Metamath Proof Explorer


Theorem poimirlem17

Description: Lemma for poimir establishing existence for poimirlem18 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
poimirlem22.2 ( 𝜑𝑇𝑆 )
poimirlem18.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 𝐾 )
poimirlem18.4 ( 𝜑 → ( 2nd𝑇 ) = 0 )
Assertion poimirlem17 ( 𝜑 → ∃ 𝑧𝑆 𝑧𝑇 )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
3 poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
4 poimirlem22.2 ( 𝜑𝑇𝑆 )
5 poimirlem18.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 𝐾 )
6 poimirlem18.4 ( 𝜑 → ( 2nd𝑇 ) = 0 )
7 1 2 3 4 5 6 poimirlem16 ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
8 elfznn0 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℕ0 )
9 8 nn0red ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ )
10 9 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℝ )
11 1 nnzd ( 𝜑𝑁 ∈ ℤ )
12 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
13 11 12 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
14 13 zred ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ )
15 14 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ℝ )
16 1 nnred ( 𝜑𝑁 ∈ ℝ )
17 16 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℝ )
18 elfzle2 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ≤ ( 𝑁 − 1 ) )
19 18 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ≤ ( 𝑁 − 1 ) )
20 16 ltm1d ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 )
21 20 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) < 𝑁 )
22 10 15 17 19 21 lelttrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < 𝑁 )
23 22 adantlr ( ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < 𝑁 )
24 fveq2 ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ → ( 2nd𝑡 ) = ( 2nd ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) )
25 opex ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ∈ V
26 op2ndg ( ( ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ∈ V ∧ 𝑁 ∈ ℕ ) → ( 2nd ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) = 𝑁 )
27 25 1 26 sylancr ( 𝜑 → ( 2nd ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) = 𝑁 )
28 24 27 sylan9eqr ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( 2nd𝑡 ) = 𝑁 )
29 28 adantr ( ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd𝑡 ) = 𝑁 )
30 23 29 breqtrrd ( ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < ( 2nd𝑡 ) )
31 30 iftrued ( ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = 𝑦 )
32 31 csbeq1d ( ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
33 vex 𝑦 ∈ V
34 oveq2 ( 𝑗 = 𝑦 → ( 1 ... 𝑗 ) = ( 1 ... 𝑦 ) )
35 34 imaeq2d ( 𝑗 = 𝑦 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) )
36 35 xpeq1d ( 𝑗 = 𝑦 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) )
37 oveq1 ( 𝑗 = 𝑦 → ( 𝑗 + 1 ) = ( 𝑦 + 1 ) )
38 37 oveq1d ( 𝑗 = 𝑦 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑦 + 1 ) ... 𝑁 ) )
39 38 imaeq2d ( 𝑗 = 𝑦 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
40 39 xpeq1d ( 𝑗 = 𝑦 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) )
41 36 40 uneq12d ( 𝑗 = 𝑦 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
42 41 oveq2d ( 𝑗 = 𝑦 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
43 33 42 csbie 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
44 2fveq3 ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ) )
45 op1stg ( ( ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ∈ V ∧ 𝑁 ∈ ℕ ) → ( 1st ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) = ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ )
46 25 1 45 sylancr ( 𝜑 → ( 1st ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) = ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ )
47 46 fveq2d ( 𝜑 → ( 1st ‘ ( 1st ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ) = ( 1st ‘ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ) )
48 ovex ( 1 ... 𝑁 ) ∈ V
49 48 mptex ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∈ V
50 fvex ( 2nd ‘ ( 1st𝑇 ) ) ∈ V
51 48 mptex ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ∈ V
52 50 51 coex ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ∈ V
53 49 52 op1st ( 1st ‘ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) )
54 47 53 eqtrdi ( 𝜑 → ( 1st ‘ ( 1st ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) )
55 44 54 sylan9eqr ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( 1st ‘ ( 1st𝑡 ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) )
56 fveq2 ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ → ( 1st𝑡 ) = ( 1st ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) )
57 56 46 sylan9eqr ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( 1st𝑡 ) = ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ )
58 57 fveq2d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ) )
59 49 52 op2nd ( 2nd ‘ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ) = ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) )
60 58 59 eqtrdi ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( 2nd ‘ ( 1st𝑡 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) )
61 60 imaeq1d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) )
62 61 xpeq1d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) )
63 60 imaeq1d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
64 63 xpeq1d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) )
65 62 64 uneq12d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
66 55 65 oveq12d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
67 43 66 syl5eq ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
68 67 adantr ( ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
69 32 68 eqtrd ( ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
70 69 mpteq2dva ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
71 70 eqeq2d ( ( 𝜑𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
72 71 ex ( 𝜑 → ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) )
73 72 alrimiv ( 𝜑 → ∀ 𝑡 ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) )
74 oveq2 ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) )
75 74 eleq1d ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ∈ ( 0 ..^ 𝐾 ) ) )
76 oveq2 ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 0 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) )
77 76 eleq1d ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 0 ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ∈ ( 0 ..^ 𝐾 ) ) )
78 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
79 78 oveq1d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
80 79 adantl ( ( 𝜑𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
81 elrabi ( 𝑇 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
82 81 2 eleq2s ( 𝑇𝑆𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
83 xp1st ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
84 4 82 83 3syl ( 𝜑 → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
85 xp1st ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
86 elmapi ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
87 84 85 86 3syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
88 4 82 syl ( 𝜑𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
89 xp2nd ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
90 88 83 89 3syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
91 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 1st𝑇 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
92 50 91 elab ( ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
93 90 92 sylib ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
94 f1of ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
95 93 94 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
96 nnuz ℕ = ( ℤ ‘ 1 )
97 1 96 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 1 ) )
98 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) )
99 97 98 syl ( 𝜑 → 1 ∈ ( 1 ... 𝑁 ) )
100 95 99 ffvelrnd ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) )
101 87 100 ffvelrnd ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ( 0 ..^ 𝐾 ) )
102 elfzonn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ℕ0 )
103 peano2nn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ℕ0 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∈ ℕ0 )
104 101 102 103 3syl ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∈ ℕ0 )
105 elfzo0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ℕ0𝐾 ∈ ℕ ∧ ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) < 𝐾 ) )
106 101 105 sylib ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ℕ0𝐾 ∈ ℕ ∧ ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) < 𝐾 ) )
107 106 simp2d ( 𝜑𝐾 ∈ ℕ )
108 104 nn0red ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∈ ℝ )
109 107 nnred ( 𝜑𝐾 ∈ ℝ )
110 elfzolt2 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) < 𝐾 )
111 101 110 syl ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) < 𝐾 )
112 101 102 syl ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ℕ0 )
113 112 nn0zd ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ℤ )
114 107 nnzd ( 𝜑𝐾 ∈ ℤ )
115 zltp1le ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) < 𝐾 ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ≤ 𝐾 ) )
116 113 114 115 syl2anc ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) < 𝐾 ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ≤ 𝐾 ) )
117 111 116 mpbid ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ≤ 𝐾 )
118 fvex ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ V
119 eleq1 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) )
120 119 anbi2d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) ) )
121 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( 𝑝𝑛 ) = ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
122 121 neeq1d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( 𝑝𝑛 ) ≠ 𝐾 ↔ ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ≠ 𝐾 ) )
123 122 rexbidv ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 𝐾 ↔ ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ≠ 𝐾 ) )
124 120 123 imbi12d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) → ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 𝐾 ) ↔ ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ≠ 𝐾 ) ) )
125 118 124 5 vtocl ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ≠ 𝐾 )
126 100 125 mpdan ( 𝜑 → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ≠ 𝐾 )
127 fveq1 ( 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
128 87 ffnd ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
129 128 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
130 1ex 1 ∈ V
131 fnconstg ( 1 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
132 130 131 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) )
133 c0ex 0 ∈ V
134 fnconstg ( 0 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
135 133 134 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
136 132 135 pm3.2i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
137 dff1o3 ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ( 2nd ‘ ( 1st𝑇 ) ) ) )
138 137 simprbi ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ( 2nd ‘ ( 1st𝑇 ) ) )
139 imain ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
140 93 138 139 3syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
141 nn0p1nn ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ )
142 8 141 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℕ )
143 142 nnred ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℝ )
144 143 ltp1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) )
145 fzdisj ( ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) → ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
146 145 imaeq2d ( ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) )
147 ima0 ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) = ∅
148 146 147 eqtrdi ( ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
149 144 148 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
150 140 149 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
151 fnun ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
152 136 150 151 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
153 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
154 142 peano2nnd ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ℕ )
155 154 96 eleqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
156 1 nncnd ( 𝜑𝑁 ∈ ℂ )
157 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
158 156 157 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
159 158 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
160 elfzuz3 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) )
161 eluzp1p1 ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
162 160 161 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
163 162 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
164 159 163 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
165 fzsplit2 ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
166 155 164 165 syl2an2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
167 166 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
168 f1ofo ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
169 foima ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
170 93 168 169 3syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
171 170 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
172 167 171 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
173 153 172 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
174 173 fneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) )
175 152 174 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) )
176 48 a1i ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) ∈ V )
177 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
178 eqidd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
179 f1ofn ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
180 93 179 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
181 180 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
182 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) → ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
183 164 182 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
184 142 96 eleqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) )
185 eluzfz1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
186 184 185 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
187 186 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
188 fnfvima ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ∧ 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
189 181 183 187 188 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
190 fvun1 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
191 132 135 190 mp3an12 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
192 150 189 191 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) )
193 130 fvconst2 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 1 )
194 189 193 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 1 )
195 192 194 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 1 )
196 195 adantr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 1 )
197 129 175 176 176 177 178 196 ofval ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
198 100 197 mpidan ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
199 127 198 sylan9eqr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
200 199 adantllr ( ( ( ( 𝜑𝑝 ∈ ran 𝐹 ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
201 fveq2 ( 𝑡 = 𝑇 → ( 2nd𝑡 ) = ( 2nd𝑇 ) )
202 201 breq2d ( 𝑡 = 𝑇 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑇 ) ) )
203 202 ifbid ( 𝑡 = 𝑇 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) )
204 2fveq3 ( 𝑡 = 𝑇 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑇 ) ) )
205 2fveq3 ( 𝑡 = 𝑇 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑇 ) ) )
206 205 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) )
207 206 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
208 205 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
209 208 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
210 207 209 uneq12d ( 𝑡 = 𝑇 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
211 204 210 oveq12d ( 𝑡 = 𝑇 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
212 203 211 csbeq12dv ( 𝑡 = 𝑇 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
213 212 mpteq2dv ( 𝑡 = 𝑇 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
214 213 eqeq2d ( 𝑡 = 𝑇 → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
215 214 2 elrab2 ( 𝑇𝑆 ↔ ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
216 215 simprbi ( 𝑇𝑆𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
217 4 216 syl ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
218 217 rneqd ( 𝜑 → ran 𝐹 = ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
219 218 eleq2d ( 𝜑 → ( 𝑝 ∈ ran 𝐹𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
220 eqid ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
221 ovex ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
222 221 csbex if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
223 220 222 elrnmpti ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
224 219 223 bitrdi ( 𝜑 → ( 𝑝 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
225 6 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd𝑇 ) = 0 )
226 elfzle1 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 0 ≤ 𝑦 )
227 226 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 0 ≤ 𝑦 )
228 225 227 eqbrtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd𝑇 ) ≤ 𝑦 )
229 0re 0 ∈ ℝ
230 6 229 eqeltrdi ( 𝜑 → ( 2nd𝑇 ) ∈ ℝ )
231 lenlt ( ( ( 2nd𝑇 ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 2nd𝑇 ) ≤ 𝑦 ↔ ¬ 𝑦 < ( 2nd𝑇 ) ) )
232 230 9 231 syl2an ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd𝑇 ) ≤ 𝑦 ↔ ¬ 𝑦 < ( 2nd𝑇 ) ) )
233 228 232 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ¬ 𝑦 < ( 2nd𝑇 ) )
234 233 iffalsed ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑦 + 1 ) )
235 234 csbeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑦 + 1 ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
236 ovex ( 𝑦 + 1 ) ∈ V
237 oveq2 ( 𝑗 = ( 𝑦 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑦 + 1 ) ) )
238 237 imaeq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
239 238 xpeq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) )
240 oveq1 ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) )
241 240 oveq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
242 241 imaeq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
243 242 xpeq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) )
244 239 243 uneq12d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
245 244 oveq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
246 236 245 csbie ( 𝑦 + 1 ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
247 235 246 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
248 247 eqeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑝 = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ↔ 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
249 248 rexbidva ( 𝜑 → ( ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
250 224 249 bitrd ( 𝜑 → ( 𝑝 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
251 250 biimpa ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
252 200 251 r19.29a ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
253 eqtr3 ( ( ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∧ 𝐾 = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 𝐾 )
254 253 ex ( ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) → ( 𝐾 = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 𝐾 ) )
255 252 254 syl ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ( 𝐾 = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) = 𝐾 ) )
256 255 necon3d ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ( ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ≠ 𝐾𝐾 ≠ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ) )
257 256 rexlimdva ( 𝜑 → ( ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) ≠ 𝐾𝐾 ≠ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ) )
258 126 257 mpd ( 𝜑𝐾 ≠ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) )
259 108 109 117 258 leneltd ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) < 𝐾 )
260 elfzo0 ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∈ ℕ0𝐾 ∈ ℕ ∧ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) < 𝐾 ) )
261 104 107 259 260 syl3anbrc ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∈ ( 0 ..^ 𝐾 ) )
262 261 adantr ( ( 𝜑𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) + 1 ) ∈ ( 0 ..^ 𝐾 ) )
263 80 262 eqeltrd ( ( 𝜑𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) ∈ ( 0 ..^ 𝐾 ) )
264 263 adantlr ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 1 ) ∈ ( 0 ..^ 𝐾 ) )
265 87 ffvelrnda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) )
266 elfzonn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
267 265 266 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
268 267 nn0cnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ )
269 268 addid1d ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 0 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) )
270 269 265 eqeltrd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 0 ) ∈ ( 0 ..^ 𝐾 ) )
271 270 adantr ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + 0 ) ∈ ( 0 ..^ 𝐾 ) )
272 75 77 264 271 ifbothda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ∈ ( 0 ..^ 𝐾 ) )
273 272 fmpttd ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
274 ovex ( 0 ..^ 𝐾 ) ∈ V
275 274 48 elmap ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
276 273 275 sylibr ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
277 simpr ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
278 1z 1 ∈ ℤ
279 13 278 jctil ( 𝜑 → ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) )
280 elfzelz ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℤ )
281 280 278 jctir ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
282 fzaddel ( ( ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
283 279 281 282 syl2an ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
284 277 283 mpbid ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) )
285 158 oveq2d ( 𝜑 → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
286 285 adantr ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
287 284 286 eleqtrd ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) )
288 287 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) )
289 simpr ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
290 peano2z ( 1 ∈ ℤ → ( 1 + 1 ) ∈ ℤ )
291 278 290 ax-mp ( 1 + 1 ) ∈ ℤ
292 11 291 jctil ( 𝜑 → ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
293 elfzelz ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑦 ∈ ℤ )
294 293 278 jctir ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) )
295 fzsubel ( ( ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑦 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
296 292 294 295 syl2an ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑦 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
297 289 296 mpbid ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
298 ax-1cn 1 ∈ ℂ
299 298 298 pncan3oi ( ( 1 + 1 ) − 1 ) = 1
300 299 oveq1i ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) )
301 297 300 eleqtrdi ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) )
302 293 zcnd ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑦 ∈ ℂ )
303 elfznn ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℕ )
304 303 nncnd ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℂ )
305 subadd2 ( ( 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑛 ↔ ( 𝑛 + 1 ) = 𝑦 ) )
306 298 305 mp3an2 ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑦 − 1 ) = 𝑛 ↔ ( 𝑛 + 1 ) = 𝑦 ) )
307 306 bicomd ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( ( 𝑛 + 1 ) = 𝑦 ↔ ( 𝑦 − 1 ) = 𝑛 ) )
308 eqcom ( 𝑦 = ( 𝑛 + 1 ) ↔ ( 𝑛 + 1 ) = 𝑦 )
309 eqcom ( 𝑛 = ( 𝑦 − 1 ) ↔ ( 𝑦 − 1 ) = 𝑛 )
310 307 308 309 3bitr4g ( ( 𝑦 ∈ ℂ ∧ 𝑛 ∈ ℂ ) → ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
311 302 304 310 syl2an ( ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ∧ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
312 311 ralrimiva ( 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
313 312 adantl ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) )
314 reu6i ( ( ( 𝑦 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑦 = ( 𝑛 + 1 ) ↔ 𝑛 = ( 𝑦 − 1 ) ) ) → ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) )
315 301 313 314 syl2anc ( ( 𝜑𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) )
316 315 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) )
317 eqid ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) = ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) )
318 317 f1ompt ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1-onto→ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( ∀ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ( 𝑛 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) ∧ ∀ 𝑦 ∈ ( ( 1 + 1 ) ... 𝑁 ) ∃! 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) 𝑦 = ( 𝑛 + 1 ) ) )
319 288 316 318 sylanbrc ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1-onto→ ( ( 1 + 1 ) ... 𝑁 ) )
320 f1osng ( ( 𝑁 ∈ ℕ ∧ 1 ∈ V ) → { ⟨ 𝑁 , 1 ⟩ } : { 𝑁 } –1-1-onto→ { 1 } )
321 1 130 320 sylancl ( 𝜑 → { ⟨ 𝑁 , 1 ⟩ } : { 𝑁 } –1-1-onto→ { 1 } )
322 14 16 ltnled ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) )
323 20 322 mpbid ( 𝜑 → ¬ 𝑁 ≤ ( 𝑁 − 1 ) )
324 elfzle2 ( 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) )
325 323 324 nsyl ( 𝜑 → ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
326 disjsn ( ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
327 325 326 sylibr ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ )
328 1re 1 ∈ ℝ
329 328 ltp1i 1 < ( 1 + 1 )
330 291 zrei ( 1 + 1 ) ∈ ℝ
331 328 330 ltnlei ( 1 < ( 1 + 1 ) ↔ ¬ ( 1 + 1 ) ≤ 1 )
332 329 331 mpbi ¬ ( 1 + 1 ) ≤ 1
333 elfzle1 ( 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 1 + 1 ) ≤ 1 )
334 332 333 mto ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 )
335 disjsn ( ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
336 334 335 mpbir ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅
337 336 a1i ( 𝜑 → ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ )
338 f1oun ( ( ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) : ( 1 ... ( 𝑁 − 1 ) ) –1-1-onto→ ( ( 1 + 1 ) ... 𝑁 ) ∧ { ⟨ 𝑁 , 1 ⟩ } : { 𝑁 } –1-1-onto→ { 1 } ) ∧ ( ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ∧ ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ) ) → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) : ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) –1-1-onto→ ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
339 319 321 327 337 338 syl22anc ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) : ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) –1-1-onto→ ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
340 130 a1i ( 𝜑 → 1 ∈ V )
341 158 97 eqeltrd ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
342 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
343 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
344 13 342 343 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
345 158 344 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
346 fzsplit2 ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
347 341 345 346 syl2anc ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
348 158 oveq1d ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑁 ... 𝑁 ) )
349 fzsn ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
350 11 349 syl ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
351 348 350 eqtrd ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = { 𝑁 } )
352 351 uneq2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
353 347 352 eqtr2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) = ( 1 ... 𝑁 ) )
354 iftrue ( 𝑛 = 𝑁 → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = 1 )
355 354 adantl ( ( 𝜑𝑛 = 𝑁 ) → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = 1 )
356 1 340 353 355 fmptapd ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) )
357 eleq1 ( 𝑛 = 𝑁 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) )
358 357 notbid ( 𝑛 = 𝑁 → ( ¬ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) )
359 325 358 syl5ibrcom ( 𝜑 → ( 𝑛 = 𝑁 → ¬ 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) )
360 359 necon2ad ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑛𝑁 ) )
361 360 imp ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑛𝑁 )
362 ifnefalse ( 𝑛𝑁 → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) )
363 361 362 syl ( ( 𝜑𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) )
364 363 mpteq2dva ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) )
365 364 uneq1d ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) )
366 356 365 eqtr3d ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) = ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) )
367 347 352 eqtrd ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
368 uzid ( 1 ∈ ℤ → 1 ∈ ( ℤ ‘ 1 ) )
369 peano2uz ( 1 ∈ ( ℤ ‘ 1 ) → ( 1 + 1 ) ∈ ( ℤ ‘ 1 ) )
370 278 368 369 mp2b ( 1 + 1 ) ∈ ( ℤ ‘ 1 )
371 fzsplit2 ( ( ( 1 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ 1 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
372 370 97 371 sylancr ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
373 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
374 278 373 ax-mp ( 1 ... 1 ) = { 1 }
375 374 uneq1i ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) )
376 375 equncomi ( ( 1 ... 1 ) ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } )
377 372 376 eqtrdi ( 𝜑 → ( 1 ... 𝑁 ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) )
378 366 367 377 f1oeq123d ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 𝑛 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↦ ( 𝑛 + 1 ) ) ∪ { ⟨ 𝑁 , 1 ⟩ } ) : ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) –1-1-onto→ ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) ) )
379 339 378 mpbird ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
380 f1oco ( ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
381 93 379 380 syl2anc ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
382 f1oeq1 ( 𝑓 = ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
383 52 382 elab ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
384 381 383 sylibr ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
385 276 384 opelxpd ( 𝜑 → ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
386 1 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
387 nn0fz0 ( 𝑁 ∈ ℕ0𝑁 ∈ ( 0 ... 𝑁 ) )
388 386 387 sylib ( 𝜑𝑁 ∈ ( 0 ... 𝑁 ) )
389 385 388 opelxpd ( 𝜑 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
390 elrab3t ( ( ∀ 𝑡 ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) ) ∧ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ) → ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
391 73 389 390 syl2anc ( 𝜑 → ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
392 7 391 mpbird ( 𝜑 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } )
393 392 2 eleqtrrdi ( 𝜑 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ∈ 𝑆 )
394 fveqeq2 ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ = 𝑇 → ( ( 2nd ‘ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ) = 𝑁 ↔ ( 2nd𝑇 ) = 𝑁 ) )
395 27 394 syl5ibcom ( 𝜑 → ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ = 𝑇 → ( 2nd𝑇 ) = 𝑁 ) )
396 1 nnne0d ( 𝜑𝑁 ≠ 0 )
397 neeq1 ( ( 2nd𝑇 ) = 𝑁 → ( ( 2nd𝑇 ) ≠ 0 ↔ 𝑁 ≠ 0 ) )
398 396 397 syl5ibrcom ( 𝜑 → ( ( 2nd𝑇 ) = 𝑁 → ( 2nd𝑇 ) ≠ 0 ) )
399 395 398 syld ( 𝜑 → ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ = 𝑇 → ( 2nd𝑇 ) ≠ 0 ) )
400 399 necon2d ( 𝜑 → ( ( 2nd𝑇 ) = 0 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ≠ 𝑇 ) )
401 6 400 mpd ( 𝜑 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ≠ 𝑇 )
402 neeq1 ( 𝑧 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ → ( 𝑧𝑇 ↔ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ≠ 𝑇 ) )
403 402 rspcev ( ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ∈ 𝑆 ∧ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 1 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 𝑁 , 1 , ( 𝑛 + 1 ) ) ) ) ⟩ , 𝑁 ⟩ ≠ 𝑇 ) → ∃ 𝑧𝑆 𝑧𝑇 )
404 393 401 403 syl2anc ( 𝜑 → ∃ 𝑧𝑆 𝑧𝑇 )