Metamath Proof Explorer


Theorem poimirlem16

Description: Lemma for poimir establishing the vertices of the simplex of poimirlem17 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
poimirlem22.2 ( 𝜑𝑇𝑆 )
poimirlem18.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 𝐾 )
poimirlem18.4 ( 𝜑 → ( 2nd𝑇 ) = 0 )
Assertion poimirlem16 ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
3 poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
4 poimirlem22.2 ( 𝜑𝑇𝑆 )
5 poimirlem18.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 𝐾 )
6 poimirlem18.4 ( 𝜑 → ( 2nd𝑇 ) = 0 )
7 fveq2 ( 𝑡 = 𝑇 → ( 2nd𝑡 ) = ( 2nd𝑇 ) )
8 7 breq2d ( 𝑡 = 𝑇 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑇 ) ) )
9 8 ifbid ( 𝑡 = 𝑇 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) )
10 2fveq3 ( 𝑡 = 𝑇 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑇 ) ) )
11 2fveq3 ( 𝑡 = 𝑇 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑇 ) ) )
12 11 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) )
13 12 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
14 11 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
15 14 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
16 13 15 uneq12d ( 𝑡 = 𝑇 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
17 10 16 oveq12d ( 𝑡 = 𝑇 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
18 9 17 csbeq12dv ( 𝑡 = 𝑇 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
19 18 mpteq2dv ( 𝑡 = 𝑇 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
20 19 eqeq2d ( 𝑡 = 𝑇 → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
21 20 2 elrab2 ( 𝑇𝑆 ↔ ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
22 21 simprbi ( 𝑇𝑆𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
23 4 22 syl ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
24 elrabi ( 𝑇 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
25 24 2 eleq2s ( 𝑇𝑆𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
26 4 25 syl ( 𝜑𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
27 xp1st ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
28 26 27 syl ( 𝜑 → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
29 xp1st ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
30 28 29 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
31 elmapfn ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
32 30 31 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
33 32 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
34 1ex 1 ∈ V
35 fnconstg ( 1 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
36 34 35 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) )
37 c0ex 0 ∈ V
38 fnconstg ( 0 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
39 37 38 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
40 36 39 pm3.2i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
41 xp2nd ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
42 28 41 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
43 fvex ( 2nd ‘ ( 1st𝑇 ) ) ∈ V
44 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 1st𝑇 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
45 43 44 elab ( ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
46 42 45 sylib ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
47 dff1o3 ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ( 2nd ‘ ( 1st𝑇 ) ) ) )
48 47 simprbi ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ( 2nd ‘ ( 1st𝑇 ) ) )
49 46 48 syl ( 𝜑 → Fun ( 2nd ‘ ( 1st𝑇 ) ) )
50 imain ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
51 49 50 syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
52 elfznn0 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℕ0 )
53 nn0p1nn ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ )
54 52 53 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℕ )
55 54 nnred ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℝ )
56 55 ltp1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) )
57 fzdisj ( ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) → ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
58 56 57 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
59 58 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) )
60 ima0 ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) = ∅
61 59 60 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
62 51 61 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
63 fnun ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
64 40 62 63 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
65 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
66 nnuz ℕ = ( ℤ ‘ 1 )
67 54 66 eleqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) )
68 peano2uz ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
69 67 68 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
70 1 nncnd ( 𝜑𝑁 ∈ ℂ )
71 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
72 70 71 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
73 72 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
74 elfzuz3 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) )
75 eluzp1p1 ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
76 74 75 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
77 76 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
78 73 77 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
79 fzsplit2 ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
80 69 78 79 syl2an2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
81 80 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
82 f1ofo ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
83 foima ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
84 46 82 83 3syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
85 84 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
86 81 85 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
87 65 86 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
88 87 fneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) )
89 64 88 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) )
90 ovexd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) ∈ V )
91 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
92 eqidd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) )
93 eqidd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
94 33 89 90 90 91 92 93 offval ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
95 oveq1 ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
