| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem22.s |  |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } | 
						
							| 3 |  | poimirlem22.1 |  |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 4 |  | poimirlem22.2 |  |-  ( ph -> T e. S ) | 
						
							| 5 |  | poimirlem22.3 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 ) | 
						
							| 6 |  | poimirlem21.4 |  |-  ( ph -> ( 2nd ` T ) = N ) | 
						
							| 7 |  | fveq2 |  |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) | 
						
							| 8 | 7 | breq2d |  |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) | 
						
							| 9 | 8 | ifbid |  |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) | 
						
							| 10 |  | 2fveq3 |  |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) | 
						
							| 11 |  | 2fveq3 |  |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 12 | 11 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) | 
						
							| 13 | 12 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 14 | 11 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 15 | 14 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 16 | 13 15 | uneq12d |  |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 17 | 10 16 | oveq12d |  |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 18 | 9 17 | csbeq12dv |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 19 | 18 | mpteq2dv |  |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 21 | 20 2 | elrab2 |  |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 22 | 21 | simprbi |  |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 23 | 4 22 | syl |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 24 |  | elrabi |  |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 25 | 24 2 | eleq2s |  |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 26 | 4 25 | syl |  |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 27 |  | xp1st |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 28 | 26 27 | syl |  |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 29 |  | xp1st |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 31 |  | elmapfn |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 34 |  | 1ex |  |-  1 e. _V | 
						
							| 35 |  | fnconstg |  |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) | 
						
							| 36 | 34 35 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) | 
						
							| 37 |  | c0ex |  |-  0 e. _V | 
						
							| 38 |  | fnconstg |  |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 39 | 37 38 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) | 
						
							| 40 | 36 39 | pm3.2i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 41 |  | xp2nd |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 42 | 28 41 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 43 |  | fvex |  |-  ( 2nd ` ( 1st ` T ) ) e. _V | 
						
							| 44 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 45 | 43 44 | elab |  |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 46 | 42 45 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 47 |  | dff1o3 |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 48 | 47 | simprbi |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 49 | 46 48 | syl |  |-  ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 50 |  | imain |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 51 | 49 50 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 52 |  | elfznn0 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 ) | 
						
							| 53 | 52 | nn0red |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) | 
						
							| 54 | 53 | ltp1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) ) | 
						
							| 55 |  | fzdisj |  |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) ) | 
						
							| 56 | 54 55 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) ) | 
						
							| 57 | 56 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) | 
						
							| 58 |  | ima0 |  |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/) | 
						
							| 59 | 57 58 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = (/) ) | 
						
							| 60 | 51 59 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) | 
						
							| 61 |  | fnun |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 62 | 40 60 61 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 63 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 64 |  | nn0p1nn |  |-  ( y e. NN0 -> ( y + 1 ) e. NN ) | 
						
							| 65 | 52 64 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN ) | 
						
							| 66 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 67 | 65 66 | eleqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 69 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 70 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 71 | 69 70 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 73 |  | elfzuz3 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 74 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 77 | 72 76 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) ) | 
						
							| 78 |  | fzsplit2 |  |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` y ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) | 
						
							| 79 | 68 77 78 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) | 
						
							| 80 | 79 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 81 |  | f1ofo |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 82 |  | foima |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 83 | 46 81 82 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 85 | 80 84 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 86 | 63 85 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 87 | 86 | fneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) | 
						
							| 88 | 62 87 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 89 |  | ovexd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V ) | 
						
							| 90 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 91 |  | eqidd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` n ) ) | 
						
							| 92 |  | eqidd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 93 | 33 88 89 89 90 91 92 | offval |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 94 |  | elmapi |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 95 | 30 94 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 96 | 95 | ffvelcdmda |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) ) | 
						
							| 97 |  | elfzonn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 98 | 96 97 | syl |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 99 | 98 | nn0cnd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC ) | 
						
							| 100 | 99 | adantlr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC ) | 
						
							| 101 |  | ax-1cn |  |-  1 e. CC | 
						
							| 102 |  | 0cn |  |-  0 e. CC | 
						
							| 103 | 101 102 | ifcli |  |-  if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) e. CC | 
						
							| 104 | 103 | a1i |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) e. CC ) | 
						
							| 105 |  | snssi |  |-  ( 1 e. CC -> { 1 } C_ CC ) | 
						
							| 106 | 101 105 | ax-mp |  |-  { 1 } C_ CC | 
						
							| 107 |  | snssi |  |-  ( 0 e. CC -> { 0 } C_ CC ) | 
						
							| 108 | 102 107 | ax-mp |  |-  { 0 } C_ CC | 
						
							| 109 | 106 108 | unssi |  |-  ( { 1 } u. { 0 } ) C_ CC | 
						
							| 110 | 34 | fconst |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) --> { 1 } | 
						
							| 111 | 37 | fconst |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) --> { 0 } | 
						
							| 112 | 110 111 | pm3.2i |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) --> { 0 } ) | 
						
							| 113 |  | simpr |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> n e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 114 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 115 |  | 1z |  |-  1 e. ZZ | 
						
							| 116 |  | peano2z |  |-  ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ ) | 
						
							| 117 | 115 116 | ax-mp |  |-  ( 1 + 1 ) e. ZZ | 
						
							| 118 | 114 117 | jctil |  |-  ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 119 |  | elfzelz |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. ZZ ) | 
						
							| 120 | 119 115 | jctir |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 121 |  | fzsubel |  |-  ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 122 | 118 120 121 | syl2an |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 123 | 113 122 | mpbid |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 124 | 101 101 | pncan3oi |  |-  ( ( 1 + 1 ) - 1 ) = 1 | 
						
							| 125 | 124 | oveq1i |  |-  ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) | 
						
							| 126 | 123 125 | eleqtrdi |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 127 | 126 | ralrimiva |  |-  ( ph -> A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 128 |  | simpr |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> y e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 129 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 130 | 114 129 | syl |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 131 | 130 115 | jctil |  |-  ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) ) | 
						
							| 132 |  | elfzelz |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. ZZ ) | 
						
							| 133 | 132 115 | jctir |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> ( y e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 134 |  | fzaddel |  |-  ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 135 | 131 133 134 | syl2an |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 136 | 128 135 | mpbid |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 137 | 71 | oveq2d |  |-  ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 138 | 137 | adantr |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 139 | 136 138 | eleqtrd |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 140 | 119 | zcnd |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. CC ) | 
						
							| 141 | 132 | zcnd |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. CC ) | 
						
							| 142 |  | subadd2 |  |-  ( ( n e. CC /\ 1 e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) ) | 
						
							| 143 | 101 142 | mp3an2 |  |-  ( ( n e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) ) | 
						
							| 144 |  | eqcom |  |-  ( y = ( n - 1 ) <-> ( n - 1 ) = y ) | 
						
							| 145 |  | eqcom |  |-  ( n = ( y + 1 ) <-> ( y + 1 ) = n ) | 
						
							| 146 | 143 144 145 | 3bitr4g |  |-  ( ( n e. CC /\ y e. CC ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 147 | 140 141 146 | syl2anr |  |-  ( ( y e. ( 1 ... ( N - 1 ) ) /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 148 | 147 | ralrimiva |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 149 | 148 | adantl |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 150 |  | reu6i |  |-  ( ( ( y + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) | 
						
							| 151 | 139 149 150 | syl2anc |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) | 
						
							| 152 | 151 | ralrimiva |  |-  ( ph -> A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) | 
						
							| 153 |  | eqid |  |-  ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) | 
						
							| 154 | 153 | f1ompt |  |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) <-> ( A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) ) | 
						
							| 155 | 127 152 154 | sylanbrc |  |-  ( ph -> ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) ) | 
						
							| 156 |  | f1osng |  |-  ( ( 1 e. _V /\ N e. NN ) -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) | 
						
							| 157 | 34 1 156 | sylancr |  |-  ( ph -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) | 
						
							| 158 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 159 | 158 | ltm1d |  |-  ( ph -> ( N - 1 ) < N ) | 
						
							| 160 | 130 | zred |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 161 | 160 158 | ltnled |  |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) | 
						
							| 162 | 159 161 | mpbid |  |-  ( ph -> -. N <_ ( N - 1 ) ) | 
						
							| 163 |  | elfzle2 |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 164 | 162 163 | nsyl |  |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 165 |  | disjsn |  |-  ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 166 | 164 165 | sylibr |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) | 
						
							| 167 |  | 1re |  |-  1 e. RR | 
						
							| 168 | 167 | ltp1i |  |-  1 < ( 1 + 1 ) | 
						
							| 169 | 117 | zrei |  |-  ( 1 + 1 ) e. RR | 
						
							| 170 | 167 169 | ltnlei |  |-  ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 ) | 
						
							| 171 | 168 170 | mpbi |  |-  -. ( 1 + 1 ) <_ 1 | 
						
							| 172 |  | elfzle1 |  |-  ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 ) | 
						
