| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem22.s |  |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } | 
						
							| 3 |  | poimirlem22.1 |  |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 4 |  | poimirlem22.2 |  |-  ( ph -> T e. S ) | 
						
							| 5 |  | poimirlem18.3 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K ) | 
						
							| 6 |  | poimirlem18.4 |  |-  ( ph -> ( 2nd ` T ) = 0 ) | 
						
							| 7 |  | fveq2 |  |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) | 
						
							| 9 | 8 | ifbid |  |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) | 
						
							| 10 |  | 2fveq3 |  |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) | 
						
							| 11 |  | 2fveq3 |  |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 12 | 11 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) | 
						
							| 13 | 12 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 14 | 11 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 15 | 14 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 16 | 13 15 | uneq12d |  |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 17 | 10 16 | oveq12d |  |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 18 | 9 17 | csbeq12dv |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 19 | 18 | mpteq2dv |  |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 21 | 20 2 | elrab2 |  |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 22 | 21 | simprbi |  |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 24 |  | elrabi |  |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 25 | 24 2 | eleq2s |  |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 26 | 4 25 | syl |  |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 27 |  | xp1st |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 29 |  | xp1st |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 31 |  | elmapfn |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 34 |  | 1ex |  |-  1 e. _V | 
						
							| 35 |  | fnconstg |  |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 36 | 34 35 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) | 
						
							| 37 |  | c0ex |  |-  0 e. _V | 
						
							| 38 |  | fnconstg |  |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 39 | 37 38 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 40 | 36 39 | pm3.2i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 41 |  | xp2nd |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 42 | 28 41 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 43 |  | fvex |  |-  ( 2nd ` ( 1st ` T ) ) e. _V | 
						
							| 44 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 45 | 43 44 | elab |  |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 46 | 42 45 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 47 |  | dff1o3 |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 48 | 47 | simprbi |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 49 | 46 48 | syl |  |-  ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 50 |  | imain |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 52 |  | elfznn0 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 ) | 
						
							| 53 |  | nn0p1nn |  |-  ( y e. NN0 -> ( y + 1 ) e. NN ) | 
						
							| 54 | 52 53 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN ) | 
						
							| 55 | 54 | nnred |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR ) | 
						
							| 56 | 55 | ltp1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) < ( ( y + 1 ) + 1 ) ) | 
						
							| 57 |  | fzdisj |  |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 58 | 56 57 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 59 | 58 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) | 
						
							| 60 |  | ima0 |  |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/) | 
						
							| 61 | 59 60 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 62 | 51 61 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 63 |  | fnun |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 64 | 40 62 63 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 65 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 66 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 67 | 54 66 | eleqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 68 |  | peano2uz |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 69 | 67 68 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 70 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 71 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 72 | 70 71 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 74 |  | elfzuz3 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 75 |  | eluzp1p1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 76 | 74 75 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 78 | 73 77 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 79 |  | fzsplit2 |  |-  ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 80 | 69 78 79 | syl2an2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 81 | 80 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 82 |  | f1ofo |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 83 |  | foima |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 84 | 46 82 83 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 85 | 84 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 86 | 81 85 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 87 | 65 86 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 88 | 87 | fneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) | 
						
							| 89 | 64 88 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 90 |  | ovexd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V ) | 
						
							| 91 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 92 |  | eqidd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` n ) ) | 
						
							| 93 |  | eqidd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 94 | 33 89 90 90 91 92 93 | offval |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 95 |  | oveq1 |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 96 | 95 | eqeq2d |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 97 |  | oveq1 |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 98 | 97 | eqeq2d |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 99 |  | 1p0e1 |  |-  ( 1 + 0 ) = 1 | 
						
							| 100 | 99 | eqcomi |  |-  1 = ( 1 + 0 ) | 
						
							| 101 |  | f1ofn |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 102 | 46 101 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 103 | 102 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 104 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 105 | 78 104 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 106 |  | eluzfz1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 107 | 67 106 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 108 | 107 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 109 |  | fnfvima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) /\ 1 e. ( 1 ... ( y + 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 110 | 103 105 108 109 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 111 |  | fvun1 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 112 | 36 39 111 | mp3an12 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 113 | 62 110 112 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 114 | 34 | fvconst2 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) | 
						
							| 115 | 110 114 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) | 
						
							| 116 | 113 115 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 ) | 
						
							| 117 |  | simpr |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 118 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 119 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 120 | 118 119 | syl |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 121 |  | 1z |  |-  1 e. ZZ | 
						
							| 122 | 120 121 | jctil |  |-  ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) ) | 
						
							| 123 |  | elfzelz |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. ZZ ) | 
						
							| 124 | 123 121 | jctir |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 125 |  | fzaddel |  |-  ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 126 | 122 124 125 | syl2an |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 127 | 117 126 | mpbid |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 128 | 72 | oveq2d |  |-  ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 129 | 128 | adantr |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 130 | 127 129 | eleqtrd |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 131 | 130 | ralrimiva |  |-  ( ph -> A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 132 |  | simpr |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> y e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 133 |  | peano2z |  |-  ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ ) | 
						
							| 134 | 121 133 | ax-mp |  |-  ( 1 + 1 ) e. ZZ | 
						
							| 135 | 118 134 | jctil |  |-  ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 136 |  | elfzelz |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> y e. ZZ ) | 
						
							| 137 | 136 121 | jctir |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> ( y e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 138 |  | fzsubel |  |-  ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 139 | 135 137 138 | syl2an |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 140 | 132 139 | mpbid |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 141 |  | ax-1cn |  |-  1 e. CC | 
						
							| 142 | 141 141 | pncan3oi |  |-  ( ( 1 + 1 ) - 1 ) = 1 | 
						
							| 143 | 142 | oveq1i |  |-  ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) | 
						
							| 144 | 140 143 | eleqtrdi |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 145 | 136 | zcnd |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> y e. CC ) | 
						
							| 146 |  | elfznn |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. NN ) | 
						
							| 147 | 146 | nncnd |  |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. CC ) | 
						
							| 148 |  | subadd2 |  |-  ( ( y e. CC /\ 1 e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) ) | 
						
							| 149 | 141 148 | mp3an2 |  |-  ( ( y e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) ) | 
						
							| 150 | 149 | bicomd |  |-  ( ( y e. CC /\ n e. CC ) -> ( ( n + 1 ) = y <-> ( y - 1 ) = n ) ) | 
						
							| 151 |  | eqcom |  |-  ( ( n + 1 ) = y <-> y = ( n + 1 ) ) | 
						
							| 152 |  | eqcom |  |-  ( ( y - 1 ) = n <-> n = ( y - 1 ) ) | 
						
							| 153 | 150 151 152 | 3bitr3g |  |-  ( ( y e. CC /\ n e. CC ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 154 | 145 147 153 | syl2an |  |-  ( ( y e. ( ( 1 + 1 ) ... N ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 155 | 154 | ralrimiva |  |-  ( y e. ( ( 1 + 1 ) ... N ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 156 | 155 | adantl |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) | 
						
							| 157 |  | reu6i |  |-  ( ( ( y - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) | 
						
							| 158 | 144 156 157 | syl2anc |  |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) | 
						
							| 159 | 158 | ralrimiva |  |-  ( ph -> A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) | 
						
							| 160 |  | eqid |  |-  ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) | 
						
							| 161 | 160 | f1ompt |  |-  ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) <-> ( A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) ) | 
						
							| 162 | 131 159 161 | sylanbrc |  |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) ) | 
						
							| 163 |  | f1osng |  |-  ( ( N e. NN /\ 1 e. _V ) -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) | 
						
							| 164 | 1 34 163 | sylancl |  |-  ( ph -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) | 
						
							| 165 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 166 | 165 | ltm1d |  |-  ( ph -> ( N - 1 ) < N ) | 
						
							| 167 | 120 | zred |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 168 | 167 165 | ltnled |  |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) | 
						
							| 169 | 166 168 | mpbid |  |-  ( ph -> -. N <_ ( N - 1 ) ) | 
						
							| 170 |  | elfzle2 |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 171 | 169 170 | nsyl |  |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 172 |  | disjsn |  |-  ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 173 | 171 172 | sylibr |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) | 
						
							| 174 |  | 1re |  |-  1 e. RR | 
						
							| 175 | 174 | ltp1i |  |-  1 < ( 1 + 1 ) | 
						
							| 176 | 174 174 | readdcli |  |-  ( 1 + 1 ) e. RR | 
						
							| 177 | 174 176 | ltnlei |  |-  ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 ) | 
						
							| 178 | 175 177 | mpbi |  |-  -. ( 1 + 1 ) <_ 1 | 
						
							| 179 |  | elfzle1 |  |-  ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 ) | 
						
							| 180 | 178 179 | mto |  |-  -. 1 e. ( ( 1 + 1 ) ... N ) | 
						
							| 181 |  | disjsn |  |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 182 | 180 181 | mpbir |  |-  ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) | 
						
							| 183 |  | f1oun |  |-  ( ( ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) /\ { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) /\ ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) /\ ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) ) ) -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 184 | 182 183 | mpanr2 |  |-  ( ( ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) /\ { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 185 | 162 164 173 184 | syl21anc |  |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 186 | 34 | a1i |  |-  ( ph -> 1 e. _V ) | 
						
							| 187 | 1 66 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 188 | 72 187 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 189 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 190 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 191 | 120 189 190 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 192 | 72 191 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 193 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 194 | 188 192 193 | syl2anc |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 195 | 72 | oveq1d |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) | 
						
							| 196 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 197 | 118 196 | syl |  |-  ( ph -> ( N ... N ) = { N } ) | 
						
							| 198 | 195 197 | eqtrd |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) | 
						
							| 199 | 198 | uneq2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 200 | 194 199 | eqtr2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) | 
						
							| 201 |  | iftrue |  |-  ( n = N -> if ( n = N , 1 , ( n + 1 ) ) = 1 ) | 
						
							| 202 | 201 | adantl |  |-  ( ( ph /\ n = N ) -> if ( n = N , 1 , ( n + 1 ) ) = 1 ) | 
						
							| 203 | 1 186 200 202 | fmptapd |  |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) | 
						
							| 204 |  | eleq1 |  |-  ( n = N -> ( n e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 205 | 204 | notbid |  |-  ( n = N -> ( -. n e. ( 1 ... ( N - 1 ) ) <-> -. N e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 206 | 171 205 | syl5ibrcom |  |-  ( ph -> ( n = N -> -. n e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 207 | 206 | necon2ad |  |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) -> n =/= N ) ) | 
						
							| 208 | 207 | imp |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n =/= N ) | 
						
							| 209 |  | ifnefalse |  |-  ( n =/= N -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) | 
						
							| 210 | 208 209 | syl |  |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) | 
						
							| 211 | 210 | mpteq2dva |  |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 212 | 211 | uneq1d |  |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) ) | 
						
							| 213 | 203 212 | eqtr3d |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) ) | 
						
							| 214 | 194 199 | eqtrd |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 215 |  | uzid |  |-  ( 1 e. ZZ -> 1 e. ( ZZ>= ` 1 ) ) | 
						
							| 216 |  | peano2uz |  |-  ( 1 e. ( ZZ>= ` 1 ) -> ( 1 + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 217 | 121 215 216 | mp2b |  |-  ( 1 + 1 ) e. ( ZZ>= ` 1 ) | 
						
							| 218 |  | fzsplit2 |  |-  ( ( ( 1 + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` 1 ) ) -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 219 | 217 187 218 | sylancr |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 220 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 221 | 121 220 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 222 | 221 | uneq1i |  |-  ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) | 
						
							| 223 | 222 | equncomi |  |-  ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) | 
						
							| 224 | 219 223 | eqtrdi |  |-  ( ph -> ( 1 ... N ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 225 | 213 214 224 | f1oeq123d |  |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) ) | 
						
							| 226 | 185 225 | mpbird |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 227 |  | f1oco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 228 | 46 226 227 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 229 |  | dff1o3 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) ) ) | 
						
							| 230 | 229 | simprbi |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) ) | 
						
							| 231 | 228 230 | syl |  |-  ( ph -> Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) ) | 
						
							| 232 |  | imain |  |-  ( Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 233 | 231 232 | syl |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 234 | 52 | nn0red |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) | 
						
							| 235 | 234 | ltp1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) ) | 
						
							| 236 |  | fzdisj |  |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) ) | 
						
							| 237 | 235 236 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) ) | 
						
							| 238 | 237 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " (/) ) ) | 
						
							| 239 |  | ima0 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " (/) ) = (/) | 
						
							| 240 | 238 239 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = (/) ) | 
						
							| 241 | 233 240 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) | 
						
							| 242 |  | imassrn |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ran ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) | 
						
							| 243 |  | f1of |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 244 |  | frn |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) -> ran ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) C_ ( 1 ... N ) ) | 
						
							| 245 | 226 243 244 | 3syl |  |-  ( ph -> ran ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) C_ ( 1 ... N ) ) | 
						
							| 246 | 242 245 | sstrid |  |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ( 1 ... N ) ) | 
						
							| 247 | 246 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ( 1 ... N ) ) | 
						
							| 248 |  | elfz1end |  |-  ( N e. NN <-> N e. ( 1 ... N ) ) | 
						
							| 249 | 1 248 | sylib |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 250 |  | eqid |  |-  ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) | 
						
							| 251 | 201 250 34 | fvmpt |  |-  ( N e. ( 1 ... N ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) = 1 ) | 
						
							| 252 | 249 251 | syl |  |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) = 1 ) | 
						
							| 253 | 252 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) = 1 ) | 
						
							| 254 |  | f1ofn |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) ) | 
						
							| 255 | 226 254 | syl |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) ) | 
						
							| 256 | 255 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) ) | 
						
							| 257 |  | fzss1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 258 | 67 257 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 259 | 258 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 260 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> N e. ( ( y + 1 ) ... N ) ) | 
						
							| 261 | 78 260 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( y + 1 ) ... N ) ) | 
						
							| 262 |  | fnfvima |  |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) /\ ( ( y + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( y + 1 ) ... N ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 263 | 256 259 261 262 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 264 | 253 263 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 265 |  | fnfvima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ( 1 ... N ) /\ 1 e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 266 | 103 247 264 265 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 267 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 268 | 266 267 | eleqtrrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 269 |  | fnconstg |  |-  ( 1 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) ) | 
						
							| 270 | 34 269 | ax-mp |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) | 
						
							| 271 |  | fnconstg |  |-  ( 0 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 272 | 37 271 | ax-mp |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) | 
						
							| 273 |  | fvun2 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) /\ ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 274 | 270 272 273 | mp3an12 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 275 | 241 268 274 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 276 | 37 | fvconst2 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 0 ) | 
						
							| 277 | 268 276 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 0 ) | 
						
							| 278 | 275 277 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 0 ) | 
						
							| 279 | 278 | oveq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) = ( 1 + 0 ) ) | 
						
							| 280 | 100 116 279 | 3eqtr4a |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) ) | 
						
							| 281 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 282 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 283 | 282 | oveq2d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) ) | 
						
							| 284 | 281 283 | eqeq12d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) ) ) | 
						
							| 285 | 280 284 | syl5ibrcom |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 286 | 285 | imp |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 287 | 286 | adantlr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 288 |  | eldifsn |  |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) <-> ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 289 |  | df-ne |  |-  ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` 1 ) <-> -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) | 
						
							| 290 | 289 | anbi2i |  |-  ( ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 291 | 288 290 | bitri |  |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) | 
						
							| 292 |  | fnconstg |  |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 293 | 34 292 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 294 | 293 39 | pm3.2i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 295 |  | imain |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 296 | 49 295 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 297 |  | fzdisj |  |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 298 | 56 297 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 299 | 298 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) | 
						
							| 300 | 299 60 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 301 | 296 300 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 302 |  | fnun |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 303 | 294 301 302 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 304 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 305 |  | fzpred |  |-  ( N e. ( ZZ>= ` 1 ) -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 306 | 187 305 | syl |  |-  ( ph -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 307 |  | uncom |  |-  ( { 1 } u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) | 
						
							| 308 | 306 307 | eqtrdi |  |-  ( ph -> ( 1 ... N ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) | 
						
							| 309 | 308 | difeq1d |  |-  ( ph -> ( ( 1 ... N ) \ { 1 } ) = ( ( ( ( 1 + 1 ) ... N ) u. { 1 } ) \ { 1 } ) ) | 
						
							| 310 |  | difun2 |  |-  ( ( ( ( 1 + 1 ) ... N ) u. { 1 } ) \ { 1 } ) = ( ( ( 1 + 1 ) ... N ) \ { 1 } ) | 
						
							| 311 |  | disj3 |  |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... N ) \ { 1 } ) ) | 
						
							| 312 | 182 311 | mpbi |  |-  ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... N ) \ { 1 } ) | 
						
							| 313 | 310 312 | eqtr4i |  |-  ( ( ( ( 1 + 1 ) ... N ) u. { 1 } ) \ { 1 } ) = ( ( 1 + 1 ) ... N ) | 
						
							| 314 | 309 313 | eqtrdi |  |-  ( ph -> ( ( 1 ... N ) \ { 1 } ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 315 | 314 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { 1 } ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 316 |  | eluzp1p1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 317 | 67 316 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) ) | 
						
							| 318 |  | fzsplit2 |  |-  ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 319 | 317 78 318 | syl2an2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 320 | 315 319 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { 1 } ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 321 | 320 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 322 |  | imadif |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) ) | 
						
							| 323 | 49 322 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) ) | 
						
							| 324 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 325 | 187 324 | syl |  |-  ( ph -> 1 e. ( 1 ... N ) ) | 
						
							| 326 |  | fnsnfv |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ 1 e. ( 1 ... N ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) | 
						
							| 327 | 102 325 326 | syl2anc |  |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) | 
						
							| 328 | 327 | eqcomd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) = { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) | 
						
							| 329 | 84 328 | difeq12d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) | 
						
							| 330 | 323 329 | eqtrd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) | 
						
							| 331 | 330 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) | 
						
							| 332 | 321 331 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) | 
						
							| 333 | 304 332 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) | 
						
							| 334 | 333 | fneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) | 
						
							| 335 | 303 334 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) | 
						
							| 336 |  | disjdifr |  |-  ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) | 
						
							| 337 |  | fnconstg |  |-  ( 1 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) | 
						
							| 338 | 34 337 | ax-mp |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } | 
						
							| 339 |  | fvun1 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 340 | 338 339 | mp3an2 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 341 |  | fnconstg |  |-  ( 0 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) | 
						
							| 342 | 37 341 | ax-mp |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } | 
						
							| 343 |  | fvun1 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 344 | 342 343 | mp3an2 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 345 | 340 344 | eqtr4d |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) ) | 
						
							| 346 | 336 345 | mpanr1 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) ) | 
						
							| 347 | 335 346 | sylan |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) ) | 
						
							| 348 | 291 347 | sylan2br |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) ) | 
						
							| 349 | 348 | anassrs |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) ) | 
						
							| 350 |  | fzpred |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 351 | 67 350 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 352 | 351 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) ) | 
						
							| 353 | 352 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) ) | 
						
							| 354 | 327 | uneq1d |  |-  ( ph -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) ) | 
						
							| 355 |  | uncom |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 356 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 357 | 354 355 356 | 3eqtr4g |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) ) | 
						
							| 358 | 357 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) ) | 
						
							| 359 | 353 358 | eqtr4d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) | 
						
							| 360 | 359 | xpeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) X. { 1 } ) ) | 
						
							| 361 |  | xpundir |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) | 
						
							| 362 | 360 361 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ) | 
						
							| 363 | 362 | uneq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 364 |  | un23 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) | 
						
							| 365 | 363 364 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ) | 
						
							| 366 | 365 | fveq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) ) | 
						
							| 367 | 366 | ad2antrr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) ) | 
						
							| 368 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) ) | 
						
							| 369 |  | df-ima |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) ) | 
						
							| 370 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 371 | 74 370 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 372 | 371 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 373 | 73 372 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) ) | 
						
							| 374 |  | fzss2 |  |-  ( N e. ( ZZ>= ` y ) -> ( 1 ... y ) C_ ( 1 ... N ) ) | 
						
							| 375 | 373 374 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) C_ ( 1 ... N ) ) | 
						
							| 376 | 375 | resmptd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) ) = ( n e. ( 1 ... y ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) | 
						
							| 377 |  | fzss2 |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( 1 ... y ) C_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 378 | 74 377 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... y ) C_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 379 | 378 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) C_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 380 | 171 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 381 | 379 380 | ssneldd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. N e. ( 1 ... y ) ) | 
						
							| 382 |  | eleq1 |  |-  ( n = N -> ( n e. ( 1 ... y ) <-> N e. ( 1 ... y ) ) ) | 
						
							| 383 | 382 | notbid |  |-  ( n = N -> ( -. n e. ( 1 ... y ) <-> -. N e. ( 1 ... y ) ) ) | 
						
							| 384 | 381 383 | syl5ibrcom |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n = N -> -. n e. ( 1 ... y ) ) ) | 
						
							| 385 | 384 | necon2ad |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... y ) -> n =/= N ) ) | 
						
							| 386 | 385 | imp |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... y ) ) -> n =/= N ) | 
						
							| 387 | 386 209 | syl |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... y ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) | 
						
							| 388 | 387 | mpteq2dva |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... y ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... y ) |-> ( n + 1 ) ) ) | 
						
							| 389 | 376 388 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) ) = ( n e. ( 1 ... y ) |-> ( n + 1 ) ) ) | 
						
							| 390 | 389 | rneqd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) ) = ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) ) | 
						
							| 391 | 369 390 | eqtrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) = ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) ) | 
						
							| 392 |  | eqid |  |-  ( n e. ( 1 ... y ) |-> ( n + 1 ) ) = ( n e. ( 1 ... y ) |-> ( n + 1 ) ) | 
						
							| 393 | 392 | elrnmpt |  |-  ( j e. _V -> ( j e. ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) <-> E. n e. ( 1 ... y ) j = ( n + 1 ) ) ) | 
						
							| 394 | 393 | elv |  |-  ( j e. ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) <-> E. n e. ( 1 ... y ) j = ( n + 1 ) ) | 
						
							| 395 |  | elfzelz |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) | 
						
							| 396 | 395 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. ZZ ) | 
						
							| 397 |  | simpr |  |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> n e. ( 1 ... y ) ) | 
						
							| 398 | 121 | jctl |  |-  ( y e. ZZ -> ( 1 e. ZZ /\ y e. ZZ ) ) | 
						
							| 399 |  | elfzelz |  |-  ( n e. ( 1 ... y ) -> n e. ZZ ) | 
						
							| 400 | 399 121 | jctir |  |-  ( n e. ( 1 ... y ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 401 |  | fzaddel |  |-  ( ( ( 1 e. ZZ /\ y e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... y ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 402 | 398 400 401 | syl2an |  |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> ( n e. ( 1 ... y ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 403 | 397 402 | mpbid |  |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 404 |  | eleq1 |  |-  ( j = ( n + 1 ) -> ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 405 | 403 404 | syl5ibrcom |  |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> ( j = ( n + 1 ) -> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 406 | 405 | rexlimdva |  |-  ( y e. ZZ -> ( E. n e. ( 1 ... y ) j = ( n + 1 ) -> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 407 |  | elfzelz |  |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> j e. ZZ ) | 
						
							| 408 | 407 | zcnd |  |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> j e. CC ) | 
						
							| 409 |  | npcan1 |  |-  ( j e. CC -> ( ( j - 1 ) + 1 ) = j ) | 
						
							| 410 | 408 409 | syl |  |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( j - 1 ) + 1 ) = j ) | 
						
							| 411 | 410 | eleq1d |  |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 412 | 411 | ibir |  |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 413 | 412 | adantl |  |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 414 |  | peano2zm |  |-  ( j e. ZZ -> ( j - 1 ) e. ZZ ) | 
						
							| 415 | 407 414 | syl |  |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( j - 1 ) e. ZZ ) | 
						
							| 416 | 415 121 | jctir |  |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 417 |  | fzaddel |  |-  ( ( ( 1 e. ZZ /\ y e. ZZ ) /\ ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j - 1 ) e. ( 1 ... y ) <-> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 418 | 398 416 417 | syl2an |  |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( ( j - 1 ) e. ( 1 ... y ) <-> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 419 | 413 418 | mpbird |  |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( j - 1 ) e. ( 1 ... y ) ) | 
						
							| 420 | 408 | adantl |  |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> j e. CC ) | 
						
							| 421 | 409 | eqcomd |  |-  ( j e. CC -> j = ( ( j - 1 ) + 1 ) ) | 
						
							| 422 | 420 421 | syl |  |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> j = ( ( j - 1 ) + 1 ) ) | 
						
							| 423 |  | oveq1 |  |-  ( n = ( j - 1 ) -> ( n + 1 ) = ( ( j - 1 ) + 1 ) ) | 
						
							| 424 | 423 | rspceeqv |  |-  ( ( ( j - 1 ) e. ( 1 ... y ) /\ j = ( ( j - 1 ) + 1 ) ) -> E. n e. ( 1 ... y ) j = ( n + 1 ) ) | 
						
							| 425 | 419 422 424 | syl2anc |  |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> E. n e. ( 1 ... y ) j = ( n + 1 ) ) | 
						
							| 426 | 425 | ex |  |-  ( y e. ZZ -> ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> E. n e. ( 1 ... y ) j = ( n + 1 ) ) ) | 
						
							| 427 | 406 426 | impbid |  |-  ( y e. ZZ -> ( E. n e. ( 1 ... y ) j = ( n + 1 ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 428 | 396 427 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( 1 ... y ) j = ( n + 1 ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 429 | 394 428 | bitrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 430 | 429 | eqrdv |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) = ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 431 | 391 430 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) = ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 432 | 431 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 433 | 368 432 | eqtrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 434 | 433 | xpeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) ) | 
						
							| 435 |  | imaundi |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " { N } ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 436 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " { N } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) | 
						
							| 437 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 438 | 436 437 | uneq12i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " { N } ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 439 | 435 438 | eqtri |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 440 | 192 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 441 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 442 | 76 440 441 | syl2an2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 443 | 198 | uneq2d |  |-  ( ph -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 444 | 443 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 445 | 442 444 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 446 |  | uncom |  |-  ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) = ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 447 | 445 446 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 448 | 447 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 449 | 252 | sneqd |  |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) } = { 1 } ) | 
						
							| 450 |  | fnsnfv |  |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> { ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) } = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) | 
						
							| 451 | 255 249 450 | syl2anc |  |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) } = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) | 
						
							| 452 | 449 451 | eqtr3d |  |-  ( ph -> { 1 } = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) | 
						
							| 453 | 452 | imaeq2d |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) ) | 
						
							| 454 | 327 453 | eqtrd |  |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) ) | 
						
							| 455 | 454 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) ) | 
						
							| 456 |  | df-ima |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 457 |  | fzss1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 458 | 67 457 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) ) | 
						
							| 459 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 460 | 192 459 | syl |  |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 461 | 458 460 | sylan9ssr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... ( N - 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 462 | 461 | resmptd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) | 
						
							| 463 |  | elfzle2 |  |-  ( N e. ( ( y + 1 ) ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 464 | 169 463 | nsyl |  |-  ( ph -> -. N e. ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 465 |  | eleq1 |  |-  ( n = N -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> N e. ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 466 | 465 | notbid |  |-  ( n = N -> ( -. n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> -. N e. ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 467 | 464 466 | syl5ibrcom |  |-  ( ph -> ( n = N -> -. n e. ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 468 | 467 | con2d |  |-  ( ph -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) -> -. n = N ) ) | 
						
							| 469 | 468 | imp |  |-  ( ( ph /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> -. n = N ) | 
						
							| 470 | 469 | iffalsed |  |-  ( ( ph /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) ) | 
						
							| 471 | 470 | mpteq2dva |  |-  ( ph -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 472 | 471 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 473 | 462 472 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 474 | 473 | rneqd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) ) = ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 475 | 456 474 | eqtrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) = ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 476 |  | elfzelz |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> j e. ZZ ) | 
						
							| 477 | 476 | zcnd |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> j e. CC ) | 
						
							| 478 | 477 409 | syl |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( j - 1 ) + 1 ) = j ) | 
						
							| 479 | 478 | eleq1d |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 480 | 479 | ibir |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 481 | 480 | adantl |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 482 | 54 | nnzd |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ZZ ) | 
						
							| 483 | 120 482 | anim12ci |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) e. ZZ /\ ( N - 1 ) e. ZZ ) ) | 
						
							| 484 | 476 414 | syl |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( j - 1 ) e. ZZ ) | 
						
							| 485 | 484 121 | jctir |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 486 |  | fzaddel |  |-  ( ( ( ( y + 1 ) e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 487 | 483 485 486 | syl2an |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 488 | 481 487 | mpbird |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 489 | 477 421 | syl |  |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> j = ( ( j - 1 ) + 1 ) ) | 
						
							| 490 | 489 | adantl |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> j = ( ( j - 1 ) + 1 ) ) | 
						
							| 491 | 423 | rspceeqv |  |-  ( ( ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) /\ j = ( ( j - 1 ) + 1 ) ) -> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) | 
						
							| 492 | 488 490 491 | syl2anc |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) | 
						
							| 493 | 492 | ex |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) ) | 
						
							| 494 |  | simpr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> n e. ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 495 |  | elfzelz |  |-  ( n e. ( ( y + 1 ) ... ( N - 1 ) ) -> n e. ZZ ) | 
						
							| 496 | 495 121 | jctir |  |-  ( n e. ( ( y + 1 ) ... ( N - 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 497 |  | fzaddel |  |-  ( ( ( ( y + 1 ) e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 498 | 483 496 497 | syl2an |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 499 | 494 498 | mpbid |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 500 |  | eleq1 |  |-  ( j = ( n + 1 ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 501 | 499 500 | syl5ibrcom |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> ( j = ( n + 1 ) -> j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 502 | 501 | rexlimdva |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) -> j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 503 | 493 502 | impbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) ) | 
						
							| 504 |  | eqid |  |-  ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) | 
						
							| 505 | 504 | elrnmpt |  |-  ( j e. _V -> ( j e. ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) <-> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) ) | 
						
							| 506 | 505 | elv |  |-  ( j e. ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) <-> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) | 
						
							| 507 | 503 506 | bitr4di |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> j e. ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) ) | 
						
							| 508 | 507 | eqrdv |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) = ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) | 
						
							| 509 | 72 | oveq2d |  |-  ( ph -> ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 510 | 509 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 511 | 475 508 510 | 3eqtr2rd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... N ) = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 512 | 511 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 513 | 455 512 | uneq12d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) ) | 
						
							| 514 | 439 448 513 | 3eqtr4a |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 515 | 514 | xpeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) X. { 0 } ) ) | 
						
							| 516 |  | xpundir |  |-  ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 517 | 515 516 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 518 | 434 517 | uneq12d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 519 |  | unass |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 520 |  | un23 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) | 
						
							| 521 | 519 520 | eqtr3i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) | 
						
							| 522 | 518 521 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ) | 
						
							| 523 | 522 | fveq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) ) | 
						
							| 524 | 523 | ad2antrr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) ) | 
						
							| 525 | 349 367 524 | 3eqtr4d |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 526 |  | snssi |  |-  ( 1 e. CC -> { 1 } C_ CC ) | 
						
							| 527 | 141 526 | ax-mp |  |-  { 1 } C_ CC | 
						
							| 528 |  | 0cn |  |-  0 e. CC | 
						
							| 529 |  | snssi |  |-  ( 0 e. CC -> { 0 } C_ CC ) | 
						
							| 530 | 528 529 | ax-mp |  |-  { 0 } C_ CC | 
						
							| 531 | 527 530 | unssi |  |-  ( { 1 } u. { 0 } ) C_ CC | 
						
							| 532 | 34 | fconst |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) --> { 1 } | 
						
							| 533 | 37 | fconst |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) --> { 0 } | 
						
							| 534 | 532 533 | pm3.2i |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) --> { 0 } ) | 
						
							| 535 |  | fun |  |-  ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 536 | 534 241 535 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 537 |  | imaundi |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 538 |  | fzsplit2 |  |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` y ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) | 
						
							| 539 | 67 373 538 | syl2an2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) | 
						
							| 540 | 539 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 541 |  | f1ofo |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 542 |  | foima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 543 | 228 541 542 | 3syl |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 544 | 543 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 545 | 540 544 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 546 | 537 545 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 547 | 546 | feq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) | 
						
							| 548 | 536 547 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 549 | 548 | ffvelcdmda |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. ( { 1 } u. { 0 } ) ) | 
						
							| 550 | 531 549 | sselid |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. CC ) | 
						
							| 551 | 550 | addlidd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 552 | 551 | adantr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 553 | 525 552 | eqtr4d |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 554 | 96 98 287 553 | ifbothda |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 555 | 554 | oveq2d |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 556 |  | elmapi |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 557 | 30 556 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 558 | 557 | ffvelcdmda |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) ) | 
						
							| 559 |  | elfzonn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 560 | 558 559 | syl |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 561 | 560 | nn0cnd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC ) | 
						
							| 562 | 561 | adantlr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC ) | 
						
							| 563 | 141 528 | ifcli |  |-  if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) e. CC | 
						
							| 564 | 563 | a1i |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) e. CC ) | 
						
							| 565 | 562 564 550 | addassd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 566 | 555 565 | eqtr4d |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 567 | 566 | mpteq2dva |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 568 | 94 567 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 569 | 6 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = 0 ) | 
						
							| 570 |  | elfzle1 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 0 <_ y ) | 
						
							| 571 | 570 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 0 <_ y ) | 
						
							| 572 | 569 571 | eqbrtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) <_ y ) | 
						
							| 573 |  | 0re |  |-  0 e. RR | 
						
							| 574 | 6 573 | eqeltrdi |  |-  ( ph -> ( 2nd ` T ) e. RR ) | 
						
							| 575 |  | lenlt |  |-  ( ( ( 2nd ` T ) e. RR /\ y e. RR ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) | 
						
							| 576 | 574 234 575 | syl2an |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) ) | 
						
							| 577 | 572 576 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. y < ( 2nd ` T ) ) | 
						
							| 578 | 577 | iffalsed |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( y + 1 ) ) | 
						
							| 579 | 578 | csbeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 580 |  | ovex |  |-  ( y + 1 ) e. _V | 
						
							| 581 |  | oveq2 |  |-  ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) ) | 
						
							| 582 | 581 | imaeq2d |  |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 583 | 582 | xpeq1d |  |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) | 
						
							| 584 |  | oveq1 |  |-  ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) ) | 
						
							| 585 | 584 | oveq1d |  |-  ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 586 | 585 | imaeq2d |  |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 587 | 586 | xpeq1d |  |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 588 | 583 587 | uneq12d |  |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 589 | 588 | oveq2d |  |-  ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 590 | 580 589 | csbie |  |-  [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 591 | 579 590 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 592 |  | ovexd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. _V ) | 
						
							| 593 |  | fvexd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. _V ) | 
						
							| 594 |  | eqidd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) ) | 
						
							| 595 | 548 | ffnd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 596 |  | nfcv |  |-  F/_ n ( 2nd ` ( 1st ` T ) ) | 
						
							| 597 |  | nfmpt1 |  |-  F/_ n ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) | 
						
							| 598 | 596 597 | nfco |  |-  F/_ n ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) | 
						
							| 599 |  | nfcv |  |-  F/_ n ( 1 ... y ) | 
						
							| 600 | 598 599 | nfima |  |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) | 
						
							| 601 |  | nfcv |  |-  F/_ n { 1 } | 
						
							| 602 | 600 601 | nfxp |  |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) | 
						
							| 603 |  | nfcv |  |-  F/_ n ( ( y + 1 ) ... N ) | 
						
							| 604 | 598 603 | nfima |  |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) | 
						
							| 605 |  | nfcv |  |-  F/_ n { 0 } | 
						
							| 606 | 604 605 | nfxp |  |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) | 
						
							| 607 | 602 606 | nfun |  |-  F/_ n ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 608 | 607 | dffn5f |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 609 | 595 608 | sylib |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 610 | 90 592 593 594 609 | offval2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 611 | 568 591 610 | 3eqtr4rd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 612 | 611 | mpteq2dva |  |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 613 | 23 612 | eqtr4d |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |