Metamath Proof Explorer


Theorem poimirlem18

Description: Lemma for poimir stating that, given a face not on a front face of the main cube and a simplex in which it's opposite the first vertex on the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
poimirlem22.1 φ F : 0 N 1 0 K 1 N
poimirlem22.2 φ T S
poimirlem18.3 φ n 1 N p ran F p n K
poimirlem18.4 φ 2 nd T = 0
Assertion poimirlem18 φ ∃! z S z T

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimirlem22.s S = t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
3 poimirlem22.1 φ F : 0 N 1 0 K 1 N
4 poimirlem22.2 φ T S
5 poimirlem18.3 φ n 1 N p ran F p n K
6 poimirlem18.4 φ 2 nd T = 0
7 1 2 3 4 5 6 poimirlem17 φ z S z T
8 6 adantr φ z S 2 nd T = 0
9 0nnn ¬ 0
10 elfznn 0 1 N 1 0
11 9 10 mto ¬ 0 1 N 1
12 eleq1 2 nd z = 0 2 nd z 1 N 1 0 1 N 1
13 11 12 mtbiri 2 nd z = 0 ¬ 2 nd z 1 N 1
14 13 necon2ai 2 nd z 1 N 1 2 nd z 0
15 1 ad2antrr φ z S 2 nd z 1 N 1 N
16 fveq2 t = z 2 nd t = 2 nd z
17 16 breq2d t = z y < 2 nd t y < 2 nd z
18 17 ifbid t = z if y < 2 nd t y y + 1 = if y < 2 nd z y y + 1
19 18 csbeq1d t = z if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd z y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
20 2fveq3 t = z 1 st 1 st t = 1 st 1 st z
21 2fveq3 t = z 2 nd 1 st t = 2 nd 1 st z
22 21 imaeq1d t = z 2 nd 1 st t 1 j = 2 nd 1 st z 1 j
23 22 xpeq1d t = z 2 nd 1 st t 1 j × 1 = 2 nd 1 st z 1 j × 1
24 21 imaeq1d t = z 2 nd 1 st t j + 1 N = 2 nd 1 st z j + 1 N
25 24 xpeq1d t = z 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st z j + 1 N × 0
26 23 25 uneq12d t = z 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
27 20 26 oveq12d t = z 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
28 27 csbeq2dv t = z if y < 2 nd z y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
29 19 28 eqtrd t = z if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
30 29 mpteq2dv t = z y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
31 30 eqeq2d t = z F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
32 31 2 elrab2 z S z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
33 32 simprbi z S F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
34 33 ad2antlr φ z S 2 nd z 1 N 1 F = y 0 N 1 if y < 2 nd z y y + 1 / j 1 st 1 st z + f 2 nd 1 st z 1 j × 1 2 nd 1 st z j + 1 N × 0
35 elrabi z t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
36 35 2 eleq2s z S z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
37 xp1st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
38 xp1st 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st z 0 ..^ K 1 N
39 elmapi 1 st 1 st z 0 ..^ K 1 N 1 st 1 st z : 1 N 0 ..^ K
40 36 37 38 39 4syl z S 1 st 1 st z : 1 N 0 ..^ K
41 elfzoelz n 0 ..^ K n
42 41 ssriv 0 ..^ K
43 fss 1 st 1 st z : 1 N 0 ..^ K 0 ..^ K 1 st 1 st z : 1 N
44 40 42 43 sylancl z S 1 st 1 st z : 1 N
45 44 ad2antlr φ z S 2 nd z 1 N 1 1 st 1 st z : 1 N
46 36 37 syl z S 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
47 xp2nd 1 st z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st z f | f : 1 N 1-1 onto 1 N
48 46 47 syl z S 2 nd 1 st z f | f : 1 N 1-1 onto 1 N
49 fvex 2 nd 1 st z V
50 f1oeq1 f = 2 nd 1 st z f : 1 N 1-1 onto 1 N 2 nd 1 st z : 1 N 1-1 onto 1 N
51 49 50 elab 2 nd 1 st z f | f : 1 N 1-1 onto 1 N 2 nd 1 st z : 1 N 1-1 onto 1 N
52 48 51 sylib z S 2 nd 1 st z : 1 N 1-1 onto 1 N
53 52 ad2antlr φ z S 2 nd z 1 N 1 2 nd 1 st z : 1 N 1-1 onto 1 N
54 simpr φ z S 2 nd z 1 N 1 2 nd z 1 N 1
55 15 34 45 53 54 poimirlem1 φ z S 2 nd z 1 N 1 ¬ * n 1 N F 2 nd z 1 n F 2 nd z n
56 1 ad2antrr φ 2 nd z 1 N 1 2 nd T 2 nd z N
57 fveq2 t = T 2 nd t = 2 nd T
58 57 breq2d t = T y < 2 nd t y < 2 nd T
59 58 ifbid t = T if y < 2 nd t y y + 1 = if y < 2 nd T y y + 1
60 59 csbeq1d t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0
61 2fveq3 t = T 1 st 1 st t = 1 st 1 st T
62 2fveq3 t = T 2 nd 1 st t = 2 nd 1 st T
63 62 imaeq1d t = T 2 nd 1 st t 1 j = 2 nd 1 st T 1 j
64 63 xpeq1d t = T 2 nd 1 st t 1 j × 1 = 2 nd 1 st T 1 j × 1
65 62 imaeq1d t = T 2 nd 1 st t j + 1 N = 2 nd 1 st T j + 1 N
66 65 xpeq1d t = T 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T j + 1 N × 0
67 64 66 uneq12d t = T 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
68 61 67 oveq12d t = T 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
69 68 csbeq2dv t = T if y < 2 nd T y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
70 60 69 eqtrd t = T if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
71 70 mpteq2dv t = T y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
72 71 eqeq2d t = T F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
73 72 2 elrab2 T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
74 73 simprbi T S F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
75 4 74 syl φ F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
76 75 ad2antrr φ 2 nd z 1 N 1 2 nd T 2 nd z F = y 0 N 1 if y < 2 nd T y y + 1 / j 1 st 1 st T + f 2 nd 1 st T 1 j × 1 2 nd 1 st T j + 1 N × 0
77 elrabi T t 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N | F = y 0 N 1 if y < 2 nd t y y + 1 / j 1 st 1 st t + f 2 nd 1 st t 1 j × 1 2 nd 1 st t j + 1 N × 0 T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
78 77 2 eleq2s T S T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
79 4 78 syl φ T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N
80 xp1st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N
81 xp1st 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 1 st 1 st T 0 ..^ K 1 N
82 elmapi 1 st 1 st T 0 ..^ K 1 N 1 st 1 st T : 1 N 0 ..^ K
83 79 80 81 82 4syl φ 1 st 1 st T : 1 N 0 ..^ K
84 fss 1 st 1 st T : 1 N 0 ..^ K 0 ..^ K 1 st 1 st T : 1 N
85 83 42 84 sylancl φ 1 st 1 st T : 1 N
86 85 ad2antrr φ 2 nd z 1 N 1 2 nd T 2 nd z 1 st 1 st T : 1 N
87 xp2nd 1 st T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
88 4 78 80 87 4syl φ 2 nd 1 st T f | f : 1 N 1-1 onto 1 N
89 fvex 2 nd 1 st T V
90 f1oeq1 f = 2 nd 1 st T f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
91 89 90 elab 2 nd 1 st T f | f : 1 N 1-1 onto 1 N 2 nd 1 st T : 1 N 1-1 onto 1 N
92 88 91 sylib φ 2 nd 1 st T : 1 N 1-1 onto 1 N
93 92 ad2antrr φ 2 nd z 1 N 1 2 nd T 2 nd z 2 nd 1 st T : 1 N 1-1 onto 1 N
94 simplr φ 2 nd z 1 N 1 2 nd T 2 nd z 2 nd z 1 N 1
95 xp2nd T 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 2 nd T 0 N
96 79 95 syl φ 2 nd T 0 N
97 96 adantr φ 2 nd z 1 N 1 2 nd T 0 N
98 eldifsn 2 nd T 0 N 2 nd z 2 nd T 0 N 2 nd T 2 nd z
99 98 biimpri 2 nd T 0 N 2 nd T 2 nd z 2 nd T 0 N 2 nd z
100 97 99 sylan φ 2 nd z 1 N 1 2 nd T 2 nd z 2 nd T 0 N 2 nd z
101 56 76 86 93 94 100 poimirlem2 φ 2 nd z 1 N 1 2 nd T 2 nd z * n 1 N F 2 nd z 1 n F 2 nd z n
102 101 ex φ 2 nd z 1 N 1 2 nd T 2 nd z * n 1 N F 2 nd z 1 n F 2 nd z n
103 102 necon1bd φ 2 nd z 1 N 1 ¬ * n 1 N F 2 nd z 1 n F 2 nd z n 2 nd T = 2 nd z
104 103 adantlr φ z S 2 nd z 1 N 1 ¬ * n 1 N F 2 nd z 1 n F 2 nd z n 2 nd T = 2 nd z
105 55 104 mpd φ z S 2 nd z 1 N 1 2 nd T = 2 nd z
106 105 neeq1d φ z S 2 nd z 1 N 1 2 nd T 0 2 nd z 0
107 106 exbiri φ z S 2 nd z 1 N 1 2 nd z 0 2 nd T 0
108 14 107 mpdi φ z S 2 nd z 1 N 1 2 nd T 0
109 108 necon2bd φ z S 2 nd T = 0 ¬ 2 nd z 1 N 1
110 8 109 mpd φ z S ¬ 2 nd z 1 N 1
111 xp2nd z 0 ..^ K 1 N × f | f : 1 N 1-1 onto 1 N × 0 N 2 nd z 0 N
112 36 111 syl z S 2 nd z 0 N
113 1 nncnd φ N
114 npcan1 N N - 1 + 1 = N
115 113 114 syl φ N - 1 + 1 = N
116 nnuz = 1
117 1 116 eleqtrdi φ N 1
118 115 117 eqeltrd φ N - 1 + 1 1
119 1 nnzd φ N
120 peano2zm N N 1
121 uzid N 1 N 1 N 1
122 peano2uz N 1 N 1 N - 1 + 1 N 1
123 119 120 121 122 4syl φ N - 1 + 1 N 1
124 115 123 eqeltrrd φ N N 1
125 fzsplit2 N - 1 + 1 1 N N 1 1 N = 1 N 1 N - 1 + 1 N
126 118 124 125 syl2anc φ 1 N = 1 N 1 N - 1 + 1 N
127 115 oveq1d φ N - 1 + 1 N = N N
128 fzsn N N N = N
129 119 128 syl φ N N = N
130 127 129 eqtrd φ N - 1 + 1 N = N
131 130 uneq2d φ 1 N 1 N - 1 + 1 N = 1 N 1 N
132 126 131 eqtrd φ 1 N = 1 N 1 N
133 132 eleq2d φ 2 nd z 1 N 2 nd z 1 N 1 N
134 133 notbid φ ¬ 2 nd z 1 N ¬ 2 nd z 1 N 1 N
135 ioran ¬ 2 nd z 1 N 1 2 nd z = N ¬ 2 nd z 1 N 1 ¬ 2 nd z = N
136 elun 2 nd z 1 N 1 N 2 nd z 1 N 1 2 nd z N
137 fvex 2 nd z V
138 137 elsn 2 nd z N 2 nd z = N
139 138 orbi2i 2 nd z 1 N 1 2 nd z N 2 nd z 1 N 1 2 nd z = N
140 136 139 bitri 2 nd z 1 N 1 N 2 nd z 1 N 1 2 nd z = N
141 135 140 xchnxbir ¬ 2 nd z 1 N 1 N ¬ 2 nd z 1 N 1 ¬ 2 nd z = N
142 134 141 bitrdi φ ¬ 2 nd z 1 N ¬ 2 nd z 1 N 1 ¬ 2 nd z = N
143 142 anbi2d φ 2 nd z 0 N ¬ 2 nd z 1 N 2 nd z 0 N ¬ 2 nd z 1 N 1 ¬ 2 nd z = N
144 1 nnnn0d φ N 0
145 nn0uz 0 = 0
146 144 145 eleqtrdi φ N 0
147 fzpred N 0 0 N = 0 0 + 1 N
148 146 147 syl φ 0 N = 0 0 + 1 N
149 148 difeq1d φ 0 N 1 N = 0 0 + 1 N 1 N
150 difun2 0 1 N 1 N = 0 1 N
151 0p1e1 0 + 1 = 1
152 151 oveq1i 0 + 1 N = 1 N
153 152 uneq2i 0 0 + 1 N = 0 1 N
154 153 difeq1i 0 0 + 1 N 1 N = 0 1 N 1 N
155 incom 0 1 N = 1 N 0
156 elfznn 0 1 N 0
157 9 156 mto ¬ 0 1 N
158 disjsn 1 N 0 = ¬ 0 1 N
159 157 158 mpbir 1 N 0 =
160 155 159 eqtri 0 1 N =
161 disj3 0 1 N = 0 = 0 1 N
162 160 161 mpbi 0 = 0 1 N
163 150 154 162 3eqtr4i 0 0 + 1 N 1 N = 0
164 149 163 eqtrdi φ 0 N 1 N = 0
165 164 eleq2d φ 2 nd z 0 N 1 N 2 nd z 0
166 eldif 2 nd z 0 N 1 N 2 nd z 0 N ¬ 2 nd z 1 N
167 137 elsn 2 nd z 0 2 nd z = 0
168 165 166 167 3bitr3g φ 2 nd z 0 N ¬ 2 nd z 1 N 2 nd z = 0
169 143 168 bitr3d φ 2 nd z 0 N ¬ 2 nd z 1 N 1 ¬ 2 nd z = N 2 nd z = 0
170 169 biimpd φ 2 nd z 0 N ¬ 2 nd z 1 N 1 ¬ 2 nd z = N 2 nd z = 0
171 170 expdimp φ 2 nd z 0 N ¬ 2 nd z 1 N 1 ¬ 2 nd z = N 2 nd z = 0
172 112 171 sylan2 φ z S ¬ 2 nd z 1 N 1 ¬ 2 nd z = N 2 nd z = 0
173 110 172 mpand φ z S ¬ 2 nd z = N 2 nd z = 0
174 1 2 3 poimirlem13 φ * z S 2 nd z = 0
175 fveqeq2 z = s 2 nd z = 0 2 nd s = 0
176 175 rmo4 * z S 2 nd z = 0 z S s S 2 nd z = 0 2 nd s = 0 z = s
177 174 176 sylib φ z S s S 2 nd z = 0 2 nd s = 0 z = s
178 177 r19.21bi φ z S s S 2 nd z = 0 2 nd s = 0 z = s
179 4 adantr φ z S T S
180 fveqeq2 s = T 2 nd s = 0 2 nd T = 0
181 180 anbi2d s = T 2 nd z = 0 2 nd s = 0 2 nd z = 0 2 nd T = 0
182 eqeq2 s = T z = s z = T
183 181 182 imbi12d s = T 2 nd z = 0 2 nd s = 0 z = s 2 nd z = 0 2 nd T = 0 z = T
184 183 rspccv s S 2 nd z = 0 2 nd s = 0 z = s T S 2 nd z = 0 2 nd T = 0 z = T
185 178 179 184 sylc φ z S 2 nd z = 0 2 nd T = 0 z = T
186 8 185 mpan2d φ z S 2 nd z = 0 z = T
187 173 186 syld φ z S ¬ 2 nd z = N z = T
188 187 necon1ad φ z S z T 2 nd z = N
189 188 ralrimiva φ z S z T 2 nd z = N
190 1 2 3 poimirlem14 φ * z S 2 nd z = N
191 rmoim z S z T 2 nd z = N * z S 2 nd z = N * z S z T
192 189 190 191 sylc φ * z S z T
193 reu5 ∃! z S z T z S z T * z S z T
194 7 192 193 sylanbrc φ ∃! z S z T