j = y -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) ) | 
						
							| 37 |  | oveq1 |  |-  ( j = y -> ( j + 1 ) = ( y + 1 ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) ) | 
						
							| 39 | 38 | imaeq2d |  |-  ( j = y -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 40 | 39 | xpeq1d |  |-  ( j = y -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 41 | 36 40 | uneq12d |  |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 42 | 41 | oveq2d |  |-  ( j = y -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 43 | 33 42 | csbie |  |-  [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 44 |  | 2fveq3 |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) ) | 
						
							| 45 |  | op1stg |  |-  ( ( <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. _V /\ N e. NN ) -> ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) | 
						
							| 46 | 25 1 45 | sylancr |  |-  ( ph -> ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) | 
						
							| 47 | 46 | fveq2d |  |-  ( ph -> ( 1st ` ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) = ( 1st ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) ) | 
						
							| 48 |  | ovex |  |-  ( 1 ... N ) e. _V | 
						
							| 49 | 48 | mptex |  |-  ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) e. _V | 
						
							| 50 |  | fvex |  |-  ( 2nd ` ( 1st ` T ) ) e. _V | 
						
							| 51 | 48 | mptex |  |-  ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) e. _V | 
						
							| 52 | 50 51 | coex |  |-  ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) e. _V | 
						
							| 53 | 49 52 | op1st |  |-  ( 1st ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) | 
						
							| 54 | 47 53 | eqtrdi |  |-  ( ph -> ( 1st ` ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) ) | 
						
							| 55 | 44 54 | sylan9eqr |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 1st ` ( 1st ` t ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) ) | 
						
							| 56 |  | fveq2 |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( 1st ` t ) = ( 1st ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) ) | 
						
							| 57 | 56 46 | sylan9eqr |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) | 
						
							| 58 | 57 | fveq2d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) ) | 
						
							| 59 | 49 52 | op2nd |  |-  ( 2nd ` <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) | 
						
							| 60 | 58 59 | eqtrdi |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) ) | 
						
							| 61 | 60 | imaeq1d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) ) | 
						
							| 62 | 61 | xpeq1d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) ) | 
						
							| 63 | 60 | imaeq1d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 64 | 63 | xpeq1d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 65 | 62 64 | uneq12d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 66 | 55 65 | oveq12d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 67 | 43 66 | eqtrid |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ y / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 69 | 32 68 | eqtrd |  |-  ( ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 70 | 69 | mpteq2dva |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 71 | 70 | eqeq2d |  |-  ( ( ph /\ t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( ph -> ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) ) | 
						
							| 73 | 72 | alrimiv |  |-  ( ph -> A. t ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) ) | 
						
							| 74 |  | oveq2 |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) | 
						
							| 75 | 74 | eleq1d |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) ) | 
						
							| 76 |  | oveq2 |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) | 
						
							| 77 | 76 | eleq1d |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) ) | 
						
							| 78 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 79 | 78 | oveq1d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 80 | 79 | adantl |  |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 81 |  | elrabi |  |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 82 | 81 2 | eleq2s |  |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 83 |  | xp1st |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 84 | 4 82 83 | 3syl |  |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 85 |  | xp1st |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 86 |  | elmapi |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 87 | 84 85 86 | 3syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 88 | 4 82 | syl |  |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 89 |  | xp2nd |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 90 | 88 83 89 | 3syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 91 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 92 | 50 91 | elab |  |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 93 | 90 92 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 94 |  | f1of |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 95 | 93 94 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 96 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 97 | 1 96 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 98 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 99 | 97 98 | syl |  |-  ( ph -> 1 e. ( 1 ... N ) ) | 
						
							| 100 | 95 99 | ffvelcdmd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) | 
						
							| 101 | 87 100 | ffvelcdmd |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) ) | 
						
							| 102 |  | elfzonn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 ) | 
						
							| 103 |  | peano2nn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. NN0 ) | 
						
							| 104 | 101 102 103 | 3syl |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. NN0 ) | 
						
							| 105 |  | elfzo0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) ) | 
						
							| 106 | 101 105 | sylib |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) ) | 
						
							| 107 | 106 | simp2d |  |-  ( ph -> K e. NN ) | 
						
							| 108 | 104 | nn0red |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. RR ) | 
						
							| 109 | 107 | nnred |  |-  ( ph -> K e. RR ) | 
						
							| 110 |  | elfzolt2 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) | 
						
							| 111 | 101 110 | syl |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K ) | 
						
							| 112 | 101 102 | syl |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. NN0 ) | 
						
							| 113 | 112 | nn0zd |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ZZ ) | 
						
							| 114 | 107 | nnzd |  |-  ( ph -> K e. ZZ ) | 
						
							| 115 |  | zltp1le |  |-  ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) e. ZZ /\ K e. ZZ ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) <_ K ) ) | 
						
							| 116 | 113 114 115 | syl2anc |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) < K <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) <_ K ) ) | 
						
							| 117 | 111 116 | mpbid |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) <_ K ) | 
						
							| 118 |  | fvex |  |-  ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. _V | 
						
							| 119 |  | eleq1 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( n e. ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) ) | 
						
							| 120 | 119 | anbi2d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ph /\ n e. ( 1 ... N ) ) <-> ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) ) ) | 
						
							| 121 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( p ` n ) = ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 122 | 121 | neeq1d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( p ` n ) =/= K <-> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) ) | 
						
							| 123 | 122 | rexbidv |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( E. p e. ran F ( p ` n ) =/= K <-> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) ) | 
						
							| 124 | 120 123 | imbi12d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K ) <-> ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) ) ) | 
						
							| 125 | 118 124 5 | vtocl |  |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) | 
						
							| 126 | 100 125 | mpdan |  |-  ( ph -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K ) | 
						
							| 127 |  | fveq1 |  |-  ( p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 128 | 87 | ffnd |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 130 |  | 1ex |  |-  1 e. _V | 
						
							| 131 |  | fnconstg |  |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 132 | 130 131 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) | 
						
							| 133 |  | c0ex |  |-  0 e. _V | 
						
							| 134 |  | fnconstg |  |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 135 | 133 134 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 136 | 132 135 | pm3.2i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 137 |  | dff1o3 |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 138 | 137 | simprbi |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 139 |  | imain |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 140 | 93 138 139 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 141 |  | nn0p1nn |  |-  ( y e. NN0 -> ( y + 1 ) e. NN ) | 
						
							| 142 | 8 141 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN ) | 
						
							| 143 | 142 | nnred |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR ) | 
						
							| 144 | 143 | ltp1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) < ( ( y + 1 ) + 1 ) ) | 
						
							| 145 |  | fzdisj |  |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 146 | 145 | imaeq2d |  |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) | 
						
							| 147 |  | ima0 |  |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/) | 
						
							| 148 | 146 147 | eqtrdi |  |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 149 | 144 148 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 150 | 140 149 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 151 |  | fnun |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 152 | 136 150 151 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 153 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 154 | 142 | peano2nnd |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. NN ) | 
						
							| 155 | 154 96 | eleqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 156 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 157 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 158 | 156 157 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 160 |  | elfzuz3 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 161 |  | eluzp1p1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 162 | 160 161 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 163 | 162 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 164 | 159 163 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 165 |  | fzsplit2 |  |-  ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 166 | 155 164 165 | syl2an2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 167 | 166 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 168 |  | f1ofo |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 169 |  | foima |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 170 | 93 168 169 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 171 | 170 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 172 | 167 171 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 173 | 153 172 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 174 | 173 | fneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) | 
						
							| 175 | 152 174 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 176 | 48 | a1i |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V ) | 
						
							| 177 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 178 |  | eqidd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 179 |  | f1ofn |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 180 | 93 179 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 181 | 180 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 182 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 183 | 164 182 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 184 | 142 96 | eleqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 185 |  | eluzfz1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 186 | 184 185 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 187 | 186 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 188 |  | fnfvima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) /\ 1 e. ( 1 ... ( y + 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 189 | 181 183 187 188 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 190 |  | fvun1 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 191 | 132 135 190 | mp3an12 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 192 | 150 189 191 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 193 | 130 | fvconst2 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) | 
						
							| 194 | 189 193 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) | 
						
							| 195 | 192 194 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) | 
						
							| 196 | 195 | adantr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) | 
						
							| 197 | 129 175 176 176 177 178 196 | ofval |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 198 | 100 197 | mpidan |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 199 | 127 198 | sylan9eqr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 200 | 199 | adantllr |  |-  ( ( ( ( ph /\ p e. ran F ) /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 201 |  | fveq2 |  |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) | 
						
							| 202 | 201 | breq2d |  |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) | 
						
							| 203 | 202 | ifbid |  |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) | 
						
							| 204 |  | 2fveq3 |  |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) | 
						
							| 205 |  | 2fveq3 |  |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 206 | 205 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) | 
						
							| 207 | 206 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 208 | 205 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 209 | 208 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 210 | 207 209 | uneq12d |  |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 211 | 204 210 | oveq12d |  |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 212 | 203 211 | csbeq12dv |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 213 | 212 | mpteq2dv |  |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 214 | 213 | eqeq2d |  |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 215 | 214 2 | elrab2 |  |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 216 | 215 | simprbi |  |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 217 | 4 216 | syl |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 218 | 217 | rneqd |  |-  ( ph -> ran F = ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 219 | 218 | eleq2d |  |-  ( ph -> ( p e. ran F <-> p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 220 |  | eqid |  |-  ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 221 |  | ovex |  |-  ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 222 | 221 | csbex |  |-  [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 223 | 220 222 | elrnmpti |  |-  ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> E. y e. ( 0 ... ( N - 1 ) ) p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 224 | 219 223 | bitrdi |  |-  ( ph -> ( p e. ran F <-> E. y e. ( 0 ... ( N - 1 ) ) p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 225 | 6 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = 0 ) | 
						
							| 226 |  | elfzle1 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 0 <_ y ) | 
						
							| 227 | 226 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 0 <_ y ) | 
						
							| 228 | 225 227 | eqbrtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) <_ y ) | 
						
							| 229 |  | 0re |  |-  0 e. RR | 
						
							| 230 | 6 229 | eqeltrdi |  |-  ( ph -> ( 2nd ` T ) e. RR ) | 
						
							| 231 |  | lenlt |  |-  ( ( ( 2nd ` T ) e. RR /\ y e. RR ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) | 
						
							| 232 | 230 9 231 | syl2an |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) | 
						
							| 233 | 228 232 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. y < ( 2nd ` T ) ) | 
						
							| 234 | 233 | iffalsed |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( y + 1 ) ) | 
						
							| 235 | 234 | csbeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 236 |  | ovex |  |-  ( y + 1 ) e. _V | 
						
							| 237 |  | oveq2 |  |-  ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) ) | 
						
							| 238 | 237 | imaeq2d |  |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 239 | 238 | xpeq1d |  |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) | 
						
							| 240 |  | oveq1 |  |-  ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) ) | 
						
							| 241 | 240 | oveq1d |  |-  ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 242 | 241 | imaeq2d |  |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 243 | 242 | xpeq1d |  |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 244 | 239 243 | uneq12d |  |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 245 | 244 | oveq2d |  |-  ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 246 | 236 245 | csbie |  |-  [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 247 | 235 246 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 248 | 247 | eqeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 249 | 248 | rexbidva |  |-  ( ph -> ( E. y e. ( 0 ... ( N - 1 ) ) p = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 250 | 224 249 | bitrd |  |-  ( ph -> ( p e. ran F <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 251 | 250 | biimpa |  |-  ( ( ph /\ p e. ran F ) -> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 252 | 200 251 | r19.29a |  |-  ( ( ph /\ p e. ran F ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 253 |  | eqtr3 |  |-  ( ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) /\ K = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = K ) | 
						
							| 254 | 253 | ex |  |-  ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) -> ( K = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = K ) ) | 
						
							| 255 | 252 254 | syl |  |-  ( ( ph /\ p e. ran F ) -> ( K = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = K ) ) | 
						
							| 256 | 255 | necon3d |  |-  ( ( ph /\ p e. ran F ) -> ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K -> K =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) ) | 
						
							| 257 | 256 | rexlimdva |  |-  ( ph -> ( E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) =/= K -> K =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) ) | 
						
							| 258 | 126 257 | mpd |  |-  ( ph -> K =/= ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) ) | 
						
							| 259 | 108 109 117 258 | leneltd |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) < K ) | 
						
							| 260 |  | elfzo0 |  |-  ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. ( 0 ..^ K ) <-> ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. NN0 /\ K e. NN /\ ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) < K ) ) | 
						
							| 261 | 104 107 259 260 | syl3anbrc |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. ( 0 ..^ K ) ) | 
						
							| 262 | 261 | adantr |  |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) + 1 ) e. ( 0 ..^ K ) ) | 
						
							| 263 | 80 262 | eqeltrd |  |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) e. ( 0 ..^ K ) ) | 
						
							| 264 | 263 | adantlr |  |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 1 ) e. ( 0 ..^ K ) ) | 
						
							| 265 | 87 | ffvelcdmda |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) ) | 
						
							| 266 |  | elfzonn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 267 | 265 266 | syl |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 268 | 267 | nn0cnd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC ) | 
						
							| 269 | 268 | addridd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` n ) ) | 
						
							| 270 | 269 265 | eqeltrd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) e. ( 0 ..^ K ) ) | 
						
							| 271 | 270 | adantr |  |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + 0 ) e. ( 0 ..^ K ) ) | 
						
							| 272 | 75 77 264 271 | ifbothda |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) | 
						
							| 273 | 272 | fmpttd |  |-  ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 274 |  | ovex |  |-  ( 0 ..^ K ) e. _V | 
						
							| 275 | 274 48 | elmap |  |-  ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) <-> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 276 | 273 275 | sylibr |  |-  ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 277 |  | simpr |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 278 |  | 1z |  |-  1 e. ZZ | 
						
							| 279 | 13 278 | jctil |  |-  ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) ) | 
						
							| 280 |  | elfzelz |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. ZZ ) | 
						
							| 281 | 280 278 | jctir |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 282 |  | fzaddel |  |-  ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 283 | 279 281 282 | syl2an |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 284 | 277 283 | mpbid |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 285 | 158 | oveq2d |  |-  ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 286 | 285 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 287 | 284 286 | eleqtrd |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 288 | 287 | ralrimiva |  |-  ( ph -> A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 289 |  | simpr |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> y e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 290 |  | peano2z |  |-  ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ ) | 
						
							| 291 | 278 290 | ax-mp |  |-  ( 1 + 1 ) e. ZZ | 
						
							| 292 | 11 291 | jctil |  |-  ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 293 |  | elfzelz |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> y e. ZZ ) | 
						
							| 294 | 293 278 | jctir |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> ( y e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 295 |  | fzsubel |  |-  ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 296 | 292 294 295 | syl2an |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 297 | 289 296 | mpbid |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 298 |  | ax-1cn |  |-  1 e. CC | 
						
							| 299 | 298 298 | pncan3oi |  |-  ( ( 1 + 1 ) - 1 ) = 1 | 
						
							| 300 | 299 | oveq1i |  |-  ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) | 
						
							| 301 | 297 300 | eleqtrdi |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 302 | 293 | zcnd |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> y e. CC ) | 
						
							| 303 |  | elfznn |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. NN ) | 
						
							| 304 | 303 | nncnd |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. CC ) | 
						
							| 305 |  | subadd2 |  |-  ( ( y e. CC /\ 1 e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) ) | 
						
							| 306 | 298 305 | mp3an2 |  |-  ( ( y e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) ) | 
						
							| 307 | 306 | bicomd |  |-  ( ( y e. CC /\ n e. CC ) -> ( ( n + 1 ) = y <-> ( y - 1 ) = n ) ) | 
						
							| 308 |  | eqcom |  |-  ( y = ( n + 1 ) <-> ( n + 1 ) = y ) | 
						
							| 309 |  | eqcom |  |-  ( n = ( y - 1 ) <-> ( y - 1 ) = n ) | 
						
							| 310 | 307 308 309 | 3bitr4g |  |-  ( ( y e. CC /\ n e. CC ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 311 | 302 304 310 | syl2an |  |-  ( ( y e. ( ( 1 + 1 ) ... N ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 312 | 311 | ralrimiva |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 313 | 312 | adantl |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 314 |  | reu6i |  |-  ( ( ( y - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) | 
						
							| 315 | 301 313 314 | syl2anc |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) | 
						
							| 316 | 315 | ralrimiva |  |-  ( ph -> A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) | 
						
							| 317 |  | eqid |  |-  ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) | 
						
							| 318 | 317 | f1ompt |  |-  ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) <-> ( A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) ) | 
						
							| 319 | 288 316 318 | sylanbrc |  |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) ) | 
						
							| 320 |  | f1osng |  |-  ( ( N e. NN /\ 1 e. _V ) -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) | 
						
							| 321 | 1 130 320 | sylancl |  |-  ( ph -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) | 
						
							| 322 | 14 16 | ltnled |  |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) | 
						
							| 323 | 20 322 | mpbid |  |-  ( ph -> -. N <_ ( N - 1 ) ) | 
						
							| 324 |  | elfzle2 |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 325 | 323 324 | nsyl |  |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 326 |  | disjsn |  |-  ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 327 | 325 326 | sylibr |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) | 
						
							| 328 |  | 1re |  |-  1 e. RR | 
						
							| 329 | 328 | ltp1i |  |-  1 < ( 1 + 1 ) | 
						
							| 330 | 291 | zrei |  |-  ( 1 + 1 ) e. RR | 
						
							| 331 | 328 330 | ltnlei |  |-  ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 ) | 
						
							| 332 | 329 331 | mpbi |  |-  -. ( 1 + 1 ) <_ 1 | 
						
							| 333 |  | elfzle1 |  |-  ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 ) | 
						
							| 334 | 332 333 | mto |  |-  -. 1 e. ( ( 1 + 1 ) ... N ) | 
						
							| 335 |  | disjsn |  |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 336 | 334 335 | mpbir |  |-  ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) | 
						
							| 337 | 336 | a1i |  |-  ( ph -> ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) ) | 
						
							| 338 |  | f1oun |  |-  ( ( ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) /\ { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) /\ ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) /\ ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) ) ) -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 339 | 319 321 327 337 338 | syl22anc |  |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 340 | 130 | a1i |  |-  ( ph -> 1 e. _V ) | 
						
							| 341 | 158 97 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 342 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 343 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 344 | 13 342 343 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 345 | 158 344 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 346 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 347 | 341 345 346 | syl2anc |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 348 | 158 | oveq1d |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) | 
						
							| 349 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 350 | 11 349 | syl |  |-  ( ph -> ( N ... N ) = { N } ) | 
						
							| 351 | 348 350 | eqtrd |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) | 
						
							| 352 | 351 | uneq2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 353 | 347 352 | eqtr2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) | 
						
							| 354 |  | iftrue |  |-  ( n = N -> if ( n = N , 1 , ( n + 1 ) ) = 1 ) | 
						
							| 355 | 354 | adantl |  |-  ( ( ph /\ n = N ) -> if ( n = N , 1 , ( n + 1 ) ) = 1 ) | 
						
							| 356 | 1 340 353 355 | fmptapd |  |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) | 
						
							| 357 |  | eleq1 |  |-  ( n = N -> ( n e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 358 | 357 | notbid |  |-  ( n = N -> ( -. n e. ( 1 ... ( N - 1 ) ) <-> -. N e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 359 | 325 358 | syl5ibrcom |  |-  ( ph -> ( n = N -> -. n e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 360 | 359 | necon2ad |  |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) -> n =/= N ) ) | 
						
							| 361 | 360 | imp |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n =/= N ) | 
						
							| 362 |  | ifnefalse |  |-  ( n =/= N -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) | 
						
							| 363 | 361 362 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) | 
						
							| 364 | 363 | mpteq2dva |  |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 365 | 364 | uneq1d |  |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) ) | 
						
							| 366 | 356 365 | eqtr3d |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) ) | 
						
							| 367 | 347 352 | eqtrd |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 368 |  | uzid |  |-  ( 1 e. ZZ -> 1 e. ( ZZ>= ` 1 ) ) | 
						
							| 369 |  | peano2uz |  |-  ( 1 e. ( ZZ>= ` 1 ) -> ( 1 + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 370 | 278 368 369 | mp2b |  |-  ( 1 + 1 ) e. ( ZZ>= ` 1 ) | 
						
							| 371 |  | fzsplit2 |  |-  ( ( ( 1 + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` 1 ) ) -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 372 | 370 97 371 | sylancr |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 373 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 374 | 278 373 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 375 | 374 | uneq1i |  |-  ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) | 
						
							| 376 | 375 | equncomi |  |-  ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) | 
						
							| 377 | 372 376 | eqtrdi |  |-  ( ph -> ( 1 ... N ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 378 | 366 367 377 | f1oeq123d |  |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) ) | 
						
							| 379 | 339 378 | mpbird |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 380 |  | f1oco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 381 | 93 379 380 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 382 |  | f1oeq1 |  |-  ( f = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 383 | 52 382 | elab |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 384 | 381 383 | sylibr |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 385 | 276 384 | opelxpd |  |-  ( ph -> <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 386 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 387 |  | nn0fz0 |  |-  ( N e. NN0 <-> N e. ( 0 ... N ) ) | 
						
							| 388 | 386 387 | sylib |  |-  ( ph -> N e. ( 0 ... N ) ) | 
						
							| 389 | 385 388 | opelxpd |  |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 390 |  | elrab3t |  |-  ( ( A. t ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) /\ <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 391 | 73 389 390 | syl2anc |  |-  ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 392 | 7 391 | mpbird |  |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } ) | 
						
							| 393 | 392 2 | eleqtrrdi |  |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. S ) | 
						
							| 394 |  | fveqeq2 |  |-  ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. = T -> ( ( 2nd ` <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. ) = N <-> ( 2nd ` T ) = N ) ) | 
						
							| 395 | 27 394 | syl5ibcom |  |-  ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. = T -> ( 2nd ` T ) = N ) ) | 
						
							| 396 | 1 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 397 |  | neeq1 |  |-  ( ( 2nd ` T ) = N -> ( ( 2nd ` T ) =/= 0 <-> N =/= 0 ) ) | 
						
							| 398 | 396 397 | syl5ibrcom |  |-  ( ph -> ( ( 2nd ` T ) = N -> ( 2nd ` T ) =/= 0 ) ) | 
						
							| 399 | 395 398 | syld |  |-  ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. = T -> ( 2nd ` T ) =/= 0 ) ) | 
						
							| 400 | 399 | necon2d |  |-  ( ph -> ( ( 2nd ` T ) = 0 -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) ) | 
						
							| 401 | 6 400 | mpd |  |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) | 
						
							| 402 |  | neeq1 |  |-  ( z = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. -> ( z =/= T <-> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) ) | 
						
							| 403 | 402 | rspcev |  |-  ( ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. e. S /\ <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) >. , N >. =/= T ) -> E. z e. S z =/= T ) | 
						
							| 404 | 393 401 403 | syl2anc |  |-  ( ph -> E. z e. S z =/= T ) |