							| 173 | 171 172 | mto |  |-  -. 1 e. ( ( 1 + 1 ) ... N ) | 
						
							| 174 |  | disjsn |  |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 175 | 173 174 | mpbir |  |-  ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) | 
						
							| 176 |  | f1oun |  |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 177 | 175 176 | mpanr1 |  |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 178 | 155 157 166 177 | syl21anc |  |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 179 |  | eleq1 |  |-  ( n = 1 -> ( n e. ( ( 1 + 1 ) ... N ) <-> 1 e. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 180 | 173 179 | mtbiri |  |-  ( n = 1 -> -. n e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 181 | 180 | necon2ai |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> n =/= 1 ) | 
						
							| 182 |  | ifnefalse |  |-  ( n =/= 1 -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) ) | 
						
							| 183 | 181 182 | syl |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) ) | 
						
							| 184 | 183 | mpteq2ia |  |-  ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) | 
						
							| 185 | 184 | uneq1i |  |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) | 
						
							| 186 | 34 | a1i |  |-  ( ph -> 1 e. _V ) | 
						
							| 187 | 1 66 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 188 |  | fzpred |  |-  ( N e. ( ZZ>= ` 1 ) -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 189 | 187 188 | syl |  |-  ( ph -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 190 |  | uncom |  |-  ( { 1 } u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) | 
						
							| 191 | 189 190 | eqtr2di |  |-  ( ph -> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) = ( 1 ... N ) ) | 
						
							| 192 |  | iftrue |  |-  ( n = 1 -> if ( n = 1 , N , ( n - 1 ) ) = N ) | 
						
							| 193 | 192 | adantl |  |-  ( ( ph /\ n = 1 ) -> if ( n = 1 , N , ( n - 1 ) ) = N ) | 
						
							| 194 | 186 1 191 193 | fmptapd |  |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 195 | 185 194 | eqtr3id |  |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 196 | 71 187 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 197 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 198 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 199 | 130 197 198 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 200 | 71 199 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 201 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 202 | 196 200 201 | syl2anc |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 203 | 71 | oveq1d |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) | 
						
							| 204 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 205 | 114 204 | syl |  |-  ( ph -> ( N ... N ) = { N } ) | 
						
							| 206 | 203 205 | eqtrd |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) | 
						
							| 207 | 206 | uneq2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 208 | 202 207 | eqtr2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) | 
						
							| 209 | 195 191 208 | f1oeq123d |  |-  ( ph -> ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 210 | 178 209 | mpbid |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 211 |  | f1oco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 212 | 46 210 211 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 213 |  | dff1o3 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) ) ) | 
						
							| 214 | 213 | simprbi |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) ) | 
						
							| 215 |  | imain |  |-  ( Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 216 | 212 214 215 | 3syl |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 217 | 65 | nnred |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR ) | 
						
							| 218 | 217 | ltp1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) < ( ( y + 1 ) + 1 ) ) | 
						
							| 219 |  | fzdisj |  |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 220 | 218 219 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) ) | 
						
							| 221 | 220 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " (/) ) ) | 
						
							| 222 |  | ima0 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " (/) ) = (/) | 
						
							| 223 | 221 222 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 224 | 216 223 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) | 
						
							| 225 |  | fun |  |-  ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 226 | 112 224 225 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 227 |  | imaundi |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 228 | 65 | peano2nnd |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. NN ) | 
						
							| 229 | 228 66 | eleqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 230 | 229 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 231 |  | eluzp1p1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 232 | 73 231 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 233 | 232 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 234 | 72 233 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 235 |  | fzsplit2 |  |-  ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 236 | 230 234 235 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 237 | 236 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) ) | 
						
							| 238 |  | f1ofo |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 239 |  | foima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 240 | 212 238 239 | 3syl |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 241 | 240 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 242 | 237 241 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 243 | 227 242 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 244 | 243 | feq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) ) | 
						
							| 245 | 226 244 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) | 
						
							| 246 | 245 | ffvelcdmda |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. ( { 1 } u. { 0 } ) ) | 
						
							| 247 | 109 246 | sselid |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. CC ) | 
						
							| 248 | 100 104 247 | subadd23d |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) ) | 
						
							| 249 |  | oveq2 |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) | 
						
							| 250 | 249 | eqeq1d |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) <-> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 251 |  | oveq2 |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) | 
						
							| 252 | 251 | eqeq1d |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) <-> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 253 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 254 |  | f1ofn |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 255 | 46 254 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 256 | 255 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 257 |  | imassrn |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ran ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) | 
						
							| 258 |  | f1of |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 259 | 210 258 | syl |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 260 | 259 | frnd |  |-  ( ph -> ran ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) C_ ( 1 ... N ) ) | 
						
							| 261 | 257 260 | sstrid |  |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ( 1 ... N ) ) | 
						
							| 262 | 261 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ( 1 ... N ) ) | 
						
							| 263 |  | eqidd |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 264 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 265 | 187 264 | syl |  |-  ( ph -> 1 e. ( 1 ... N ) ) | 
						
							| 266 | 263 193 265 1 | fvmptd |  |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) = N ) | 
						
							| 267 | 266 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) = N ) | 
						
							| 268 |  | f1ofn |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) ) | 
						
							| 269 | 210 268 | syl |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) ) | 
						
							| 270 | 269 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) ) | 
						
							| 271 |  | fzss2 |  |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 272 | 234 271 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 273 |  | eluzfz1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 274 | 67 273 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 275 | 274 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( 1 ... ( y + 1 ) ) ) | 
						
							| 276 |  | fnfvima |  |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) /\ ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) /\ 1 e. ( 1 ... ( y + 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 277 | 270 272 275 276 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 278 | 267 277 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 279 |  | fnfvima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ( 1 ... N ) /\ N e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) ) | 
						
							| 280 | 256 262 278 279 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) ) | 
						
							| 281 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 282 | 280 281 | eleqtrrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 283 |  | fnconstg |  |-  ( 1 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 284 | 34 283 | ax-mp |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) | 
						
							| 285 |  | fnconstg |  |-  ( 0 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 286 | 37 285 | ax-mp |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 287 |  | fvun1 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) /\ ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 288 | 284 286 287 | mp3an12 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 289 | 224 282 288 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 290 | 34 | fvconst2 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 1 ) | 
						
							| 291 | 282 290 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 1 ) | 
						
							| 292 | 289 291 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 1 ) | 
						
							| 293 | 292 | oveq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 294 |  | fzss1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 295 | 67 294 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 296 | 295 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 297 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> N e. ( ( y + 1 ) ... N ) ) | 
						
							| 298 | 234 297 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( y + 1 ) ... N ) ) | 
						
							| 299 |  | fnfvima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( y + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( y + 1 ) ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 300 | 256 296 298 299 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 301 |  | fvun2 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 302 | 36 39 301 | mp3an12 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 303 | 60 300 302 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 304 | 37 | fvconst2 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 ) | 
						
							| 305 | 300 304 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 ) | 
						
							| 306 | 303 305 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 ) | 
						
							| 307 | 253 293 306 | 3eqtr4a |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 308 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 309 | 308 | oveq1d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) ) | 
						
							| 310 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 311 | 309 310 | eqeq12d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) <-> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) ) | 
						
							| 312 | 307 311 | syl5ibrcom |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 313 | 312 | imp |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 314 | 313 | adantlr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 315 | 247 | subid1d |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 316 | 315 | adantr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 317 |  | eldifsn |  |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) <-> ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 318 |  | df-ne |  |-  ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` N ) <-> -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) | 
						
							| 319 | 318 | anbi2i |  |-  ( ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` N ) ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 320 | 317 319 | bitri |  |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 321 |  | fnconstg |  |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 322 | 37 321 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 323 | 36 322 | pm3.2i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 324 |  | imain |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 325 | 49 324 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 326 |  | fzdisj |  |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) = (/) ) | 
						
							| 327 | 54 326 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) = (/) ) | 
						
							| 328 | 327 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) | 
						
							| 329 | 328 58 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = (/) ) | 
						
							| 330 | 325 329 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = (/) ) | 
						
							| 331 |  | fnun |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 332 | 323 330 331 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 333 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 334 | 202 207 | eqtrd |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 335 | 334 | difeq1d |  |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) ) | 
						
							| 336 |  | difun2 |  |-  ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... ( N - 1 ) ) \ { N } ) | 
						
							| 337 | 335 336 | eqtrdi |  |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( ( 1 ... ( N - 1 ) ) \ { N } ) ) | 
						
							| 338 |  | difsn |  |-  ( -. N e. ( 1 ... ( N - 1 ) ) -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 339 | 164 338 | syl |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 340 | 337 339 | eqtrd |  |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 341 | 340 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) ) | 
						
							| 342 | 73 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 343 |  | fzsplit2 |  |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ ( N - 1 ) e. ( ZZ>= ` y ) ) -> ( 1 ... ( N - 1 ) ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 344 | 68 342 343 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( N - 1 ) ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 345 | 341 344 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { N } ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 346 | 345 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) ) | 
						
							| 347 |  | imadif |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) ) | 
						
							| 348 | 49 347 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) ) | 
						
							| 349 |  | elfz1end |  |-  ( N e. NN <-> N e. ( 1 ... N ) ) | 
						
							| 350 | 1 349 | sylib |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 351 |  | fnsnfv |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) | 
						
							| 352 | 255 350 351 | syl2anc |  |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) | 
						
							| 353 | 352 | eqcomd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { N } ) = { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) | 
						
							| 354 | 83 353 | difeq12d |  |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 355 | 348 354 | eqtrd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 356 | 355 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 357 | 346 356 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 358 | 333 357 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 359 | 358 | fneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) | 
						
							| 360 | 332 359 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 361 |  | disjdifr |  |-  ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) | 
						
							| 362 |  | fnconstg |  |-  ( 1 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) | 
						
							| 363 | 34 362 | ax-mp |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } | 
						
							| 364 |  | fvun1 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 365 | 363 364 | mp3an2 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 366 |  | fnconstg |  |-  ( 0 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) | 
						
							| 367 | 37 366 | ax-mp |  |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } | 
						
							| 368 |  | fvun1 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 369 | 367 368 | mp3an2 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 370 | 365 369 | eqtr4d |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) ) | 
						
							| 371 | 361 370 | mpanr1 |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) ) | 
						
							| 372 | 360 371 | sylan |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) ) | 
						
							| 373 | 320 372 | sylan2br |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) ) | 
						
							| 374 | 373 | anassrs |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) ) | 
						
							| 375 |  | imaundi |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " { 1 } ) ) | 
						
							| 376 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 377 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " { 1 } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) | 
						
							| 378 | 376 377 | uneq12i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) ) | 
						
							| 379 | 375 378 | eqtri |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) ) | 
						
							| 380 |  | fzpred |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 381 | 67 380 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 382 |  | uncom |  |-  ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) | 
						
							| 383 | 381 382 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... ( y + 1 ) ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) | 
						
							| 384 | 383 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) ) | 
						
							| 385 | 384 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) ) | 
						
							| 386 |  | elfzelz |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ ) | 
						
							| 387 | 124 | a1i |  |-  ( y e. ZZ -> ( ( 1 + 1 ) - 1 ) = 1 ) | 
						
							| 388 |  | zcn |  |-  ( y e. ZZ -> y e. CC ) | 
						
							| 389 |  | pncan1 |  |-  ( y e. CC -> ( ( y + 1 ) - 1 ) = y ) | 
						
							| 390 | 388 389 | syl |  |-  ( y e. ZZ -> ( ( y + 1 ) - 1 ) = y ) | 
						
							| 391 | 387 390 | oveq12d |  |-  ( y e. ZZ -> ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) = ( 1 ... y ) ) | 
						
							| 392 |  | elfzelz |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> j e. ZZ ) | 
						
							| 393 | 392 | zcnd |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> j e. CC ) | 
						
							| 394 |  | pncan1 |  |-  ( j e. CC -> ( ( j + 1 ) - 1 ) = j ) | 
						
							| 395 | 393 394 | syl |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( j + 1 ) - 1 ) = j ) | 
						
							| 396 | 395 | eleq1d |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 397 | 396 | ibir |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) | 
						
							| 398 | 397 | adantl |  |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) | 
						
							| 399 |  | peano2z |  |-  ( y e. ZZ -> ( y + 1 ) e. ZZ ) | 
						
							| 400 | 399 117 | jctil |  |-  ( y e. ZZ -> ( ( 1 + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ ) ) | 
						
							| 401 | 392 | peano2zd |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( j + 1 ) e. ZZ ) | 
						
							| 402 | 401 115 | jctir |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 403 |  | fzsubel |  |-  ( ( ( ( 1 + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ ) /\ ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 404 | 400 402 403 | syl2an |  |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> ( ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 405 | 398 404 | mpbird |  |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 406 | 395 | eqcomd |  |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> j = ( ( j + 1 ) - 1 ) ) | 
						
							| 407 | 406 | adantl |  |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> j = ( ( j + 1 ) - 1 ) ) | 
						
							| 408 |  | oveq1 |  |-  ( n = ( j + 1 ) -> ( n - 1 ) = ( ( j + 1 ) - 1 ) ) | 
						
							| 409 | 408 | rspceeqv |  |-  ( ( ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) /\ j = ( ( j + 1 ) - 1 ) ) -> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) | 
						
							| 410 | 405 407 409 | syl2anc |  |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) | 
						
							| 411 | 410 | ex |  |-  ( y e. ZZ -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) ) | 
						
							| 412 |  | simpr |  |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 413 |  | elfzelz |  |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> n e. ZZ ) | 
						
							| 414 | 413 115 | jctir |  |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 415 |  | fzsubel |  |-  ( ( ( ( 1 + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 416 | 400 414 415 | syl2an |  |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 417 | 412 416 | mpbid |  |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) | 
						
							| 418 |  | eleq1 |  |-  ( j = ( n - 1 ) -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 419 | 417 418 | syl5ibrcom |  |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( j = ( n - 1 ) -> j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 420 | 419 | rexlimdva |  |-  ( y e. ZZ -> ( E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) -> j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) ) | 
						
							| 421 | 411 420 | impbid |  |-  ( y e. ZZ -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) ) | 
						
							| 422 |  | eqid |  |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) | 
						
							| 423 | 422 | elrnmpt |  |-  ( j e. _V -> ( j e. ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) <-> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) ) | 
						
							| 424 | 423 | elv |  |-  ( j e. ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) <-> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) | 
						
							| 425 | 421 424 | bitr4di |  |-  ( y e. ZZ -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> j e. ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) ) | 
						
							| 426 | 425 | eqrdv |  |-  ( y e. ZZ -> ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) | 
						
							| 427 | 391 426 | eqtr3d |  |-  ( y e. ZZ -> ( 1 ... y ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) | 
						
							| 428 | 386 427 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... y ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) | 
						
							| 429 | 428 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) | 
						
							| 430 |  | df-ima |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 431 |  | uzid |  |-  ( 1 e. ZZ -> 1 e. ( ZZ>= ` 1 ) ) | 
						
							| 432 |  | peano2uz |  |-  ( 1 e. ( ZZ>= ` 1 ) -> ( 1 + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 433 | 115 431 432 | mp2b |  |-  ( 1 + 1 ) e. ( ZZ>= ` 1 ) | 
						
							| 434 |  | fzss1 |  |-  ( ( 1 + 1 ) e. ( ZZ>= ` 1 ) -> ( ( 1 + 1 ) ... ( y + 1 ) ) C_ ( 1 ... ( y + 1 ) ) ) | 
						
							| 435 | 433 434 | ax-mp |  |-  ( ( 1 + 1 ) ... ( y + 1 ) ) C_ ( 1 ... ( y + 1 ) ) | 
						
							| 436 | 435 272 | sstrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( y + 1 ) ) C_ ( 1 ... N ) ) | 
						
							| 437 | 436 | resmptd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 438 |  | elfzle1 |  |-  ( 1 e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( 1 + 1 ) <_ 1 ) | 
						
							| 439 | 171 438 | mto |  |-  -. 1 e. ( ( 1 + 1 ) ... ( y + 1 ) ) | 
						
							| 440 |  | eleq1 |  |-  ( n = 1 -> ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> 1 e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 441 | 439 440 | mtbiri |  |-  ( n = 1 -> -. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) | 
						
							| 442 | 441 | necon2ai |  |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> n =/= 1 ) | 
						
							| 443 | 442 182 | syl |  |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) ) | 
						
							| 444 | 443 | mpteq2ia |  |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) | 
						
							| 445 | 437 444 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) | 
						
							| 446 | 445 | rneqd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) | 
						
							| 447 | 430 446 | eqtrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) | 
						
							| 448 | 429 447 | eqtr4d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) | 
						
							| 449 | 448 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) ) | 
						
							| 450 | 266 | sneqd |  |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) } = { N } ) | 
						
							| 451 |  | fnsnfv |  |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) /\ 1 e. ( 1 ... N ) ) -> { ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) } = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) | 
						
							| 452 | 269 265 451 | syl2anc |  |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) } = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) | 
						
							| 453 | 450 452 | eqtr3d |  |-  ( ph -> { N } = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) | 
						
							| 454 | 453 | imaeq2d |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { N } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) ) | 
						
							| 455 | 352 454 | eqtrd |  |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) ) | 
						
							| 456 | 455 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) ) | 
						
							| 457 | 449 456 | uneq12d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) ) ) | 
						
							| 458 | 379 385 457 | 3eqtr4a |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 459 | 458 | xpeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 1 } ) ) | 
						
							| 460 |  | xpundir |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) | 
						
							| 461 | 459 460 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ) | 
						
							| 462 |  | imaco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 463 |  | df-ima |  |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 464 |  | fzss1 |  |-  ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 465 | 230 464 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 466 | 465 | resmptd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 467 |  | 1red |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. RR ) | 
						
							| 468 | 65 | nnzd |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ZZ ) | 
						
							| 469 | 468 | peano2zd |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ZZ ) | 
						
							| 470 | 469 | zred |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. RR ) | 
						
							| 471 | 65 | nnge1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 <_ ( y + 1 ) ) | 
						
							| 472 | 467 217 470 471 218 | lelttrd |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 < ( ( y + 1 ) + 1 ) ) | 
						
							| 473 | 467 470 | ltnled |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ 1 ) ) | 
						
							| 474 | 472 473 | mpbid |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> -. ( ( y + 1 ) + 1 ) <_ 1 ) | 
						
							| 475 |  | elfzle1 |  |-  ( 1 e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ 1 ) | 
						
							| 476 | 474 475 | nsyl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> -. 1 e. ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 477 |  | eleq1 |  |-  ( n = 1 -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> 1 e. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 478 | 477 | notbid |  |-  ( n = 1 -> ( -. n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> -. 1 e. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 479 | 476 478 | syl5ibrcom |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( n = 1 -> -. n e. ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 480 | 479 | necon2ad |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) -> n =/= 1 ) ) | 
						
							| 481 | 480 | imp |  |-  ( ( y e. ( 0 ... ( N - 1 ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> n =/= 1 ) | 
						
							| 482 | 481 182 | syl |  |-  ( ( y e. ( 0 ... ( N - 1 ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) ) | 
						
							| 483 | 482 | mpteq2dva |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) ) | 
						
							| 484 | 483 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) ) | 
						
							| 485 | 466 484 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) ) | 
						
							| 486 | 485 | rneqd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) ) = ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) ) | 
						
							| 487 | 463 486 | eqtrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) ) | 
						
							| 488 |  | eqid |  |-  ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) | 
						
							| 489 | 488 | elrnmpt |  |-  ( j e. _V -> ( j e. ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) <-> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) ) ) | 
						
							| 490 | 489 | elv |  |-  ( j e. ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) <-> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) ) | 
						
							| 491 |  | simpr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> n e. ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 492 | 114 469 | anim12ci |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 493 |  | elfzelz |  |-  ( n e. ( ( ( y + 1 ) + 1 ) ... N ) -> n e. ZZ ) | 
						
							| 494 | 493 115 | jctir |  |-  ( n e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 495 |  | fzsubel |  |-  ( ( ( ( ( y + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 496 | 492 494 495 | syl2an |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 497 | 491 496 | mpbid |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 498 |  | eleq1 |  |-  ( j = ( n - 1 ) -> ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) <-> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 499 | 497 498 | syl5ibrcom |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> ( j = ( n - 1 ) -> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 500 | 499 | rexlimdva |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) -> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 501 |  | elfzelz |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> j e. ZZ ) | 
						
							| 502 | 501 | zcnd |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> j e. CC ) | 
						
							| 503 | 502 394 | syl |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( j + 1 ) - 1 ) = j ) | 
						
							| 504 | 503 | eleq1d |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) <-> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 505 | 504 | ibir |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 506 | 505 | adantl |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 507 | 501 | peano2zd |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( j + 1 ) e. ZZ ) | 
						
							| 508 | 507 115 | jctir |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 509 |  | fzsubel |  |-  ( ( ( ( ( y + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) /\ ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 510 | 492 508 509 | syl2an |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> ( ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 511 | 506 510 | mpbird |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 512 | 503 | eqcomd |  |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> j = ( ( j + 1 ) - 1 ) ) | 
						
							| 513 | 512 | adantl |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> j = ( ( j + 1 ) - 1 ) ) | 
						
							| 514 | 408 | rspceeqv |  |-  ( ( ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) /\ j = ( ( j + 1 ) - 1 ) ) -> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) ) | 
						
							| 515 | 511 513 514 | syl2anc |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) ) | 
						
							| 516 | 515 | ex |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) ) ) | 
						
							| 517 | 500 516 | impbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) <-> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 518 | 490 517 | bitrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) <-> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 519 | 518 | eqrdv |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) = ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 520 | 65 | nncnd |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. CC ) | 
						
							| 521 |  | pncan1 |  |-  ( ( y + 1 ) e. CC -> ( ( ( y + 1 ) + 1 ) - 1 ) = ( y + 1 ) ) | 
						
							| 522 | 520 521 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( y + 1 ) + 1 ) - 1 ) = ( y + 1 ) ) | 
						
							| 523 | 522 | oveq1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) = ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 524 | 523 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) = ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 525 | 487 519 524 | 3eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( y + 1 ) ... ( N - 1 ) ) ) | 
						
							| 526 | 525 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 527 | 462 526 | eqtrid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 528 | 527 | xpeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) | 
						
							| 529 | 461 528 | uneq12d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ) | 
						
							| 530 |  | un23 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) | 
						
							| 531 | 529 530 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ) | 
						
							| 532 | 531 | fveq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) ) | 
						
							| 533 | 532 | ad2antrr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) ) | 
						
							| 534 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) | 
						
							| 535 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 536 | 232 200 535 | syl2anr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 537 | 206 | uneq2d |  |-  ( ph -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 538 | 537 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 539 | 536 538 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 540 | 539 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) ) | 
						
							| 541 | 352 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) | 
						
							| 542 | 541 | uneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) ) | 
						
							| 543 | 534 540 542 | 3eqtr4a |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) | 
						
							| 544 | 543 | xpeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 0 } ) ) | 
						
							| 545 |  | xpundir |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) | 
						
							| 546 | 544 545 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ) | 
						
							| 547 | 546 | uneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ) ) | 
						
							| 548 |  | unass |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ) | 
						
							| 549 | 547 548 | eqtr4di |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ) | 
						
							| 550 | 549 | fveq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) ) | 
						
							| 551 | 550 | ad2antrr |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) ) | 
						
							| 552 | 374 533 551 | 3eqtr4d |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 553 | 316 552 | eqtrd |  |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 554 | 250 252 314 553 | ifbothda |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) | 
						
							| 555 | 554 | oveq2d |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 556 | 248 555 | eqtr2d |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 557 | 556 | mpteq2dva |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 558 | 93 557 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 559 | 53 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) | 
						
							| 560 | 160 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) | 
						
							| 561 | 158 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR ) | 
						
							| 562 |  | elfzle2 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) ) | 
						
							| 563 | 562 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) ) | 
						
							| 564 | 159 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) | 
						
							| 565 | 559 560 561 563 564 | lelttrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) | 
						
							| 566 | 6 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = N ) | 
						
							| 567 | 565 566 | breqtrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < ( 2nd ` T ) ) | 
						
							| 568 | 567 | iftrued |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = y ) | 
						
							| 569 | 568 | csbeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 570 |  | vex |  |-  y e. _V | 
						
							| 571 |  | oveq2 |  |-  ( j = y -> ( 1 ... j ) = ( 1 ... y ) ) | 
						
							| 572 | 571 | imaeq2d |  |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) | 
						
							| 573 | 572 | xpeq1d |  |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) ) | 
						
							| 574 |  | oveq1 |  |-  ( j = y -> ( j + 1 ) = ( y + 1 ) ) | 
						
							| 575 | 574 | oveq1d |  |-  ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) ) | 
						
							| 576 | 575 | imaeq2d |  |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 577 | 576 | xpeq1d |  |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 578 | 573 577 | uneq12d |  |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 579 | 578 | oveq2d |  |-  ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 580 | 570 579 | csbie |  |-  [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 581 | 569 580 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 582 |  | ovexd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. _V ) | 
						
							| 583 |  | fvexd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. _V ) | 
						
							| 584 |  | eqidd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) ) | 
						
							| 585 | 245 | ffnd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 586 |  | nfcv |  |-  F/_ n ( 2nd ` ( 1st ` T ) ) | 
						
							| 587 |  | nfmpt1 |  |-  F/_ n ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) | 
						
							| 588 | 586 587 | nfco |  |-  F/_ n ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 589 |  | nfcv |  |-  F/_ n ( 1 ... ( y + 1 ) ) | 
						
							| 590 | 588 589 | nfima |  |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) | 
						
							| 591 |  | nfcv |  |-  F/_ n { 1 } | 
						
							| 592 | 590 591 | nfxp |  |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) | 
						
							| 593 |  | nfcv |  |-  F/_ n ( ( ( y + 1 ) + 1 ) ... N ) | 
						
							| 594 | 588 593 | nfima |  |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 595 |  | nfcv |  |-  F/_ n { 0 } | 
						
							| 596 | 594 595 | nfxp |  |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) | 
						
							| 597 | 592 596 | nfun |  |-  F/_ n ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 598 | 597 | dffn5f |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 599 | 585 598 | sylib |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) | 
						
							| 600 | 89 582 583 584 599 | offval2 |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) ) | 
						
							| 601 | 558 581 600 | 3eqtr4rd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 602 | 601 | mpteq2dva |  |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 603 | 23 602 | eqtr4d |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |