Metamath Proof Explorer


Theorem poimirlem16

Description: Lemma for poimir establishing the vertices of the simplex of poimirlem17 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem22.s
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
poimirlem22.1
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
poimirlem22.2
|- ( ph -> T e. S )
poimirlem18.3
|- ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K )
poimirlem18.4
|- ( ph -> ( 2nd ` T ) = 0 )
Assertion poimirlem16
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem22.s
 |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
3 poimirlem22.1
 |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
4 poimirlem22.2
 |-  ( ph -> T e. S )
5 poimirlem18.3
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= K )
6 poimirlem18.4
 |-  ( ph -> ( 2nd ` T ) = 0 )
7 fveq2
 |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) )
8 7 breq2d
 |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) )
9 8 ifbid
 |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) )
10 2fveq3
 |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
11 2fveq3
 |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) )
12 11 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) )
13 12 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) )
14 11 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) )
15 14 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
16 13 15 uneq12d
 |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
17 10 16 oveq12d
 |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
18 9 17 csbeq12dv
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
19 18 mpteq2dv
 |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
20 19 eqeq2d
 |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
21 20 2 elrab2
 |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
22 21 simprbi
 |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
23 4 22 syl
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
24 elrabi
 |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
25 24 2 eleq2s
 |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
26 4 25 syl
 |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
27 xp1st
 |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
28 26 27 syl
 |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
29 xp1st
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
30 28 29 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
31 elmapfn
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
32 30 31 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
33 32 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
34 1ex
 |-  1 e. _V
35 fnconstg
 |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) )
36 34 35 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) )
37 c0ex
 |-  0 e. _V
38 fnconstg
 |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
39 37 38 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) )
40 36 39 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
41 xp2nd
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
42 28 41 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
43 fvex
 |-  ( 2nd ` ( 1st ` T ) ) e. _V
44 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
45 43 44 elab
 |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
46 42 45 sylib
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
47 dff1o3
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) )
48 47 simprbi
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) )
49 46 48 syl
 |-  ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) )
50 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
51 49 50 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
52 elfznn0
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 )
53 nn0p1nn
 |-  ( y e. NN0 -> ( y + 1 ) e. NN )
54 52 53 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN )
55 54 nnred
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR )
56 55 ltp1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) < ( ( y + 1 ) + 1 ) )
57 fzdisj
 |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
58 56 57 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
59 58 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
60 ima0
 |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/)
61 59 60 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) )
62 51 61 sylan9req
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) )
63 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
64 40 62 63 sylancr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
65 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
66 nnuz
 |-  NN = ( ZZ>= ` 1 )
67 54 66 eleqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) )
68 peano2uz
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
69 67 68 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
70 1 nncnd
 |-  ( ph -> N e. CC )
71 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
72 70 71 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
73 72 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N )
74 elfzuz3
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) )
75 eluzp1p1
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
76 74 75 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
77 76 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
78 73 77 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) )
79 fzsplit2
 |-  ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
80 69 78 79 syl2an2
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
81 80 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
82 f1ofo
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
83 foima
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
84 46 82 83 3syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
85 84 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
86 81 85 eqtr3d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) )
87 65 86 eqtr3id
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) )
88 87 fneq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
89 64 88 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
90 ovexd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V )
91 inidm
 |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N )
92 eqidd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` n ) )
93 eqidd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
94 33 89 90 90 91 92 93 offval
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
95 oveq1
 |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
96 95 eqeq2d
 |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
97 oveq1
 |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
98 97 eqeq2d
 |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
99 1p0e1
 |-  ( 1 + 0 ) = 1
100 99 eqcomi
 |-  1 = ( 1 + 0 )
101 f1ofn
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
102 46 101 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
103 102 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
104 fzss2
 |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) )
105 78 104 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) )
106 eluzfz1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( y + 1 ) ) )
107 67 106 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. ( 1 ... ( y + 1 ) ) )
108 107 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( 1 ... ( y + 1 ) ) )
109 fnfvima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) /\ 1 e. ( 1 ... ( y + 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) )
110 103 105 108 109 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) )
111 fvun1
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
112 36 39 111 mp3an12
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
113 62 110 112 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
114 34 fvconst2
 |-  ( ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 )
115 110 114 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 )
116 113 115 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 1 )
117 simpr
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n e. ( 1 ... ( N - 1 ) ) )
118 1 nnzd
 |-  ( ph -> N e. ZZ )
119 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
120 118 119 syl
 |-  ( ph -> ( N - 1 ) e. ZZ )
121 1z
 |-  1 e. ZZ
122 120 121 jctil
 |-  ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) )
123 elfzelz
 |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. ZZ )
124 123 121 jctir
 |-  ( n e. ( 1 ... ( N - 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) )
125 fzaddel
 |-  ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
126 122 124 125 syl2an
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
127 117 126 mpbid
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) )
128 72 oveq2d
 |-  ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) )
129 128 adantr
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) )
130 127 129 eleqtrd
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... N ) )
131 130 ralrimiva
 |-  ( ph -> A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) )
132 simpr
 |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> y e. ( ( 1 + 1 ) ... N ) )
133 peano2z
 |-  ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ )
134 121 133 ax-mp
 |-  ( 1 + 1 ) e. ZZ
135 118 134 jctil
 |-  ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) )
136 elfzelz
 |-  ( y e. ( ( 1 + 1 ) ... N ) -> y e. ZZ )
137 136 121 jctir
 |-  ( y e. ( ( 1 + 1 ) ... N ) -> ( y e. ZZ /\ 1 e. ZZ ) )
138 fzsubel
 |-  ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) )
139 135 137 138 syl2an
 |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y e. ( ( 1 + 1 ) ... N ) <-> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) )
140 132 139 mpbid
 |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) )
141 ax-1cn
 |-  1 e. CC
142 141 141 pncan3oi
 |-  ( ( 1 + 1 ) - 1 ) = 1
143 142 oveq1i
 |-  ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) )
144 140 143 eleqtrdi
 |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> ( y - 1 ) e. ( 1 ... ( N - 1 ) ) )
145 136 zcnd
 |-  ( y e. ( ( 1 + 1 ) ... N ) -> y e. CC )
146 elfznn
 |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. NN )
147 146 nncnd
 |-  ( n e. ( 1 ... ( N - 1 ) ) -> n e. CC )
148 subadd2
 |-  ( ( y e. CC /\ 1 e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) )
149 141 148 mp3an2
 |-  ( ( y e. CC /\ n e. CC ) -> ( ( y - 1 ) = n <-> ( n + 1 ) = y ) )
150 149 bicomd
 |-  ( ( y e. CC /\ n e. CC ) -> ( ( n + 1 ) = y <-> ( y - 1 ) = n ) )
151 eqcom
 |-  ( ( n + 1 ) = y <-> y = ( n + 1 ) )
152 eqcom
 |-  ( ( y - 1 ) = n <-> n = ( y - 1 ) )
153 150 151 152 3bitr3g
 |-  ( ( y e. CC /\ n e. CC ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) )
154 145 147 153 syl2an
 |-  ( ( y e. ( ( 1 + 1 ) ... N ) /\ n e. ( 1 ... ( N - 1 ) ) ) -> ( y = ( n + 1 ) <-> n = ( y - 1 ) ) )
155 154 ralrimiva
 |-  ( y e. ( ( 1 + 1 ) ... N ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) )
156 155 adantl
 |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) )
157 reu6i
 |-  ( ( ( y - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. n e. ( 1 ... ( N - 1 ) ) ( y = ( n + 1 ) <-> n = ( y - 1 ) ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) )
158 144 156 157 syl2anc
 |-  ( ( ph /\ y e. ( ( 1 + 1 ) ... N ) ) -> E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) )
159 158 ralrimiva
 |-  ( ph -> A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) )
160 eqid
 |-  ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) )
161 160 f1ompt
 |-  ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) <-> ( A. n e. ( 1 ... ( N - 1 ) ) ( n + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. y e. ( ( 1 + 1 ) ... N ) E! n e. ( 1 ... ( N - 1 ) ) y = ( n + 1 ) ) )
162 131 159 161 sylanbrc
 |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) )
163 f1osng
 |-  ( ( N e. NN /\ 1 e. _V ) -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } )
164 1 34 163 sylancl
 |-  ( ph -> { <. N , 1 >. } : { N } -1-1-onto-> { 1 } )
165 1 nnred
 |-  ( ph -> N e. RR )
166 165 ltm1d
 |-  ( ph -> ( N - 1 ) < N )
167 120 zred
 |-  ( ph -> ( N - 1 ) e. RR )
168 167 165 ltnled
 |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) )
169 166 168 mpbid
 |-  ( ph -> -. N <_ ( N - 1 ) )
170 elfzle2
 |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) )
171 169 170 nsyl
 |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) )
172 disjsn
 |-  ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) )
173 171 172 sylibr
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) )
174 1re
 |-  1 e. RR
175 174 ltp1i
 |-  1 < ( 1 + 1 )
176 174 174 readdcli
 |-  ( 1 + 1 ) e. RR
177 174 176 ltnlei
 |-  ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 )
178 175 177 mpbi
 |-  -. ( 1 + 1 ) <_ 1
179 elfzle1
 |-  ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 )
180 178 179 mto
 |-  -. 1 e. ( ( 1 + 1 ) ... N )
181 disjsn
 |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) )
182 180 181 mpbir
 |-  ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/)
183 f1oun
 |-  ( ( ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) /\ { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) /\ ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) /\ ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) ) ) -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) )
184 182 183 mpanr2
 |-  ( ( ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) : ( 1 ... ( N - 1 ) ) -1-1-onto-> ( ( 1 + 1 ) ... N ) /\ { <. N , 1 >. } : { N } -1-1-onto-> { 1 } ) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) )
185 162 164 173 184 syl21anc
 |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) )
186 34 a1i
 |-  ( ph -> 1 e. _V )
187 1 66 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 1 ) )
188 72 187 eqeltrd
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
189 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
190 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
191 120 189 190 3syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
192 72 191 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
193 fzsplit2
 |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
194 188 192 193 syl2anc
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
195 72 oveq1d
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) )
196 fzsn
 |-  ( N e. ZZ -> ( N ... N ) = { N } )
197 118 196 syl
 |-  ( ph -> ( N ... N ) = { N } )
198 195 197 eqtrd
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } )
199 198 uneq2d
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) )
200 194 199 eqtr2d
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) )
201 iftrue
 |-  ( n = N -> if ( n = N , 1 , ( n + 1 ) ) = 1 )
202 201 adantl
 |-  ( ( ph /\ n = N ) -> if ( n = N , 1 , ( n + 1 ) ) = 1 )
203 1 186 200 202 fmptapd
 |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) )
204 eleq1
 |-  ( n = N -> ( n e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) )
205 204 notbid
 |-  ( n = N -> ( -. n e. ( 1 ... ( N - 1 ) ) <-> -. N e. ( 1 ... ( N - 1 ) ) ) )
206 171 205 syl5ibrcom
 |-  ( ph -> ( n = N -> -. n e. ( 1 ... ( N - 1 ) ) ) )
207 206 necon2ad
 |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) -> n =/= N ) )
208 207 imp
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> n =/= N )
209 ifnefalse
 |-  ( n =/= N -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) )
210 208 209 syl
 |-  ( ( ph /\ n e. ( 1 ... ( N - 1 ) ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) )
211 210 mpteq2dva
 |-  ( ph -> ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) )
212 211 uneq1d
 |-  ( ph -> ( ( n e. ( 1 ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) u. { <. N , 1 >. } ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) )
213 203 212 eqtr3d
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) )
214 194 199 eqtrd
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) )
215 uzid
 |-  ( 1 e. ZZ -> 1 e. ( ZZ>= ` 1 ) )
216 peano2uz
 |-  ( 1 e. ( ZZ>= ` 1 ) -> ( 1 + 1 ) e. ( ZZ>= ` 1 ) )
217 121 215 216 mp2b
 |-  ( 1 + 1 ) e. ( ZZ>= ` 1 )
218 fzsplit2
 |-  ( ( ( 1 + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` 1 ) ) -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) )
219 217 187 218 sylancr
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) )
220 fzsn
 |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } )
221 121 220 ax-mp
 |-  ( 1 ... 1 ) = { 1 }
222 221 uneq1i
 |-  ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) )
223 222 equncomi
 |-  ( ( 1 ... 1 ) u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } )
224 219 223 eqtrdi
 |-  ( ph -> ( 1 ... N ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) )
225 213 214 224 f1oeq123d
 |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( n e. ( 1 ... ( N - 1 ) ) |-> ( n + 1 ) ) u. { <. N , 1 >. } ) : ( ( 1 ... ( N - 1 ) ) u. { N } ) -1-1-onto-> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) ) )
226 185 225 mpbird
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
227 f1oco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
228 46 226 227 syl2anc
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
229 dff1o3
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) ) )
230 229 simprbi
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) )
231 228 230 syl
 |-  ( ph -> Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) )
232 imain
 |-  ( Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) )
233 231 232 syl
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) )
234 52 nn0red
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR )
235 234 ltp1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) )
236 fzdisj
 |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) )
237 235 236 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) )
238 237 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " (/) ) )
239 ima0
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " (/) ) = (/)
240 238 239 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = (/) )
241 233 240 sylan9req
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) )
242 imassrn
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ran ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) )
243 f1of
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) )
244 frn
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) -> ran ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) C_ ( 1 ... N ) )
245 226 243 244 3syl
 |-  ( ph -> ran ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) C_ ( 1 ... N ) )
246 242 245 sstrid
 |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ( 1 ... N ) )
247 246 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ( 1 ... N ) )
248 elfz1end
 |-  ( N e. NN <-> N e. ( 1 ... N ) )
249 1 248 sylib
 |-  ( ph -> N e. ( 1 ... N ) )
250 eqid
 |-  ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) )
251 201 250 34 fvmpt
 |-  ( N e. ( 1 ... N ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) = 1 )
252 249 251 syl
 |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) = 1 )
253 252 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) = 1 )
254 f1ofn
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) )
255 226 254 syl
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) )
256 255 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) )
257 fzss1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
258 67 257 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
259 258 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
260 eluzfz2
 |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> N e. ( ( y + 1 ) ... N ) )
261 78 260 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( y + 1 ) ... N ) )
262 fnfvima
 |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) /\ ( ( y + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( y + 1 ) ... N ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) )
263 256 259 261 262 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) )
264 253 263 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) )
265 fnfvima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) C_ ( 1 ... N ) /\ 1 e. ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) )
266 103 247 264 265 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) ) )
267 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... N ) ) )
268 266 267 eleqtrrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) )
269 fnconstg
 |-  ( 1 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) )
270 34 269 ax-mp
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) )
271 fnconstg
 |-  ( 0 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) )
272 37 271 ax-mp
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) )
273 fvun2
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) /\ ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
274 270 272 273 mp3an12
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
275 241 268 274 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
276 37 fvconst2
 |-  ( ( ( 2nd ` ( 1st ` T ) ) ` 1 ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 0 )
277 268 276 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 0 )
278 275 277 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = 0 )
279 278 oveq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) = ( 1 + 0 ) )
280 100 116 279 3eqtr4a
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) )
281 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
282 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
283 282 oveq2d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) )
284 281 283 eqeq12d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) ) )
285 280 284 syl5ibrcom
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
286 285 imp
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
287 286 adantlr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 1 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
288 eldifsn
 |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) <-> ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
289 df-ne
 |-  ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` 1 ) <-> -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) )
290 289 anbi2i
 |-  ( ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
291 288 290 bitri
 |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) )
292 fnconstg
 |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
293 34 292 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) )
294 293 39 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
295 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
296 49 295 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
297 fzdisj
 |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
298 56 297 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
299 298 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
300 299 60 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) )
301 296 300 sylan9req
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) )
302 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
303 294 301 302 sylancr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
304 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
305 fzpred
 |-  ( N e. ( ZZ>= ` 1 ) -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) )
306 187 305 syl
 |-  ( ph -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) )
307 uncom
 |-  ( { 1 } u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } )
308 306 307 eqtrdi
 |-  ( ph -> ( 1 ... N ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) )
309 308 difeq1d
 |-  ( ph -> ( ( 1 ... N ) \ { 1 } ) = ( ( ( ( 1 + 1 ) ... N ) u. { 1 } ) \ { 1 } ) )
310 difun2
 |-  ( ( ( ( 1 + 1 ) ... N ) u. { 1 } ) \ { 1 } ) = ( ( ( 1 + 1 ) ... N ) \ { 1 } )
311 disj3
 |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... N ) \ { 1 } ) )
312 182 311 mpbi
 |-  ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... N ) \ { 1 } )
313 310 312 eqtr4i
 |-  ( ( ( ( 1 + 1 ) ... N ) u. { 1 } ) \ { 1 } ) = ( ( 1 + 1 ) ... N )
314 309 313 eqtrdi
 |-  ( ph -> ( ( 1 ... N ) \ { 1 } ) = ( ( 1 + 1 ) ... N ) )
315 314 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { 1 } ) = ( ( 1 + 1 ) ... N ) )
316 eluzp1p1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) )
317 67 316 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) )
318 fzsplit2
 |-  ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` ( 1 + 1 ) ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
319 317 78 318 syl2an2
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... N ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
320 315 319 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { 1 } ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
321 320 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
322 imadif
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) )
323 49 322 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) )
324 eluzfz1
 |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) )
325 187 324 syl
 |-  ( ph -> 1 e. ( 1 ... N ) )
326 fnsnfv
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ 1 e. ( 1 ... N ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) )
327 102 325 326 syl2anc
 |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) )
328 327 eqcomd
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) = { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } )
329 84 328 difeq12d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) )
330 323 329 eqtrd
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) )
331 330 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { 1 } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) )
332 321 331 eqtr3d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) )
333 304 332 eqtr3id
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) )
334 333 fneq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) )
335 303 334 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) )
336 disjdifr
 |-  ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/)
337 fnconstg
 |-  ( 1 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } )
338 34 337 ax-mp
 |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) }
339 fvun1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
340 338 339 mp3an2
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
341 fnconstg
 |-  ( 0 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } )
342 37 341 ax-mp
 |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) }
343 fvun1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
344 342 343 mp3an2
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
345 340 344 eqtr4d
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) )
346 336 345 mpanr1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) )
347 335 346 sylan
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) )
348 291 347 sylan2br
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) )
349 348 anassrs
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) )
350 fzpred
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
351 67 350 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
352 351 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) )
353 352 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) )
354 327 uneq1d
 |-  ( ph -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) )
355 uncom
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
356 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
357 354 355 356 3eqtr4g
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) )
358 357 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) = ( ( 2nd ` ( 1st ` T ) ) " ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) )
359 353 358 eqtr4d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) )
360 359 xpeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) X. { 1 } ) )
361 xpundir
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) )
362 360 361 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) )
363 362 uneq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
364 un23
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) )
365 363 364 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) )
366 365 fveq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) )
367 366 ad2antrr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 1 } ) ) ` n ) )
368 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) )
369 df-ima
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) )
370 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
371 74 370 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
372 371 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
373 73 372 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) )
374 fzss2
 |-  ( N e. ( ZZ>= ` y ) -> ( 1 ... y ) C_ ( 1 ... N ) )
375 373 374 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) C_ ( 1 ... N ) )
376 375 resmptd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) ) = ( n e. ( 1 ... y ) |-> if ( n = N , 1 , ( n + 1 ) ) ) )
377 fzss2
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( 1 ... y ) C_ ( 1 ... ( N - 1 ) ) )
378 74 377 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... y ) C_ ( 1 ... ( N - 1 ) ) )
379 378 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) C_ ( 1 ... ( N - 1 ) ) )
380 171 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. N e. ( 1 ... ( N - 1 ) ) )
381 379 380 ssneldd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. N e. ( 1 ... y ) )
382 eleq1
 |-  ( n = N -> ( n e. ( 1 ... y ) <-> N e. ( 1 ... y ) ) )
383 382 notbid
 |-  ( n = N -> ( -. n e. ( 1 ... y ) <-> -. N e. ( 1 ... y ) ) )
384 381 383 syl5ibrcom
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n = N -> -. n e. ( 1 ... y ) ) )
385 384 necon2ad
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... y ) -> n =/= N ) )
386 385 imp
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... y ) ) -> n =/= N )
387 386 209 syl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... y ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) )
388 387 mpteq2dva
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... y ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( 1 ... y ) |-> ( n + 1 ) ) )
389 376 388 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) ) = ( n e. ( 1 ... y ) |-> ( n + 1 ) ) )
390 389 rneqd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( 1 ... y ) ) = ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) )
391 369 390 syl5eq
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) = ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) )
392 eqid
 |-  ( n e. ( 1 ... y ) |-> ( n + 1 ) ) = ( n e. ( 1 ... y ) |-> ( n + 1 ) )
393 392 elrnmpt
 |-  ( j e. _V -> ( j e. ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) <-> E. n e. ( 1 ... y ) j = ( n + 1 ) ) )
394 393 elv
 |-  ( j e. ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) <-> E. n e. ( 1 ... y ) j = ( n + 1 ) )
395 elfzelz
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ )
396 395 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. ZZ )
397 simpr
 |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> n e. ( 1 ... y ) )
398 121 jctl
 |-  ( y e. ZZ -> ( 1 e. ZZ /\ y e. ZZ ) )
399 elfzelz
 |-  ( n e. ( 1 ... y ) -> n e. ZZ )
400 399 121 jctir
 |-  ( n e. ( 1 ... y ) -> ( n e. ZZ /\ 1 e. ZZ ) )
401 fzaddel
 |-  ( ( ( 1 e. ZZ /\ y e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( 1 ... y ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
402 398 400 401 syl2an
 |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> ( n e. ( 1 ... y ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
403 397 402 mpbid
 |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) )
404 eleq1
 |-  ( j = ( n + 1 ) -> ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( n + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
405 403 404 syl5ibrcom
 |-  ( ( y e. ZZ /\ n e. ( 1 ... y ) ) -> ( j = ( n + 1 ) -> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
406 405 rexlimdva
 |-  ( y e. ZZ -> ( E. n e. ( 1 ... y ) j = ( n + 1 ) -> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
407 elfzelz
 |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> j e. ZZ )
408 407 zcnd
 |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> j e. CC )
409 npcan1
 |-  ( j e. CC -> ( ( j - 1 ) + 1 ) = j )
410 408 409 syl
 |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( j - 1 ) + 1 ) = j )
411 410 eleq1d
 |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
412 411 ibir
 |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) )
413 412 adantl
 |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) )
414 peano2zm
 |-  ( j e. ZZ -> ( j - 1 ) e. ZZ )
415 407 414 syl
 |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( j - 1 ) e. ZZ )
416 415 121 jctir
 |-  ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) )
417 fzaddel
 |-  ( ( ( 1 e. ZZ /\ y e. ZZ ) /\ ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j - 1 ) e. ( 1 ... y ) <-> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
418 398 416 417 syl2an
 |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( ( j - 1 ) e. ( 1 ... y ) <-> ( ( j - 1 ) + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
419 413 418 mpbird
 |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( j - 1 ) e. ( 1 ... y ) )
420 408 adantl
 |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> j e. CC )
421 409 eqcomd
 |-  ( j e. CC -> j = ( ( j - 1 ) + 1 ) )
422 420 421 syl
 |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> j = ( ( j - 1 ) + 1 ) )
423 oveq1
 |-  ( n = ( j - 1 ) -> ( n + 1 ) = ( ( j - 1 ) + 1 ) )
424 423 rspceeqv
 |-  ( ( ( j - 1 ) e. ( 1 ... y ) /\ j = ( ( j - 1 ) + 1 ) ) -> E. n e. ( 1 ... y ) j = ( n + 1 ) )
425 419 422 424 syl2anc
 |-  ( ( y e. ZZ /\ j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> E. n e. ( 1 ... y ) j = ( n + 1 ) )
426 425 ex
 |-  ( y e. ZZ -> ( j e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> E. n e. ( 1 ... y ) j = ( n + 1 ) ) )
427 406 426 impbid
 |-  ( y e. ZZ -> ( E. n e. ( 1 ... y ) j = ( n + 1 ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
428 396 427 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( 1 ... y ) j = ( n + 1 ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
429 394 428 syl5bb
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) <-> j e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
430 429 eqrdv
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( n e. ( 1 ... y ) |-> ( n + 1 ) ) = ( ( 1 + 1 ) ... ( y + 1 ) ) )
431 391 430 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) = ( ( 1 + 1 ) ... ( y + 1 ) ) )
432 431 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( 1 ... y ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
433 368 432 syl5eq
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
434 433 xpeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) )
435 imaundi
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " { N } ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
436 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " { N } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) )
437 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
438 436 437 uneq12i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " { N } ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
439 435 438 eqtri
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
440 192 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( N - 1 ) ) )
441 fzsplit2
 |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
442 76 440 441 syl2an2
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
443 198 uneq2d
 |-  ( ph -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) )
444 443 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) )
445 442 444 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) )
446 uncom
 |-  ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) = ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) )
447 445 446 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) )
448 447 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( { N } u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
449 252 sneqd
 |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) } = { 1 } )
450 fnsnfv
 |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) Fn ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> { ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) } = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) )
451 255 249 450 syl2anc
 |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ` N ) } = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) )
452 449 451 eqtr3d
 |-  ( ph -> { 1 } = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) )
453 452 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { 1 } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) )
454 327 453 eqtrd
 |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) )
455 454 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) )
456 df-ima
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) )
457 fzss1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) )
458 67 457 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... ( N - 1 ) ) C_ ( 1 ... ( N - 1 ) ) )
459 fzss2
 |-  ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
460 192 459 syl
 |-  ( ph -> ( 1 ... ( N - 1 ) ) C_ ( 1 ... N ) )
461 458 460 sylan9ssr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... ( N - 1 ) ) C_ ( 1 ... N ) )
462 461 resmptd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) )
463 elfzle2
 |-  ( N e. ( ( y + 1 ) ... ( N - 1 ) ) -> N <_ ( N - 1 ) )
464 169 463 nsyl
 |-  ( ph -> -. N e. ( ( y + 1 ) ... ( N - 1 ) ) )
465 eleq1
 |-  ( n = N -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> N e. ( ( y + 1 ) ... ( N - 1 ) ) ) )
466 465 notbid
 |-  ( n = N -> ( -. n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> -. N e. ( ( y + 1 ) ... ( N - 1 ) ) ) )
467 464 466 syl5ibrcom
 |-  ( ph -> ( n = N -> -. n e. ( ( y + 1 ) ... ( N - 1 ) ) ) )
468 467 con2d
 |-  ( ph -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) -> -. n = N ) )
469 468 imp
 |-  ( ( ph /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> -. n = N )
470 469 iffalsed
 |-  ( ( ph /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> if ( n = N , 1 , ( n + 1 ) ) = ( n + 1 ) )
471 470 mpteq2dva
 |-  ( ph -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) )
472 471 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> if ( n = N , 1 , ( n + 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) )
473 462 472 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) )
474 473 rneqd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) |` ( ( y + 1 ) ... ( N - 1 ) ) ) = ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) )
475 456 474 syl5eq
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) = ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) )
476 elfzelz
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> j e. ZZ )
477 476 zcnd
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> j e. CC )
478 477 409 syl
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( j - 1 ) + 1 ) = j )
479 478 eleq1d
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
480 479 ibir
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) )
481 480 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) )
482 54 nnzd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ZZ )
483 120 482 anim12ci
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) e. ZZ /\ ( N - 1 ) e. ZZ ) )
484 476 414 syl
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( j - 1 ) e. ZZ )
485 484 121 jctir
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) )
486 fzaddel
 |-  ( ( ( ( y + 1 ) e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( ( j - 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
487 483 485 486 syl2an
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( ( j - 1 ) + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
488 481 487 mpbird
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) )
489 477 421 syl
 |-  ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> j = ( ( j - 1 ) + 1 ) )
490 489 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> j = ( ( j - 1 ) + 1 ) )
491 423 rspceeqv
 |-  ( ( ( j - 1 ) e. ( ( y + 1 ) ... ( N - 1 ) ) /\ j = ( ( j - 1 ) + 1 ) ) -> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) )
492 488 490 491 syl2anc
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) -> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) )
493 492 ex
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) -> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) )
494 simpr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> n e. ( ( y + 1 ) ... ( N - 1 ) ) )
495 elfzelz
 |-  ( n e. ( ( y + 1 ) ... ( N - 1 ) ) -> n e. ZZ )
496 495 121 jctir
 |-  ( n e. ( ( y + 1 ) ... ( N - 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) )
497 fzaddel
 |-  ( ( ( ( y + 1 ) e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
498 483 496 497 syl2an
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> ( n e. ( ( y + 1 ) ... ( N - 1 ) ) <-> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
499 494 498 mpbid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) )
500 eleq1
 |-  ( j = ( n + 1 ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> ( n + 1 ) e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
501 499 500 syl5ibrcom
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( y + 1 ) ... ( N - 1 ) ) ) -> ( j = ( n + 1 ) -> j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
502 501 rexlimdva
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) -> j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
503 493 502 impbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) )
504 eqid
 |-  ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) = ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) )
505 504 elrnmpt
 |-  ( j e. _V -> ( j e. ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) <-> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) ) )
506 505 elv
 |-  ( j e. ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) <-> E. n e. ( ( y + 1 ) ... ( N - 1 ) ) j = ( n + 1 ) )
507 503 506 bitr4di
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) <-> j e. ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) ) )
508 507 eqrdv
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) = ran ( n e. ( ( y + 1 ) ... ( N - 1 ) ) |-> ( n + 1 ) ) )
509 72 oveq2d
 |-  ( ph -> ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( ( y + 1 ) + 1 ) ... N ) )
510 509 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( ( y + 1 ) + 1 ) ... N ) )
511 475 508 510 3eqtr2rd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... N ) = ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
512 511 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
513 455 512 uneq12d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " { N } ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) )
514 439 448 513 3eqtr4a
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) = ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
515 514 xpeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) X. { 0 } ) )
516 xpundir
 |-  ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } u. ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
517 515 516 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
518 434 517 uneq12d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
519 unass
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
520 un23
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) )
521 519 520 eqtr3i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) )
522 518 521 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) )
523 522 fveq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) )
524 523 ad2antrr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` 1 ) } X. { 0 } ) ) ` n ) )
525 349 367 524 3eqtr4d
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
526 snssi
 |-  ( 1 e. CC -> { 1 } C_ CC )
527 141 526 ax-mp
 |-  { 1 } C_ CC
528 0cn
 |-  0 e. CC
529 snssi
 |-  ( 0 e. CC -> { 0 } C_ CC )
530 528 529 ax-mp
 |-  { 0 } C_ CC
531 527 530 unssi
 |-  ( { 1 } u. { 0 } ) C_ CC
532 34 fconst
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) --> { 1 }
533 37 fconst
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) --> { 0 }
534 532 533 pm3.2i
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) --> { 0 } )
535 fun
 |-  ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) )
536 534 241 535 sylancr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) )
537 imaundi
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) )
538 fzsplit2
 |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` y ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) )
539 67 373 538 syl2an2
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) )
540 539 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) )
541 f1ofo
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
542 foima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
543 228 541 542 3syl
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
544 543 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
545 540 544 eqtr3d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) )
546 537 545 eqtr3id
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) )
547 546 feq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) )
548 536 547 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) )
549 548 ffvelrnda
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. ( { 1 } u. { 0 } ) )
550 531 549 sselid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. CC )
551 550 addid2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
552 551 adantr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
553 525 552 eqtr4d
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( 0 + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
554 96 98 287 553 ifbothda
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
555 554 oveq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
556 elmapi
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
557 30 556 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
558 557 ffvelrnda
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) )
559 elfzonn0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 )
560 558 559 syl
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 )
561 560 nn0cnd
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC )
562 561 adantlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC )
563 141 528 ifcli
 |-  if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) e. CC
564 563 a1i
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) e. CC )
565 562 564 550 addassd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
566 555 565 eqtr4d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
567 566 mpteq2dva
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
568 94 567 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
569 6 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = 0 )
570 elfzle1
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> 0 <_ y )
571 570 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 0 <_ y )
572 569 571 eqbrtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) <_ y )
573 0re
 |-  0 e. RR
574 6 573 eqeltrdi
 |-  ( ph -> ( 2nd ` T ) e. RR )
575 lenlt
 |-  ( ( ( 2nd ` T ) e. RR /\ y e. RR ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) )
576 574 234 575 syl2an
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) <_ y <-> -. y < ( 2nd ` T ) ) )
577 572 576 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> -. y < ( 2nd ` T ) )
578 577 iffalsed
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = ( y + 1 ) )
579 578 csbeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
580 ovex
 |-  ( y + 1 ) e. _V
581 oveq2
 |-  ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) )
582 581 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) )
583 582 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) )
584 oveq1
 |-  ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) )
585 584 oveq1d
 |-  ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) )
586 585 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
587 586 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
588 583 587 uneq12d
 |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
589 588 oveq2d
 |-  ( j = ( y + 1 ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
590 580 589 csbie
 |-  [_ ( y + 1 ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
591 579 590 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
592 ovexd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) e. _V )
593 fvexd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. _V )
594 eqidd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) )
595 548 ffnd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
596 nfcv
 |-  F/_ n ( 2nd ` ( 1st ` T ) )
597 nfmpt1
 |-  F/_ n ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) )
598 596 597 nfco
 |-  F/_ n ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) )
599 nfcv
 |-  F/_ n ( 1 ... y )
600 598 599 nfima
 |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) )
601 nfcv
 |-  F/_ n { 1 }
602 600 601 nfxp
 |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } )
603 nfcv
 |-  F/_ n ( ( y + 1 ) ... N )
604 598 603 nfima
 |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) )
605 nfcv
 |-  F/_ n { 0 }
606 604 605 nfxp
 |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } )
607 602 606 nfun
 |-  F/_ n ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) )
608 607 dffn5f
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
609 595 608 sylib
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
610 90 592 593 594 609 offval2
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
611 568 591 610 3eqtr4rd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
612 611 mpteq2dva
 |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
613 23 612 eqtr4d
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + if ( n = ( ( 2nd ` ( 1st ` T ) ) ` 1 ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = N , 1 , ( n + 1 ) ) ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) )