96 95 eqeq2d ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ↔ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
97 oveq1 ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( 0 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
98 97 eqeq2d ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( 0 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ↔ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
99 1p0e1 ( 1 + 0 ) = 1
100 99 eqcomi 1 = ( 1 + 0 )
101 f1ofn ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
102 46 101 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
103 102 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
104 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) → ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
105 78 104 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
106 eluzfz1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
107 67 106 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
108 107 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
109 fnfvima ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ∧ 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
110 103 105 108 109 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
111 fvun1 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
112 36 39 111 mp3an12 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
113 62 110 112 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
114 34 fvconst2 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 1 )
115 110 114 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 1 )
116 113 115 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 1 )
117 simpr ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
118 1 nnzd ( 𝜑𝑁 ∈ ℤ )
119 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
120 118 119 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
121 1z 1 ∈ ℤ
122 120 121 jctil ( 𝜑 → ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) )
123 elfzelz ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℤ )
124 123 121 jctir ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
125 fzaddel ( ( ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
126 122 124 125 syl2an ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
127 117 126 mpbid ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) )
128 72 oveq2d ( 𝜑 → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
129 128 adantr ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
130 127 129 eleqtrd ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) )
131 130 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) )
132 simpr ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
133 peano2z ( 1 ∈ ℤ → ( 1 + 1 ) ∈ ℤ )
134 121 133 ax-mp ( 1 + 1 ) ∈ ℤ
135 118 134 jctil ( 𝜑 → ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
136 elfzelz ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑦 ∈ ℤ )
137 136 121 jctir ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) )
138 fzsubel ( ( ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑦 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
139 135 137 138 syl2an ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑦 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
140 132 139 mpbid ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
141 ax-1cn 1 ∈ ℂ
142 141 141 pncan3oi ( ( 1 + 1 ) − 1 ) = 1
143 142 oveq1i ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) )
144 140 143 eleqtrdi ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) )
145 136 zcnd ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑦 ∈ ℂ )
146 elfznn ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℕ )
147 146 nncnd ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℂ )
148 subadd2 ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑛 ↔ ( 𝑛 + 1 ) = 𝑦 ) )
149 141 148 mp3an2 ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑛 ↔ ( 𝑛 + 1 ) = 𝑦 ) )
150 149 bicomd ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑛 + 1 ) = 𝑦 ↔ ( 𝑦 − 1 ) = 𝑛 ) )
151 eqcom ( ( 𝑛 + 1 ) = 𝑦𝑦 = ( 𝑛 + 1 ) )
152 eqcom ( ( 𝑦 − 1 ) = 𝑛𝑛 = ( 𝑦 − 1 ) )
153 150 151 152 3bitr3g ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
154 145 147 153 syl2an ( ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
155 154 ralrimiva ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
156 155 adantl ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
157 reu6i ( ( ( 𝑦 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) ) → ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) )
158 144 156 157 syl2anc ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) )
159 158 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) )
160 eqid ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) = ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) )
161 160 f1ompt ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1-onto→ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) ∧ ∀ 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) ) )
162 131 159 161 sylanbrc ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1-onto→ ( ( 1 + 1 ) ... 𝑁 ) )
163 f1osng ( ( 𝑁 ∈ ℕ ∧ 1 ∈ V ) → { ⟨ 𝑁 , 1 ⟩ } : { 𝑁 } –1-1-onto→ { 1 } )
164 1 34 163 sylancl ( 𝜑 → { ⟨ 𝑁 , 1 ⟩ } : { 𝑁 } –1-1-onto→ { 1 } )
165 1 nnred ( 𝜑𝑁 ∈ ℝ )
166 165 ltm1d ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 )
167 120 zred ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ )
168 167 165 ltnled ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) )
169 166 168 mpbid ( 𝜑 → ¬ 𝑁 ≤ ( 𝑁 − 1 ) )
170 elfzle2 ( 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) )
171 169 170 nsyl ( 𝜑 → ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
172 disjsn ( ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
173 171 172 sylibr ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ )
174 1re 1 ∈ ℝ
175 174 ltp1i 1 < ( 1 + 1 )
176 174 174 readdcli ( 1 + 1 ) ∈ ℝ
177 174 176 ltnlei ( 1 < ( 1 + 1 ) ↔ ¬ ( 1 + 1 ) ≤ 1 )
178 175 177 mpbi ¬ ( 1 + 1 ) ≤ 1
179 elfzle1 ( 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 1 + 1 ) ≤ 1 )
180 178 179 mto ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 )
181 disjsn ( ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
182 180 181 mpbir ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅
183 f1oun ( ( ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1-onto→ ( ( 1 + 1 ) ... 𝑁 ) ∧ { ⟨ 𝑁 , 1 ⟩ } : { 𝑁 } –1-1-onto→ { 1 } ) ∧ ( ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ∧ ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ) ) → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) : ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) –1-1-onto→ ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
184 182 183 mpanr2 ( ( ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1-onto→ ( ( 1 + 1 ) ... 𝑁 ) ∧ { ⟨ 𝑁 , 1 ⟩ } : { 𝑁 } –1-1-onto→ { 1 } ) ∧ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) : ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) –1-1-onto→ ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
185 162 164 173 184 syl21anc ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) : ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) –1-1-onto→ ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
186 34 a1i ( 𝜑 → 1 ∈ V )
187 1 66 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 1 ) )
188 72 187 eqeltrd ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
189 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
190 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
191 120 189 190 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
192 72 191 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
193 fzsplit2 ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
194 188 192 193 syl2anc ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
195 72 oveq1d ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑁 ... 𝑁 ) )
196 fzsn ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
197 118 196 syl ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
198 195 197 eqtrd ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = { 𝑁 } )
199 198 uneq2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
200 194 199 eqtr2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) = ( 1 ... 𝑁 ) )
201 iftrue ( 𝑛 = 𝑁 → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = 1 )
202 201 adantl ( ( 𝜑𝑛 = 𝑁 ) → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = 1 )
203 1 186 200 202 fmptapd ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) )
204 eleq1 ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) )
205 204 notbid ( 𝑛 = 𝑁 → ( ¬ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) )
206 171 205 syl5ibrcom ( 𝜑 → ( 𝑛 = 𝑁 → ¬ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) )
207 206 necon2ad ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛𝑁 ) )
208 207 imp ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛𝑁 )
209 ifnefalse ( 𝑛𝑁 → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) )
210 208 209 syl ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) )
211 210 mpteq2dva ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
212 211 uneq1d ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) )
213 203 212 eqtr3d ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) )
214 194 199 eqtrd ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
215 uzid ( 1 ∈ ℤ → 1 ∈ ( ℤ ‘ 1 ) )
216 peano2uz ( 1 ∈ ( ℤ ‘ 1 ) → ( 1 + 1 ) ∈ ( ℤ ‘ 1 ) )
217 121 215 216 mp2b ( 1 + 1 ) ∈ ( ℤ ‘ 1 )
218 fzsplit2 ( ( ( 1 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ 1 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
219 217 187 218 sylancr ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
220 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
221 121 220 ax-mp ( 1 ... 1 ) = { 1 }
222 221 uneq1i ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) )
223 222 equncomi ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } )
224 219 223 eqtrdi ( 𝜑 → ( 1 ... 𝑁 ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
225 213 214 224 f1oeq123d ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) : ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) –1-1-onto→ ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) ) )
226 185 225 mpbird ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
227 f1oco ( ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
228 46 226 227 syl2anc ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
229 dff1o3 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ) )
230 229 simprbi ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) )
231 228 230 syl ( 𝜑 → Fun ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) )
232 imain ( Fun ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
233 231 232 syl ( 𝜑 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
234 52 nn0red ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ )
235 234 ltp1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 < ( 𝑦 + 1 ) )
236 fzdisj ( 𝑦 < ( 𝑦 + 1 ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ∅ )
237 235 236 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ∅ )
238 237 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ∅ ) )
239 ima0 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ∅ ) = ∅
240 238 239 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ )
241 233 240 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ )
242 imassrn ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ⊆ ran ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) )
243 f1of ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
244 frn ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) → ran ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ⊆ ( 1 ... 𝑁 ) )
245 226 243 244 3syl ( 𝜑 → ran ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ⊆ ( 1 ... 𝑁 ) )
246 242 245 sstrid ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) )
247 246 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) )
248 elfz1end ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( 1 ... 𝑁 ) )
249 1 248 sylib ( 𝜑𝑁 ∈ ( 1 ... 𝑁 ) )
250 eqid ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) )
251 201 250 34 fvmpt ( 𝑁 ∈ ( 1 ... 𝑁 ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) = 1 )
252 249 251 syl ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) = 1 )
253 252 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) = 1 )
254 f1ofn ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) Fn ( 1 ... 𝑁 ) )
255 226 254 syl ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) Fn ( 1 ... 𝑁 ) )
256 255 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) Fn ( 1 ... 𝑁 ) )
257 fzss1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
258 67 257 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
259 258 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
260 eluzfz2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) → 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) )
261 78 260 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) )
262 fnfvima ( ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) Fn ( 1 ... 𝑁 ) ∧ ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
263 256 259 261 262 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
264 253 263 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
265 fnfvima ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ⊆ ( 1 ... 𝑁 ) ∧ 1 ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
266 103 247 264 265 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
267 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
268 266 267 eleqtrrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
269 fnconstg ( 1 ∈ V → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) )
270 34 269 ax-mp ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) )
271 fnconstg ( 0 ∈ V → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
272 37 271 ax-mp ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) )
273 fvun2 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ∧ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
274 270 272 273 mp3an12 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
275 241 268 274 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
276 37 fvconst2 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 0 )
277 268 276 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 0 )
278 275 277 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 0 )
279 278 oveq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ) = ( 1 + 0 ) )
280 100 116 279 3eqtr4a ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ) )
281 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
282 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
283 282 oveq2d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ) )
284 281 283 eqeq12d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ↔ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ) ) )
285 280 284 syl5ibrcom ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
286 285 imp ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
287 286 adantlr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( 1 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
288 eldifsn ( 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
289 df-ne ( 𝑛 ≠ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ↔ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) )
290 289 anbi2i ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
291 288 290 bitri ( 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
292 fnconstg ( 1 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
293 34 292 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
294 293 39 pm3.2i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
295 imain ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
296 49 295 syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
297 fzdisj ( ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) → ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
298 56 297 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
299 298 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) )
300 299 60 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
301 296 300 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
302 fnun ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
303 294 301 302 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
304 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
305 fzpred ( 𝑁 ∈ ( ℤ ‘ 1 ) → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
306 187 305 syl ( 𝜑 → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
307 uncom ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } )
308 306 307 eqtrdi ( 𝜑 → ( 1 ... 𝑁 ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
309 308 difeq1d ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 1 } ) = ( ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) ∖ { 1 } ) )
310 difun2 ( ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) ∖ { 1 } ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∖ { 1 } )
311 disj3 ( ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ↔ ( ( 1 + 1 ) ... 𝑁 ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∖ { 1 } ) )
312 182 311 mpbi ( ( 1 + 1 ) ... 𝑁 ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∖ { 1 } )
313 310 312 eqtr4i ( ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) ∖ { 1 } ) = ( ( 1 + 1 ) ... 𝑁 )
314 309 313 eqtrdi ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 1 } ) = ( ( 1 + 1 ) ... 𝑁 ) )
315 314 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 ... 𝑁 ) ∖ { 1 } ) = ( ( 1 + 1 ) ... 𝑁 ) )
316 eluzp1p1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ ( 1 + 1 ) ) )
317 67 316 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ ( 1 + 1 ) ) )
318 fzsplit2 ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ ( 1 + 1 ) ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) ) → ( ( 1 + 1 ) ... 𝑁 ) = ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
319 317 78 318 syl2an2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 + 1 ) ... 𝑁 ) = ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
320 315 319 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 ... 𝑁 ) ∖ { 1 } ) = ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
321 320 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 1 } ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
322 imadif ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 1 } ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) ) )
323 49 322 syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 1 } ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) ) )
324 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) )
325 187 324 syl ( 𝜑 → 1 ∈ ( 1 ... 𝑁 ) )
326 fnsnfv ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ 1 ∈ ( 1 ... 𝑁 ) ) → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) )
327 102 325 326 syl2anc ( 𝜑 → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) )
328 327 eqcomd ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) = { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } )
329 84 328 difeq12d ( 𝜑 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) )
330 323 329 eqtrd ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 1 } ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) )
331 330 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 1 } ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) )
332 321 331 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) )
333 304 332 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) )
334 333 fneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) )
335 303 334 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) )
336 disjdifr ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ∅
337 fnconstg ( 1 ∈ V → ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } )
338 34 337 ax-mp ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) }
339 fvun1 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∧ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
340 338 339 mp3an2 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
341 fnconstg ( 0 ∈ V → ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } )
342 37 341 ax-mp ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) }
343 fvun1 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∧ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
344 342 343 mp3an2 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
345 340 344 eqtr4d ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
346 336 345 mpanr1 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
347 335 346 sylan ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
348 291 347 sylan2br ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
349 348 anassrs ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
350 fzpred ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( 1 ... ( 𝑦 + 1 ) ) = ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
351 67 350 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑦 + 1 ) ) = ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
352 351 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) )
353 352 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) )
354 327 uneq1d ( 𝜑 → ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) )
355 uncom ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
356 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
357 354 355 356 3eqtr4g ( 𝜑 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) )
358 357 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) )
359 353 358 eqtr4d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) )
360 359 xpeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) × { 1 } ) )
361 xpundir ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) )
362 360 361 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) )
363 362 uneq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
364 un23 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) )
365 363 364 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) )
366 365 fveq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) )
367 366 ad2antrr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 1 } ) ) ‘ 𝑛 ) )
368 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( 1 ... 𝑦 ) ) )
369 df-ima ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( 1 ... 𝑦 ) ) = ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( 1 ... 𝑦 ) )
370 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
371 74 370 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
372 371 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
373 73 372 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ𝑦 ) )
374 fzss2 ( 𝑁 ∈ ( ℤ𝑦 ) → ( 1 ... 𝑦 ) ⊆ ( 1 ... 𝑁 ) )
375 373 374 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑦 ) ⊆ ( 1 ... 𝑁 ) )
376 375 resmptd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( 1 ... 𝑦 ) ) = ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) )
377 fzss2 ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( 1 ... 𝑦 ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) )
378 74 377 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 1 ... 𝑦 ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) )
379 378 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑦 ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) )
380 171 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
381 379 380 ssneldd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑁 ∈ ( 1 ... 𝑦 ) )
382 eleq1 ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 1 ... 𝑦 ) ↔ 𝑁 ∈ ( 1 ... 𝑦 ) ) )
383 382 notbid ( 𝑛 = 𝑁 → ( ¬ 𝑛 ∈ ( 1 ... 𝑦 ) ↔ ¬ 𝑁 ∈ ( 1 ... 𝑦 ) ) )
384 381 383 syl5ibrcom ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 = 𝑁 → ¬ 𝑛 ∈ ( 1 ... 𝑦 ) ) )
385 384 necon2ad ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑦 ) → 𝑛𝑁 ) )
386 385 imp ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑦 ) ) → 𝑛𝑁 )
387 386 209 syl ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑦 ) ) → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) )
388 387 mpteq2dva ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) )
389 376 388 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( 1 ... 𝑦 ) ) = ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) )
390 389 rneqd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( 1 ... 𝑦 ) ) = ran ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) )
391 369 390 eqtrid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( 1 ... 𝑦 ) ) = ran ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) )
392 eqid ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) = ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) )
393 392 elrnmpt ( 𝑗 ∈ V → ( 𝑗 ∈ ran ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) ↔ ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) ) )
394 393 elv ( 𝑗 ∈ ran ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) ↔ ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) )
395 elfzelz ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ )
396 395 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℤ )
397 simpr ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... 𝑦 ) ) → 𝑛 ∈ ( 1 ... 𝑦 ) )
398 121 jctl ( 𝑦 ∈ ℤ → ( 1 ∈ ℤ ∧ 𝑦 ∈ ℤ ) )
399 elfzelz ( 𝑛 ∈ ( 1 ... 𝑦 ) → 𝑛 ∈ ℤ )
400 399 121 jctir ( 𝑛 ∈ ( 1 ... 𝑦 ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
401 fzaddel ( ( ( 1 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( 1 ... 𝑦 ) ↔ ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
402 398 400 401 syl2an ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... 𝑦 ) ) → ( 𝑛 ∈ ( 1 ... 𝑦 ) ↔ ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
403 397 402 mpbid ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... 𝑦 ) ) → ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
404 eleq1 ( 𝑗 = ( 𝑛 + 1 ) → ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
405 403 404 syl5ibrcom ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( 1 ... 𝑦 ) ) → ( 𝑗 = ( 𝑛 + 1 ) → 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
406 405 rexlimdva ( 𝑦 ∈ ℤ → ( ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) → 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
407 elfzelz ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → 𝑗 ∈ ℤ )
408 407 zcnd ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → 𝑗 ∈ ℂ )
409 npcan1 ( 𝑗 ∈ ℂ → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 )
410 408 409 syl ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 )
411 410 eleq1d ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ( ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↔ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
412 411 ibir ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
413 412 adantl ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
414 peano2zm ( 𝑗 ∈ ℤ → ( 𝑗 − 1 ) ∈ ℤ )
415 407 414 syl ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ( 𝑗 − 1 ) ∈ ℤ )
416 415 121 jctir ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ( ( 𝑗 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) )
417 fzaddel ( ( ( 1 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ( ( 𝑗 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( 𝑗 − 1 ) ∈ ( 1 ... 𝑦 ) ↔ ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
418 398 416 417 syl2an ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → ( ( 𝑗 − 1 ) ∈ ( 1 ... 𝑦 ) ↔ ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
419 413 418 mpbird ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( 1 ... 𝑦 ) )
420 408 adantl ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → 𝑗 ∈ ℂ )
421 409 eqcomd ( 𝑗 ∈ ℂ → 𝑗 = ( ( 𝑗 − 1 ) + 1 ) )
422 420 421 syl ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → 𝑗 = ( ( 𝑗 − 1 ) + 1 ) )
423 oveq1 ( 𝑛 = ( 𝑗 − 1 ) → ( 𝑛 + 1 ) = ( ( 𝑗 − 1 ) + 1 ) )
424 423 rspceeqv ( ( ( 𝑗 − 1 ) ∈ ( 1 ... 𝑦 ) ∧ 𝑗 = ( ( 𝑗 − 1 ) + 1 ) ) → ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) )
425 419 422 424 syl2anc ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) )
426 425 ex ( 𝑦 ∈ ℤ → ( 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) ) )
427 406 426 impbid ( 𝑦 ∈ ℤ → ( ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) ↔ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
428 396 427 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑛 ∈ ( 1 ... 𝑦 ) 𝑗 = ( 𝑛 + 1 ) ↔ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
429 394 428 syl5bb ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 ∈ ran ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) ↔ 𝑗 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
430 429 eqrdv ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ran ( 𝑛 ∈ ( 1 ... 𝑦 ) ↦ ( 𝑛 + 1 ) ) = ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
431 391 430 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( 1 ... 𝑦 ) ) = ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
432 431 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( 1 ... 𝑦 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
433 368 432 eqtrid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
434 433 xpeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) )
435 imaundi ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( { 𝑁 } ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ { 𝑁 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
436 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ { 𝑁 } ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) )
437 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
438 436 437 uneq12i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ { 𝑁 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
439 435 438 eqtri ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( { 𝑁 } ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
440 192 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
441 fzsplit2 ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
442 76 440 441 syl2an2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
443 198 uneq2d ( 𝜑 → ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
444 443 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
445 442 444 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
446 uncom ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) = ( { 𝑁 } ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
447 445 446 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) = ( { 𝑁 } ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
448 447 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( { 𝑁 } ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
449 252 sneqd ( 𝜑 → { ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) } = { 1 } )
450 fnsnfv ( ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) Fn ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → { ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) } = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) )
451 255 249 450 syl2anc ( 𝜑 → { ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ‘ 𝑁 ) } = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) )
452 449 451 eqtr3d ( 𝜑 → { 1 } = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) )
453 452 imaeq2d ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 1 } ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) ) )
454 327 453 eqtrd ( 𝜑 → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) ) )
455 454 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) ) )
456 df-ima ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
457 fzss1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) )
458 67 457 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... ( 𝑁 − 1 ) ) )
459 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
460 192 459 syl ( 𝜑 → ( 1 ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
461 458 460 sylan9ssr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ⊆ ( 1 ... 𝑁 ) )
462 461 resmptd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) )
463 elfzle2 ( 𝑁 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) )
464 169 463 nsyl ( 𝜑 → ¬ 𝑁 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
465 eleq1 ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↔ 𝑁 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
466 465 notbid ( 𝑛 = 𝑁 → ( ¬ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↔ ¬ 𝑁 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
467 464 466 syl5ibrcom ( 𝜑 → ( 𝑛 = 𝑁 → ¬ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
468 467 con2d ( 𝜑 → ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) → ¬ 𝑛 = 𝑁 ) )
469 468 imp ( ( 𝜑𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) → ¬ 𝑛 = 𝑁 )
470 469 iffalsed ( ( 𝜑𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) )
471 470 mpteq2dva ( 𝜑 → ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
472 471 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
473 462 472 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
474 473 rneqd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ↾ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ran ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
475 456 474 eqtrid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ran ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
476 elfzelz ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → 𝑗 ∈ ℤ )
477 476 zcnd ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → 𝑗 ∈ ℂ )
478 477 409 syl ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) = 𝑗 )
479 478 eleq1d ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → ( ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
480 479 ibir ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) )
481 480 adantl ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) )
482 54 nnzd ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℤ )
483 120 482 anim12ci ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) )
484 476 414 syl ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → ( 𝑗 − 1 ) ∈ ℤ )
485 484 121 jctir ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → ( ( 𝑗 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) )
486 fzaddel ( ( ( ( 𝑦 + 1 ) ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) ∧ ( ( 𝑗 − 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( 𝑗 − 1 ) ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
487 483 485 486 syl2an ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( ( 𝑗 − 1 ) ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↔ ( ( 𝑗 − 1 ) + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
488 481 487 mpbird ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ( 𝑗 − 1 ) ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
489 477 421 syl ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → 𝑗 = ( ( 𝑗 − 1 ) + 1 ) )
490 489 adantl ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → 𝑗 = ( ( 𝑗 − 1 ) + 1 ) )
491 423 rspceeqv ( ( ( 𝑗 − 1 ) ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∧ 𝑗 = ( ( 𝑗 − 1 ) + 1 ) ) → ∃ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) 𝑗 = ( 𝑛 + 1 ) )
492 488 490 491 syl2anc ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) → ∃ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) 𝑗 = ( 𝑛 + 1 ) )
493 492 ex ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) → ∃ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) 𝑗 = ( 𝑛 + 1 ) ) )
494 simpr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
495 elfzelz ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℤ )
496 495 121 jctir ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
497 fzaddel ( ( ( ( 𝑦 + 1 ) ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
498 483 496 497 syl2an ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
499 494 498 mpbid ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) )
500 eleq1 ( 𝑗 = ( 𝑛 + 1 ) → ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
501 499 500 syl5ibrcom ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) → ( 𝑗 = ( 𝑛 + 1 ) → 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
502 501 rexlimdva ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) 𝑗 = ( 𝑛 + 1 ) → 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
503 493 502 impbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ ∃ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) 𝑗 = ( 𝑛 + 1 ) ) )
504 eqid ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) = ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) )
505 504 elrnmpt ( 𝑗 ∈ V → ( 𝑗 ∈ ran ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ↔ ∃ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) 𝑗 = ( 𝑛 + 1 ) ) )
506 505 elv ( 𝑗 ∈ ran ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ↔ ∃ 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) 𝑗 = ( 𝑛 + 1 ) )
507 503 506 bitr4di ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ↔ 𝑗 ∈ ran ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ) )
508 507 eqrdv ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ran ( 𝑛 ∈ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
509 72 oveq2d ( 𝜑 → ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
510 509 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑦 + 1 ) + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
511 475 508 510 3eqtr2rd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
512 511 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
513 455 512 uneq12d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ { 𝑁 } ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) ) )
514 439 448 513 3eqtr4a ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
515 514 xpeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) × { 0 } ) )
516 xpundir ( ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) × { 0 } ) = ( ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) )
517 515 516 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
518 434 517 uneq12d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
519 unass ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
520 un23 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) )
521 519 520 eqtr3i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) )
522 518 521 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) )
523 522 fveq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
524 523 ad2antrr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) } × { 0 } ) ) ‘ 𝑛 ) )
525 349 367 524 3eqtr4d ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
526 snssi ( 1 ∈ ℂ → { 1 } ⊆ ℂ )
527 141 526 ax-mp { 1 } ⊆ ℂ
528 0cn 0 ∈ ℂ
529 snssi ( 0 ∈ ℂ → { 0 } ⊆ ℂ )
530 528 529 ax-mp { 0 } ⊆ ℂ
531 527 530 unssi ( { 1 } ∪ { 0 } ) ⊆ ℂ
532 34 fconst ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ⟶ { 1 }
533 37 fconst ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ⟶ { 0 }
534 532 533 pm3.2i ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ⟶ { 1 } ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ⟶ { 0 } )
535 fun ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ⟶ { 1 } ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
536 534 241 535 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
537 imaundi ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
538 fzsplit2 ( ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ𝑦 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
539 67 373 538 syl2an2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
540 539 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
541 f1ofo ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
542 foima ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
543 228 541 542 3syl ( 𝜑 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
544 543 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
545 540 544 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
546 537 545 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
547 546 feq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) )
548 536 547 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) )
549 548 ffvelrnda ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ∈ ( { 1 } ∪ { 0 } ) )
550 531 549 sselid ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ∈ ℂ )
551 550 addid2d ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 0 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
552 551 adantr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( 0 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
553 525 552 eqtr4d ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( 0 + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
554 96 98 287 553 ifbothda ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
555 554 oveq2d ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
556 elmapi ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
557 30 556 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
558 557 ffvelrnda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) )
559 elfzonn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
560 558 559 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
561 560 nn0cnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ )
562 561 adantlr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ )
563 141 528 ifcli if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ∈ ℂ
564 563 a1i ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ∈ ℂ )
565 562 564 550 addassd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
566 555 565 eqtr4d ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
567 566 mpteq2dva ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
568 94 567 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
569 6 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd𝑇 ) = 0 )
570 elfzle1 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 0 ≤ 𝑦 )
571 570 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 0 ≤ 𝑦 )
572 569 571 eqbrtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd𝑇 ) ≤ 𝑦 )
573 0re 0 ∈ ℝ
574 6 573 eqeltrdi ( 𝜑 → ( 2nd𝑇 ) ∈ ℝ )
575 lenlt ( ( ( 2nd𝑇 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 2nd𝑇 ) ≤ 𝑦 ↔ ¬ 𝑦 < ( 2nd𝑇 ) ) )
576 574 234 575 syl2an ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd𝑇 ) ≤ 𝑦 ↔ ¬ 𝑦 < ( 2nd𝑇 ) ) )
577 572 576 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑦 < ( 2nd𝑇 ) )
578 577 iffalsed ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑦 + 1 ) )
579 578 csbeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑦 + 1 ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
580 ovex ( 𝑦 + 1 ) ∈ V
581 oveq2 ( 𝑗 = ( 𝑦 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑦 + 1 ) ) )
582 581 imaeq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
583 582 xpeq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) )
584 oveq1 ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) )
585 584 oveq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
586 585 imaeq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
587 586 xpeq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) )
588 583 587 uneq12d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
589 588 oveq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
590 580 589 csbie ( 𝑦 + 1 ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
591 579 590 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
592 ovexd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ∈ V )
593 fvexd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ∈ V )
594 eqidd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) )
595 548 ffnd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) )
596 nfcv 𝑛 ( 2nd ‘ ( 1st𝑇 ) )
597 nfmpt1 𝑛 ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) )
598 596 597 nfco 𝑛 ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) )
599 nfcv 𝑛 ( 1 ... 𝑦 )
600 598 599 nfima 𝑛 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) )
601 nfcv 𝑛 { 1 }
602 600 601 nfxp 𝑛 ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } )
603 nfcv 𝑛 ( ( 𝑦 + 1 ) ... 𝑁 )
604 598 603 nfima 𝑛 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) )
605 nfcv 𝑛 { 0 }
606 604 605 nfxp 𝑛 ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } )
607 602 606 nfun 𝑛 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) )
608 607 dffn5f ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ↔ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
609 595 608 sylib ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
610 90 592 593 594 609 offval2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
611 568 591 610 3eqtr4rd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
612 611 mpteq2dva ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
613 23 612 eqtr4d ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )