Metamath Proof Explorer


Theorem poimirlem18

Description: Lemma for poimir stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
poimirlem22.1 φF:0N10K1N
poimirlem22.2 φTS
poimirlem18.3 φn1NpranFpnK
poimirlem18.4 φ2ndT=0
Assertion poimirlem18 φ∃!zSzT

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimirlem22.s S=t0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
3 poimirlem22.1 φF:0N10K1N
4 poimirlem22.2 φTS
5 poimirlem18.3 φn1NpranFpnK
6 poimirlem18.4 φ2ndT=0
7 1 2 3 4 5 6 poimirlem17 φzSzT
8 6 adantr φzS2ndT=0
9 0nnn ¬0
10 elfznn 01N10
11 9 10 mto ¬01N1
12 eleq1 2ndz=02ndz1N101N1
13 11 12 mtbiri 2ndz=0¬2ndz1N1
14 13 necon2ai 2ndz1N12ndz0
15 1 ad2antrr φzS2ndz1N1N
16 fveq2 t=z2ndt=2ndz
17 16 breq2d t=zy<2ndty<2ndz
18 17 ifbid t=zify<2ndtyy+1=ify<2ndzyy+1
19 18 csbeq1d t=zify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndzyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
20 2fveq3 t=z1st1stt=1st1stz
21 2fveq3 t=z2nd1stt=2nd1stz
22 21 imaeq1d t=z2nd1stt1j=2nd1stz1j
23 22 xpeq1d t=z2nd1stt1j×1=2nd1stz1j×1
24 21 imaeq1d t=z2nd1sttj+1N=2nd1stzj+1N
25 24 xpeq1d t=z2nd1sttj+1N×0=2nd1stzj+1N×0
26 23 25 uneq12d t=z2nd1stt1j×12nd1sttj+1N×0=2nd1stz1j×12nd1stzj+1N×0
27 20 26 oveq12d t=z1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stz+f2nd1stz1j×12nd1stzj+1N×0
28 27 csbeq2dv t=zify<2ndzyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
29 19 28 eqtrd t=zify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
30 29 mpteq2dv t=zy0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
31 30 eqeq2d t=zF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
32 31 2 elrab2 zSz0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
33 32 simprbi zSF=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
34 33 ad2antlr φzS2ndz1N1F=y0N1ify<2ndzyy+1/j1st1stz+f2nd1stz1j×12nd1stzj+1N×0
35 elrabi zt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0z0..^K1N×f|f:1N1-1 onto1N×0N
36 35 2 eleq2s zSz0..^K1N×f|f:1N1-1 onto1N×0N
37 xp1st z0..^K1N×f|f:1N1-1 onto1N×0N1stz0..^K1N×f|f:1N1-1 onto1N
38 36 37 syl zS1stz0..^K1N×f|f:1N1-1 onto1N
39 xp1st 1stz0..^K1N×f|f:1N1-1 onto1N1st1stz0..^K1N
40 38 39 syl zS1st1stz0..^K1N
41 elmapi 1st1stz0..^K1N1st1stz:1N0..^K
42 40 41 syl zS1st1stz:1N0..^K
43 elfzoelz n0..^Kn
44 43 ssriv 0..^K
45 fss 1st1stz:1N0..^K0..^K1st1stz:1N
46 42 44 45 sylancl zS1st1stz:1N
47 46 ad2antlr φzS2ndz1N11st1stz:1N
48 xp2nd 1stz0..^K1N×f|f:1N1-1 onto1N2nd1stzf|f:1N1-1 onto1N
49 38 48 syl zS2nd1stzf|f:1N1-1 onto1N
50 fvex 2nd1stzV
51 f1oeq1 f=2nd1stzf:1N1-1 onto1N2nd1stz:1N1-1 onto1N
52 50 51 elab 2nd1stzf|f:1N1-1 onto1N2nd1stz:1N1-1 onto1N
53 49 52 sylib zS2nd1stz:1N1-1 onto1N
54 53 ad2antlr φzS2ndz1N12nd1stz:1N1-1 onto1N
55 simpr φzS2ndz1N12ndz1N1
56 15 34 47 54 55 poimirlem1 φzS2ndz1N1¬*n1NF2ndz1nF2ndzn
57 1 ad2antrr φ2ndz1N12ndT2ndzN
58 fveq2 t=T2ndt=2ndT
59 58 breq2d t=Ty<2ndty<2ndT
60 59 ifbid t=Tify<2ndtyy+1=ify<2ndTyy+1
61 60 csbeq1d t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0
62 2fveq3 t=T1st1stt=1st1stT
63 2fveq3 t=T2nd1stt=2nd1stT
64 63 imaeq1d t=T2nd1stt1j=2nd1stT1j
65 64 xpeq1d t=T2nd1stt1j×1=2nd1stT1j×1
66 63 imaeq1d t=T2nd1sttj+1N=2nd1stTj+1N
67 66 xpeq1d t=T2nd1sttj+1N×0=2nd1stTj+1N×0
68 65 67 uneq12d t=T2nd1stt1j×12nd1sttj+1N×0=2nd1stT1j×12nd1stTj+1N×0
69 62 68 oveq12d t=T1st1stt+f2nd1stt1j×12nd1sttj+1N×0=1st1stT+f2nd1stT1j×12nd1stTj+1N×0
70 69 csbeq2dv t=Tify<2ndTyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
71 61 70 eqtrd t=Tify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
72 71 mpteq2dv t=Ty0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
73 72 eqeq2d t=TF=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0F=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
74 73 2 elrab2 TST0..^K1N×f|f:1N1-1 onto1N×0NF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
75 74 simprbi TSF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
76 4 75 syl φF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
77 76 ad2antrr φ2ndz1N12ndT2ndzF=y0N1ify<2ndTyy+1/j1st1stT+f2nd1stT1j×12nd1stTj+1N×0
78 elrabi Tt0..^K1N×f|f:1N1-1 onto1N×0N|F=y0N1ify<2ndtyy+1/j1st1stt+f2nd1stt1j×12nd1sttj+1N×0T0..^K1N×f|f:1N1-1 onto1N×0N
79 78 2 eleq2s TST0..^K1N×f|f:1N1-1 onto1N×0N
80 4 79 syl φT0..^K1N×f|f:1N1-1 onto1N×0N
81 xp1st T0..^K1N×f|f:1N1-1 onto1N×0N1stT0..^K1N×f|f:1N1-1 onto1N
82 80 81 syl φ1stT0..^K1N×f|f:1N1-1 onto1N
83 xp1st 1stT0..^K1N×f|f:1N1-1 onto1N1st1stT0..^K1N
84 82 83 syl φ1st1stT0..^K1N
85 elmapi 1st1stT0..^K1N1st1stT:1N0..^K
86 84 85 syl φ1st1stT:1N0..^K
87 fss 1st1stT:1N0..^K0..^K1st1stT:1N
88 86 44 87 sylancl φ1st1stT:1N
89 88 ad2antrr φ2ndz1N12ndT2ndz1st1stT:1N
90 xp2nd 1stT0..^K1N×f|f:1N1-1 onto1N2nd1stTf|f:1N1-1 onto1N
91 82 90 syl φ2nd1stTf|f:1N1-1 onto1N
92 fvex 2nd1stTV
93 f1oeq1 f=2nd1stTf:1N1-1 onto1N2nd1stT:1N1-1 onto1N
94 92 93 elab 2nd1stTf|f:1N1-1 onto1N2nd1stT:1N1-1 onto1N
95 91 94 sylib φ2nd1stT:1N1-1 onto1N
96 95 ad2antrr φ2ndz1N12ndT2ndz2nd1stT:1N1-1 onto1N
97 simplr φ2ndz1N12ndT2ndz2ndz1N1
98 xp2nd T0..^K1N×f|f:1N1-1 onto1N×0N2ndT0N
99 80 98 syl φ2ndT0N
100 99 adantr φ2ndz1N12ndT0N
101 eldifsn 2ndT0N2ndz2ndT0N2ndT2ndz
102 101 biimpri 2ndT0N2ndT2ndz2ndT0N2ndz
103 100 102 sylan φ2ndz1N12ndT2ndz2ndT0N2ndz
104 57 77 89 96 97 103 poimirlem2 φ2ndz1N12ndT2ndz*n1NF2ndz1nF2ndzn
105 104 ex φ2ndz1N12ndT2ndz*n1NF2ndz1nF2ndzn
106 105 necon1bd φ2ndz1N1¬*n1NF2ndz1nF2ndzn2ndT=2ndz
107 106 adantlr φzS2ndz1N1¬*n1NF2ndz1nF2ndzn2ndT=2ndz
108 56 107 mpd φzS2ndz1N12ndT=2ndz
109 108 neeq1d φzS2ndz1N12ndT02ndz0
110 109 exbiri φzS2ndz1N12ndz02ndT0
111 14 110 mpdi φzS2ndz1N12ndT0
112 111 necon2bd φzS2ndT=0¬2ndz1N1
113 8 112 mpd φzS¬2ndz1N1
114 xp2nd z0..^K1N×f|f:1N1-1 onto1N×0N2ndz0N
115 36 114 syl zS2ndz0N
116 1 nncnd φN
117 npcan1 NN-1+1=N
118 116 117 syl φN-1+1=N
119 nnuz =1
120 1 119 eleqtrdi φN1
121 118 120 eqeltrd φN-1+11
122 1 nnzd φN
123 peano2zm NN1
124 122 123 syl φN1
125 uzid N1N1N1
126 peano2uz N1N1N-1+1N1
127 124 125 126 3syl φN-1+1N1
128 118 127 eqeltrrd φNN1
129 fzsplit2 N-1+11NN11N=1N1N-1+1N
130 121 128 129 syl2anc φ1N=1N1N-1+1N
131 118 oveq1d φN-1+1N=NN
132 fzsn NNN=N
133 122 132 syl φNN=N
134 131 133 eqtrd φN-1+1N=N
135 134 uneq2d φ1N1N-1+1N=1N1N
136 130 135 eqtrd φ1N=1N1N
137 136 eleq2d φ2ndz1N2ndz1N1N
138 137 notbid φ¬2ndz1N¬2ndz1N1N
139 ioran ¬2ndz1N12ndz=N¬2ndz1N1¬2ndz=N
140 elun 2ndz1N1N2ndz1N12ndzN
141 fvex 2ndzV
142 141 elsn 2ndzN2ndz=N
143 142 orbi2i 2ndz1N12ndzN2ndz1N12ndz=N
144 140 143 bitri 2ndz1N1N2ndz1N12ndz=N
145 139 144 xchnxbir ¬2ndz1N1N¬2ndz1N1¬2ndz=N
146 138 145 bitrdi φ¬2ndz1N¬2ndz1N1¬2ndz=N
147 146 anbi2d φ2ndz0N¬2ndz1N2ndz0N¬2ndz1N1¬2ndz=N
148 1 nnnn0d φN0
149 nn0uz 0=0
150 148 149 eleqtrdi φN0
151 fzpred N00N=00+1N
152 150 151 syl φ0N=00+1N
153 152 difeq1d φ0N1N=00+1N1N
154 difun2 01N1N=01N
155 0p1e1 0+1=1
156 155 oveq1i 0+1N=1N
157 156 uneq2i 00+1N=01N
158 157 difeq1i 00+1N1N=01N1N
159 incom 01N=1N0
160 elfznn 01N0
161 9 160 mto ¬01N
162 disjsn 1N0=¬01N
163 161 162 mpbir 1N0=
164 159 163 eqtri 01N=
165 disj3 01N=0=01N
166 164 165 mpbi 0=01N
167 154 158 166 3eqtr4i 00+1N1N=0
168 153 167 eqtrdi φ0N1N=0
169 168 eleq2d φ2ndz0N1N2ndz0
170 eldif 2ndz0N1N2ndz0N¬2ndz1N
171 141 elsn 2ndz02ndz=0
172 169 170 171 3bitr3g φ2ndz0N¬2ndz1N2ndz=0
173 147 172 bitr3d φ2ndz0N¬2ndz1N1¬2ndz=N2ndz=0
174 173 biimpd φ2ndz0N¬2ndz1N1¬2ndz=N2ndz=0
175 174 expdimp φ2ndz0N¬2ndz1N1¬2ndz=N2ndz=0
176 115 175 sylan2 φzS¬2ndz1N1¬2ndz=N2ndz=0
177 113 176 mpand φzS¬2ndz=N2ndz=0
178 1 2 3 poimirlem13 φ*zS2ndz=0
179 fveqeq2 z=s2ndz=02nds=0
180 179 rmo4 *zS2ndz=0zSsS2ndz=02nds=0z=s
181 178 180 sylib φzSsS2ndz=02nds=0z=s
182 181 r19.21bi φzSsS2ndz=02nds=0z=s
183 4 adantr φzSTS
184 fveqeq2 s=T2nds=02ndT=0
185 184 anbi2d s=T2ndz=02nds=02ndz=02ndT=0
186 eqeq2 s=Tz=sz=T
187 185 186 imbi12d s=T2ndz=02nds=0z=s2ndz=02ndT=0z=T
188 187 rspccv sS2ndz=02nds=0z=sTS2ndz=02ndT=0z=T
189 182 183 188 sylc φzS2ndz=02ndT=0z=T
190 8 189 mpan2d φzS2ndz=0z=T
191 177 190 syld φzS¬2ndz=Nz=T
192 191 necon1ad φzSzT2ndz=N
193 192 ralrimiva φzSzT2ndz=N
194 1 2 3 poimirlem14 φ*zS2ndz=N
195 rmoim zSzT2ndz=N*zS2ndz=N*zSzT
196 193 194 195 sylc φ*zSzT
197 reu5 ∃!zSzTzSzT*zSzT
198 7 196 197 sylanbrc φ∃!zSzT