Metamath Proof Explorer


Theorem poimirlem19

Description: Lemma for poimir establishing the vertices of the simplex in poimirlem20 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem22.s
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
poimirlem22.1
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
poimirlem22.2
|- ( ph -> T e. S )
poimirlem22.3
|- ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 )
poimirlem21.4
|- ( ph -> ( 2nd ` T ) = N )
Assertion poimirlem19
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem22.s
 |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
3 poimirlem22.1
 |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
4 poimirlem22.2
 |-  ( ph -> T e. S )
5 poimirlem22.3
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 )
6 poimirlem21.4
 |-  ( ph -> ( 2nd ` T ) = N )
7 fveq2
 |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) )
8 7 breq2d
 |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) )
9 8 ifbid
 |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) )
10 2fveq3
 |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
11 2fveq3
 |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) )
12 11 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) )
13 12 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) )
14 11 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) )
15 14 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
16 13 15 uneq12d
 |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
17 10 16 oveq12d
 |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
18 9 17 csbeq12dv
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
19 18 mpteq2dv
 |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
20 19 eqeq2d
 |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
21 20 2 elrab2
 |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
22 21 simprbi
 |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
23 4 22 syl
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
24 elrabi
 |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
25 24 2 eleq2s
 |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
26 4 25 syl
 |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
27 xp1st
 |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
28 26 27 syl
 |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
29 xp1st
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
30 28 29 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
31 elmapfn
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
32 30 31 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
33 32 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
34 1ex
 |-  1 e. _V
35 fnconstg
 |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) )
36 34 35 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) )
37 c0ex
 |-  0 e. _V
38 fnconstg
 |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
39 37 38 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) )
40 36 39 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
41 xp2nd
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
42 28 41 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
43 fvex
 |-  ( 2nd ` ( 1st ` T ) ) e. _V
44 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
45 43 44 elab
 |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
46 42 45 sylib
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
47 dff1o3
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) )
48 47 simprbi
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) )
49 46 48 syl
 |-  ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) )
50 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
51 49 50 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
52 elfznn0
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 )
53 52 nn0red
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR )
54 53 ltp1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) )
55 fzdisj
 |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) )
56 54 55 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) )
57 56 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
58 ima0
 |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/)
59 57 58 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = (/) )
60 51 59 sylan9req
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) )
61 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
62 40 60 61 sylancr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
63 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
64 nn0p1nn
 |-  ( y e. NN0 -> ( y + 1 ) e. NN )
65 52 64 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. NN )
66 nnuz
 |-  NN = ( ZZ>= ` 1 )
67 65 66 eleqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) )
68 67 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) )
69 1 nncnd
 |-  ( ph -> N e. CC )
70 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
71 69 70 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
72 71 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N )
73 elfzuz3
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) )
74 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
75 73 74 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
76 75 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
77 72 76 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) )
78 fzsplit2
 |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` y ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) )
79 68 77 78 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) )
80 79 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) )
81 f1ofo
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
82 foima
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
83 46 81 82 3syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
84 83 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
85 80 84 eqtr3d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) )
86 63 85 eqtr3id
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) )
87 86 fneq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
88 62 87 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
89 ovexd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V )
90 inidm
 |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N )
91 eqidd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` n ) )
92 eqidd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
93 33 88 89 89 90 91 92 offval
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
94 elmapi
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
95 30 94 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
96 95 ffvelrnda
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) )
97 elfzonn0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 )
98 96 97 syl
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 )
99 98 nn0cnd
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC )
100 99 adantlr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC )
101 ax-1cn
 |-  1 e. CC
102 0cn
 |-  0 e. CC
103 101 102 ifcli
 |-  if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) e. CC
104 103 a1i
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) e. CC )
105 snssi
 |-  ( 1 e. CC -> { 1 } C_ CC )
106 101 105 ax-mp
 |-  { 1 } C_ CC
107 snssi
 |-  ( 0 e. CC -> { 0 } C_ CC )
108 102 107 ax-mp
 |-  { 0 } C_ CC
109 106 108 unssi
 |-  ( { 1 } u. { 0 } ) C_ CC
110 34 fconst
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) --> { 1 }
111 37 fconst
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) --> { 0 }
112 110 111 pm3.2i
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) --> { 0 } )
113 simpr
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> n e. ( ( 1 + 1 ) ... N ) )
114 1 nnzd
 |-  ( ph -> N e. ZZ )
115 1z
 |-  1 e. ZZ
116 peano2z
 |-  ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ )
117 115 116 ax-mp
 |-  ( 1 + 1 ) e. ZZ
118 114 117 jctil
 |-  ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) )
119 elfzelz
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. ZZ )
120 119 115 jctir
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> ( n e. ZZ /\ 1 e. ZZ ) )
121 fzsubel
 |-  ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) )
122 118 120 121 syl2an
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) )
123 113 122 mpbid
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) )
124 101 101 pncan3oi
 |-  ( ( 1 + 1 ) - 1 ) = 1
125 124 oveq1i
 |-  ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) )
126 123 125 eleqtrdi
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( 1 ... ( N - 1 ) ) )
127 126 ralrimiva
 |-  ( ph -> A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) )
128 simpr
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> y e. ( 1 ... ( N - 1 ) ) )
129 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
130 114 129 syl
 |-  ( ph -> ( N - 1 ) e. ZZ )
131 130 115 jctil
 |-  ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) )
132 elfzelz
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. ZZ )
133 132 115 jctir
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> ( y e. ZZ /\ 1 e. ZZ ) )
134 fzaddel
 |-  ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
135 131 133 134 syl2an
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
136 128 135 mpbid
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) )
137 71 oveq2d
 |-  ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) )
138 137 adantr
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) )
139 136 138 eleqtrd
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... N ) )
140 119 zcnd
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. CC )
141 132 zcnd
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. CC )
142 subadd2
 |-  ( ( n e. CC /\ 1 e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) )
143 101 142 mp3an2
 |-  ( ( n e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) )
144 eqcom
 |-  ( y = ( n - 1 ) <-> ( n - 1 ) = y )
145 eqcom
 |-  ( n = ( y + 1 ) <-> ( y + 1 ) = n )
146 143 144 145 3bitr4g
 |-  ( ( n e. CC /\ y e. CC ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
147 140 141 146 syl2anr
 |-  ( ( y e. ( 1 ... ( N - 1 ) ) /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
148 147 ralrimiva
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
149 148 adantl
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
150 reu6i
 |-  ( ( ( y + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) )
151 139 149 150 syl2anc
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) )
152 151 ralrimiva
 |-  ( ph -> A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) )
153 eqid
 |-  ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) )
154 153 f1ompt
 |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) <-> ( A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) )
155 127 152 154 sylanbrc
 |-  ( ph -> ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) )
156 f1osng
 |-  ( ( 1 e. _V /\ N e. NN ) -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } )
157 34 1 156 sylancr
 |-  ( ph -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } )
158 1 nnred
 |-  ( ph -> N e. RR )
159 158 ltm1d
 |-  ( ph -> ( N - 1 ) < N )
160 130 zred
 |-  ( ph -> ( N - 1 ) e. RR )
161 160 158 ltnled
 |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) )
162 159 161 mpbid
 |-  ( ph -> -. N <_ ( N - 1 ) )
163 elfzle2
 |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) )
164 162 163 nsyl
 |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) )
165 disjsn
 |-  ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) )
166 164 165 sylibr
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) )
167 1re
 |-  1 e. RR
168 167 ltp1i
 |-  1 < ( 1 + 1 )
169 117 zrei
 |-  ( 1 + 1 ) e. RR
170 167 169 ltnlei
 |-  ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 )
171 168 170 mpbi
 |-  -. ( 1 + 1 ) <_ 1
172 elfzle1
 |-  ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 )
173 171 172 mto
 |-  -. 1 e. ( ( 1 + 1 ) ... N )
174 disjsn
 |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) )
175 173 174 mpbir
 |-  ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/)
176 f1oun
 |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) )
177 175 176 mpanr1
 |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) )
178 155 157 166 177 syl21anc
 |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) )
179 eleq1
 |-  ( n = 1 -> ( n e. ( ( 1 + 1 ) ... N ) <-> 1 e. ( ( 1 + 1 ) ... N ) ) )
180 173 179 mtbiri
 |-  ( n = 1 -> -. n e. ( ( 1 + 1 ) ... N ) )
181 180 necon2ai
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> n =/= 1 )
182 ifnefalse
 |-  ( n =/= 1 -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) )
183 181 182 syl
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) )
184 183 mpteq2ia
 |-  ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) )
185 184 uneq1i
 |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } )
186 34 a1i
 |-  ( ph -> 1 e. _V )
187 1 66 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 1 ) )
188 fzpred
 |-  ( N e. ( ZZ>= ` 1 ) -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) )
189 187 188 syl
 |-  ( ph -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) )
190 uncom
 |-  ( { 1 } u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } )
191 189 190 eqtr2di
 |-  ( ph -> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) = ( 1 ... N ) )
192 iftrue
 |-  ( n = 1 -> if ( n = 1 , N , ( n - 1 ) ) = N )
193 192 adantl
 |-  ( ( ph /\ n = 1 ) -> if ( n = 1 , N , ( n - 1 ) ) = N )
194 186 1 191 193 fmptapd
 |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
195 185 194 eqtr3id
 |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
196 71 187 eqeltrd
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
197 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
198 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
199 130 197 198 3syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
200 71 199 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
201 fzsplit2
 |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
202 196 200 201 syl2anc
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
203 71 oveq1d
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) )
204 fzsn
 |-  ( N e. ZZ -> ( N ... N ) = { N } )
205 114 204 syl
 |-  ( ph -> ( N ... N ) = { N } )
206 203 205 eqtrd
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } )
207 206 uneq2d
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) )
208 202 207 eqtr2d
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) )
209 195 191 208 f1oeq123d
 |-  ( ph -> ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
210 178 209 mpbid
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
211 f1oco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
212 46 210 211 syl2anc
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
213 dff1o3
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) ) )
214 213 simprbi
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) )
215 imain
 |-  ( Fun `' ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
216 212 214 215 3syl
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
217 65 nnred
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. RR )
218 217 ltp1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) < ( ( y + 1 ) + 1 ) )
219 fzdisj
 |-  ( ( y + 1 ) < ( ( y + 1 ) + 1 ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
220 218 219 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) = (/) )
221 220 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " (/) ) )
222 ima0
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " (/) ) = (/)
223 221 222 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) i^i ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) )
224 216 223 sylan9req
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) )
225 fun
 |-  ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) --> { 1 } /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) : ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) --> { 0 } ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) )
226 112 224 225 sylancr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) )
227 imaundi
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
228 65 peano2nnd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. NN )
229 228 66 eleqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
230 229 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
231 eluzp1p1
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
232 73 231 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
233 232 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
234 72 233 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) )
235 fzsplit2
 |-  ( ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( y + 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
236 230 234 235 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) )
237 236 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) )
238 f1ofo
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
239 foima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
240 212 238 239 3syl
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
241 240 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
242 237 241 eqtr3d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 ... ( y + 1 ) ) u. ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) )
243 227 242 eqtr3id
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( 1 ... N ) )
244 243 feq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) --> ( { 1 } u. { 0 } ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) ) )
245 226 244 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) : ( 1 ... N ) --> ( { 1 } u. { 0 } ) )
246 245 ffvelrnda
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. ( { 1 } u. { 0 } ) )
247 109 246 sselid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. CC )
248 100 104 247 subadd23d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) )
249 oveq2
 |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) )
250 249 eqeq1d
 |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) <-> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
251 oveq2
 |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) )
252 251 eqeq1d
 |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) <-> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
253 1m1e0
 |-  ( 1 - 1 ) = 0
254 f1ofn
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
255 46 254 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
256 255 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
257 imassrn
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ran ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) )
258 f1of
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) )
259 210 258 syl
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) --> ( 1 ... N ) )
260 259 frnd
 |-  ( ph -> ran ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) C_ ( 1 ... N ) )
261 257 260 sstrid
 |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ( 1 ... N ) )
262 261 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ( 1 ... N ) )
263 eqidd
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
264 eluzfz1
 |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) )
265 187 264 syl
 |-  ( ph -> 1 e. ( 1 ... N ) )
266 263 193 265 1 fvmptd
 |-  ( ph -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) = N )
267 266 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) = N )
268 f1ofn
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) )
269 210 268 syl
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) )
270 269 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) )
271 fzss2
 |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) )
272 234 271 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) )
273 eluzfz1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... ( y + 1 ) ) )
274 67 273 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. ( 1 ... ( y + 1 ) ) )
275 274 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> 1 e. ( 1 ... ( y + 1 ) ) )
276 fnfvima
 |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) /\ ( 1 ... ( y + 1 ) ) C_ ( 1 ... N ) /\ 1 e. ( 1 ... ( y + 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) )
277 270 272 275 276 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) )
278 267 277 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) )
279 fnfvima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) C_ ( 1 ... N ) /\ N e. ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) )
280 256 262 278 279 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) ) )
281 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( 1 ... ( y + 1 ) ) ) )
282 280 281 eleqtrrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) )
283 fnconstg
 |-  ( 1 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) )
284 34 283 ax-mp
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) )
285 fnconstg
 |-  ( 0 e. _V -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
286 37 285 ax-mp
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) )
287 fvun1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) Fn ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) /\ ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
288 284 286 287 mp3an12
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) i^i ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
289 224 282 288 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
290 34 fvconst2
 |-  ( ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 1 )
291 282 290 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 1 )
292 289 291 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 1 )
293 292 oveq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) = ( 1 - 1 ) )
294 fzss1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
295 67 294 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
296 295 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
297 eluzfz2
 |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> N e. ( ( y + 1 ) ... N ) )
298 234 297 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( y + 1 ) ... N ) )
299 fnfvima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( y + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( y + 1 ) ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
300 256 296 298 299 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
301 fvun2
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
302 36 39 301 mp3an12
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
303 60 300 302 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
304 37 fvconst2
 |-  ( ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 )
305 300 304 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 )
306 303 305 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 )
307 253 293 306 3eqtr4a
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
308 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
309 308 oveq1d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) )
310 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
311 309 310 eqeq12d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) <-> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) )
312 307 311 syl5ibrcom
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
313 312 imp
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
314 313 adantlr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 1 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
315 247 subid1d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
316 315 adantr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
317 eldifsn
 |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) <-> ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
318 df-ne
 |-  ( n =/= ( ( 2nd ` ( 1st ` T ) ) ` N ) <-> -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) )
319 318 anbi2i
 |-  ( ( n e. ( 1 ... N ) /\ n =/= ( ( 2nd ` ( 1st ` T ) ) ` N ) ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
320 317 319 bitri
 |-  ( n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) <-> ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
321 fnconstg
 |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
322 37 321 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) )
323 36 322 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
324 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
325 49 324 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
326 fzdisj
 |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) = (/) )
327 54 326 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) = (/) )
328 327 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
329 328 58 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... ( N - 1 ) ) ) ) = (/) )
330 325 329 sylan9req
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = (/) )
331 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
332 323 330 331 sylancr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
333 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
334 202 207 eqtrd
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) )
335 334 difeq1d
 |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) )
336 difun2
 |-  ( ( ( 1 ... ( N - 1 ) ) u. { N } ) \ { N } ) = ( ( 1 ... ( N - 1 ) ) \ { N } )
337 335 336 eqtrdi
 |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( ( 1 ... ( N - 1 ) ) \ { N } ) )
338 difsn
 |-  ( -. N e. ( 1 ... ( N - 1 ) ) -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) )
339 164 338 syl
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) \ { N } ) = ( 1 ... ( N - 1 ) ) )
340 337 339 eqtrd
 |-  ( ph -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) )
341 340 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { N } ) = ( 1 ... ( N - 1 ) ) )
342 73 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) )
343 fzsplit2
 |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ ( N - 1 ) e. ( ZZ>= ` y ) ) -> ( 1 ... ( N - 1 ) ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) )
344 68 342 343 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... ( N - 1 ) ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) )
345 341 344 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 ... N ) \ { N } ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) )
346 345 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) )
347 imadif
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) )
348 49 347 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) )
349 elfz1end
 |-  ( N e. NN <-> N e. ( 1 ... N ) )
350 1 349 sylib
 |-  ( ph -> N e. ( 1 ... N ) )
351 fnsnfv
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ N e. ( 1 ... N ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " { N } ) )
352 255 350 351 syl2anc
 |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " { N } ) )
353 352 eqcomd
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { N } ) = { ( ( 2nd ` ( 1st ` T ) ) ` N ) } )
354 83 353 difeq12d
 |-  ( ph -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) \ ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
355 348 354 eqtrd
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
356 355 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... N ) \ { N } ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
357 346 356 eqtr3d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
358 333 357 eqtr3id
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) = ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
359 358 fneq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) )
360 332 359 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
361 disjdifr
 |-  ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/)
362 fnconstg
 |-  ( 1 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } )
363 34 362 ax-mp
 |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) }
364 fvun1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) )
365 363 364 mp3an2
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) )
366 fnconstg
 |-  ( 0 e. _V -> ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } )
367 37 366 ax-mp
 |-  ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) }
368 fvun1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) Fn { ( ( 2nd ` ( 1st ` T ) ) ` N ) } /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) )
369 367 368 mp3an2
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) ` n ) )
370 365 369 eqtr4d
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ ( ( ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) i^i { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = (/) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) )
371 361 370 mpanr1
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) Fn ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) )
372 360 371 sylan
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( 1 ... N ) \ { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) )
373 320 372 sylan2br
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( n e. ( 1 ... N ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) )
374 373 anassrs
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) )
375 imaundi
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " { 1 } ) )
376 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
377 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " { 1 } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) )
378 376 377 uneq12i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) )
379 375 378 eqtri
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) )
380 fzpred
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
381 67 380 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... ( y + 1 ) ) = ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
382 uncom
 |-  ( { 1 } u. ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } )
383 381 382 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... ( y + 1 ) ) = ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) )
384 383 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) )
385 384 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( 1 + 1 ) ... ( y + 1 ) ) u. { 1 } ) ) )
386 elfzelz
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. ZZ )
387 124 a1i
 |-  ( y e. ZZ -> ( ( 1 + 1 ) - 1 ) = 1 )
388 zcn
 |-  ( y e. ZZ -> y e. CC )
389 pncan1
 |-  ( y e. CC -> ( ( y + 1 ) - 1 ) = y )
390 388 389 syl
 |-  ( y e. ZZ -> ( ( y + 1 ) - 1 ) = y )
391 387 390 oveq12d
 |-  ( y e. ZZ -> ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) = ( 1 ... y ) )
392 elfzelz
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> j e. ZZ )
393 392 zcnd
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> j e. CC )
394 pncan1
 |-  ( j e. CC -> ( ( j + 1 ) - 1 ) = j )
395 393 394 syl
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( j + 1 ) - 1 ) = j )
396 395 eleq1d
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
397 396 ibir
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) )
398 397 adantl
 |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) )
399 peano2z
 |-  ( y e. ZZ -> ( y + 1 ) e. ZZ )
400 399 117 jctil
 |-  ( y e. ZZ -> ( ( 1 + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ ) )
401 392 peano2zd
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( j + 1 ) e. ZZ )
402 401 115 jctir
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) )
403 fzsubel
 |-  ( ( ( ( 1 + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ ) /\ ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
404 400 402 403 syl2an
 |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> ( ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
405 398 404 mpbird
 |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) )
406 395 eqcomd
 |-  ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> j = ( ( j + 1 ) - 1 ) )
407 406 adantl
 |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> j = ( ( j + 1 ) - 1 ) )
408 oveq1
 |-  ( n = ( j + 1 ) -> ( n - 1 ) = ( ( j + 1 ) - 1 ) )
409 408 rspceeqv
 |-  ( ( ( j + 1 ) e. ( ( 1 + 1 ) ... ( y + 1 ) ) /\ j = ( ( j + 1 ) - 1 ) ) -> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) )
410 405 407 409 syl2anc
 |-  ( ( y e. ZZ /\ j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) -> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) )
411 410 ex
 |-  ( y e. ZZ -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) -> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) )
412 simpr
 |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> n e. ( ( 1 + 1 ) ... ( y + 1 ) ) )
413 elfzelz
 |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> n e. ZZ )
414 413 115 jctir
 |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( n e. ZZ /\ 1 e. ZZ ) )
415 fzsubel
 |-  ( ( ( ( 1 + 1 ) e. ZZ /\ ( y + 1 ) e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
416 400 414 415 syl2an
 |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
417 412 416 mpbid
 |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) )
418 eleq1
 |-  ( j = ( n - 1 ) -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
419 417 418 syl5ibrcom
 |-  ( ( y e. ZZ /\ n e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) -> ( j = ( n - 1 ) -> j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
420 419 rexlimdva
 |-  ( y e. ZZ -> ( E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) -> j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) ) )
421 411 420 impbid
 |-  ( y e. ZZ -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) )
422 eqid
 |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) )
423 422 elrnmpt
 |-  ( j e. _V -> ( j e. ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) <-> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) ) )
424 423 elv
 |-  ( j e. ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) <-> E. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) j = ( n - 1 ) )
425 421 424 bitr4di
 |-  ( y e. ZZ -> ( j e. ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) <-> j e. ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) ) )
426 425 eqrdv
 |-  ( y e. ZZ -> ( ( ( 1 + 1 ) - 1 ) ... ( ( y + 1 ) - 1 ) ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) )
427 391 426 eqtr3d
 |-  ( y e. ZZ -> ( 1 ... y ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) )
428 386 427 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 ... y ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) )
429 428 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) )
430 df-ima
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) )
431 uzid
 |-  ( 1 e. ZZ -> 1 e. ( ZZ>= ` 1 ) )
432 peano2uz
 |-  ( 1 e. ( ZZ>= ` 1 ) -> ( 1 + 1 ) e. ( ZZ>= ` 1 ) )
433 115 431 432 mp2b
 |-  ( 1 + 1 ) e. ( ZZ>= ` 1 )
434 fzss1
 |-  ( ( 1 + 1 ) e. ( ZZ>= ` 1 ) -> ( ( 1 + 1 ) ... ( y + 1 ) ) C_ ( 1 ... ( y + 1 ) ) )
435 433 434 ax-mp
 |-  ( ( 1 + 1 ) ... ( y + 1 ) ) C_ ( 1 ... ( y + 1 ) )
436 435 272 sstrid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( y + 1 ) ) C_ ( 1 ... N ) )
437 436 resmptd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
438 elfzle1
 |-  ( 1 e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> ( 1 + 1 ) <_ 1 )
439 171 438 mto
 |-  -. 1 e. ( ( 1 + 1 ) ... ( y + 1 ) )
440 eleq1
 |-  ( n = 1 -> ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) <-> 1 e. ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
441 439 440 mtbiri
 |-  ( n = 1 -> -. n e. ( ( 1 + 1 ) ... ( y + 1 ) ) )
442 441 necon2ai
 |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> n =/= 1 )
443 442 182 syl
 |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) )
444 443 mpteq2ia
 |-  ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) )
445 437 444 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) )
446 445 rneqd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) )
447 430 446 eqtrid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) = ran ( n e. ( ( 1 + 1 ) ... ( y + 1 ) ) |-> ( n - 1 ) ) )
448 429 447 eqtr4d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... y ) = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) )
449 448 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) )
450 266 sneqd
 |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) } = { N } )
451 fnsnfv
 |-  ( ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) Fn ( 1 ... N ) /\ 1 e. ( 1 ... N ) ) -> { ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) } = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) )
452 269 265 451 syl2anc
 |-  ( ph -> { ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ` 1 ) } = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) )
453 450 452 eqtr3d
 |-  ( ph -> { N } = ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) )
454 453 imaeq2d
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " { N } ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) )
455 352 454 eqtrd
 |-  ( ph -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) )
456 455 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) )
457 449 456 uneq12d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( 1 + 1 ) ... ( y + 1 ) ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " { 1 } ) ) ) )
458 379 385 457 3eqtr4a
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
459 458 xpeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 1 } ) )
460 xpundir
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) )
461 459 460 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) )
462 imaco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
463 df-ima
 |-  ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) )
464 fzss1
 |-  ( ( ( y + 1 ) + 1 ) e. ( ZZ>= ` 1 ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) )
465 230 464 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) ... N ) C_ ( 1 ... N ) )
466 465 resmptd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
467 1red
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 e. RR )
468 65 nnzd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ZZ )
469 468 peano2zd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. ZZ )
470 469 zred
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) + 1 ) e. RR )
471 65 nnge1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 <_ ( y + 1 ) )
472 467 217 470 471 218 lelttrd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> 1 < ( ( y + 1 ) + 1 ) )
473 467 470 ltnled
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 1 < ( ( y + 1 ) + 1 ) <-> -. ( ( y + 1 ) + 1 ) <_ 1 ) )
474 472 473 mpbid
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> -. ( ( y + 1 ) + 1 ) <_ 1 )
475 elfzle1
 |-  ( 1 e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( ( y + 1 ) + 1 ) <_ 1 )
476 474 475 nsyl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> -. 1 e. ( ( ( y + 1 ) + 1 ) ... N ) )
477 eleq1
 |-  ( n = 1 -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> 1 e. ( ( ( y + 1 ) + 1 ) ... N ) ) )
478 477 notbid
 |-  ( n = 1 -> ( -. n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> -. 1 e. ( ( ( y + 1 ) + 1 ) ... N ) ) )
479 476 478 syl5ibrcom
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( n = 1 -> -. n e. ( ( ( y + 1 ) + 1 ) ... N ) ) )
480 479 necon2ad
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) -> n =/= 1 ) )
481 480 imp
 |-  ( ( y e. ( 0 ... ( N - 1 ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> n =/= 1 )
482 481 182 syl
 |-  ( ( y e. ( 0 ... ( N - 1 ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) )
483 482 mpteq2dva
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) )
484 483 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) )
485 466 484 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) )
486 485 rneqd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) |` ( ( ( y + 1 ) + 1 ) ... N ) ) = ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) )
487 463 486 eqtrid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) )
488 eqid
 |-  ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) = ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) )
489 488 elrnmpt
 |-  ( j e. _V -> ( j e. ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) <-> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) ) )
490 489 elv
 |-  ( j e. ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) <-> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) )
491 simpr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> n e. ( ( ( y + 1 ) + 1 ) ... N ) )
492 114 469 anim12ci
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) )
493 elfzelz
 |-  ( n e. ( ( ( y + 1 ) + 1 ) ... N ) -> n e. ZZ )
494 493 115 jctir
 |-  ( n e. ( ( ( y + 1 ) + 1 ) ... N ) -> ( n e. ZZ /\ 1 e. ZZ ) )
495 fzsubel
 |-  ( ( ( ( ( y + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
496 492 494 495 syl2an
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> ( n e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
497 491 496 mpbid
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) )
498 eleq1
 |-  ( j = ( n - 1 ) -> ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) <-> ( n - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
499 497 498 syl5ibrcom
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( ( ( y + 1 ) + 1 ) ... N ) ) -> ( j = ( n - 1 ) -> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
500 499 rexlimdva
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) -> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
501 elfzelz
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> j e. ZZ )
502 501 zcnd
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> j e. CC )
503 502 394 syl
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( j + 1 ) - 1 ) = j )
504 503 eleq1d
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) <-> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
505 504 ibir
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) )
506 505 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) )
507 501 peano2zd
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( j + 1 ) e. ZZ )
508 507 115 jctir
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) )
509 fzsubel
 |-  ( ( ( ( ( y + 1 ) + 1 ) e. ZZ /\ N e. ZZ ) /\ ( ( j + 1 ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
510 492 508 509 syl2an
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> ( ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) <-> ( ( j + 1 ) - 1 ) e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
511 506 510 mpbird
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) )
512 503 eqcomd
 |-  ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> j = ( ( j + 1 ) - 1 ) )
513 512 adantl
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> j = ( ( j + 1 ) - 1 ) )
514 408 rspceeqv
 |-  ( ( ( j + 1 ) e. ( ( ( y + 1 ) + 1 ) ... N ) /\ j = ( ( j + 1 ) - 1 ) ) -> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) )
515 511 513 514 syl2anc
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) -> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) )
516 515 ex
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) -> E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) ) )
517 500 516 impbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( E. n e. ( ( ( y + 1 ) + 1 ) ... N ) j = ( n - 1 ) <-> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
518 490 517 syl5bb
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( j e. ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) <-> j e. ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) ) )
519 518 eqrdv
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ran ( n e. ( ( ( y + 1 ) + 1 ) ... N ) |-> ( n - 1 ) ) = ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) )
520 65 nncnd
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. CC )
521 pncan1
 |-  ( ( y + 1 ) e. CC -> ( ( ( y + 1 ) + 1 ) - 1 ) = ( y + 1 ) )
522 520 521 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( y + 1 ) + 1 ) - 1 ) = ( y + 1 ) )
523 522 oveq1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) = ( ( y + 1 ) ... ( N - 1 ) ) )
524 523 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( y + 1 ) + 1 ) - 1 ) ... ( N - 1 ) ) = ( ( y + 1 ) ... ( N - 1 ) ) )
525 487 519 524 3eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( y + 1 ) ... ( N - 1 ) ) )
526 525 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
527 462 526 eqtrid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) )
528 527 xpeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) )
529 461 528 uneq12d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) )
530 un23
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) )
531 529 530 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) )
532 531 fveq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) )
533 532 ad2antrr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 1 } ) ) ` n ) )
534 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { N } ) )
535 fzsplit2
 |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
536 232 200 535 syl2anr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
537 206 uneq2d
 |-  ( ph -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) )
538 537 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( y + 1 ) ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) )
539 536 538 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) = ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) )
540 539 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( ( y + 1 ) ... ( N - 1 ) ) u. { N } ) ) )
541 352 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> { ( ( 2nd ` ( 1st ` T ) ) ` N ) } = ( ( 2nd ` ( 1st ` T ) ) " { N } ) )
542 541 uneq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. ( ( 2nd ` ( 1st ` T ) ) " { N } ) ) )
543 534 540 542 3eqtr4a
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) )
544 543 xpeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 0 } ) )
545 xpundir
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) u. { ( ( 2nd ` ( 1st ` T ) ) ` N ) } ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) )
546 544 545 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) )
547 546 uneq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ) )
548 unass
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) )
549 547 548 eqtr4di
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) )
550 549 fveq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) )
551 550 ad2antrr
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... ( N - 1 ) ) ) X. { 0 } ) ) u. ( { ( ( 2nd ` ( 1st ` T ) ) ` N ) } X. { 0 } ) ) ` n ) )
552 374 533 551 3eqtr4d
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
553 316 552 eqtrd
 |-  ( ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - 0 ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
554 250 252 314 553 ifbothda
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) )
555 554 oveq2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
556 248 555 eqtr2d
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) = ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
557 556 mpteq2dva
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) + ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
558 93 557 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
559 53 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR )
560 160 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR )
561 158 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR )
562 elfzle2
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) )
563 562 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) )
564 159 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N )
565 559 560 561 563 564 lelttrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N )
566 6 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = N )
567 565 566 breqtrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < ( 2nd ` T ) )
568 567 iftrued
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = y )
569 568 csbeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
570 vex
 |-  y e. _V
571 oveq2
 |-  ( j = y -> ( 1 ... j ) = ( 1 ... y ) )
572 571 imaeq2d
 |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) )
573 572 xpeq1d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) )
574 oveq1
 |-  ( j = y -> ( j + 1 ) = ( y + 1 ) )
575 574 oveq1d
 |-  ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) )
576 575 imaeq2d
 |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
577 576 xpeq1d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) )
578 573 577 uneq12d
 |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
579 578 oveq2d
 |-  ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
580 570 579 csbie
 |-  [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
581 569 580 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
582 ovexd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. _V )
583 fvexd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ n e. ( 1 ... N ) ) -> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) e. _V )
584 eqidd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) )
585 245 ffnd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
586 nfcv
 |-  F/_ n ( 2nd ` ( 1st ` T ) )
587 nfmpt1
 |-  F/_ n ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) )
588 586 587 nfco
 |-  F/_ n ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
589 nfcv
 |-  F/_ n ( 1 ... ( y + 1 ) )
590 588 589 nfima
 |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) )
591 nfcv
 |-  F/_ n { 1 }
592 590 591 nfxp
 |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } )
593 nfcv
 |-  F/_ n ( ( ( y + 1 ) + 1 ) ... N )
594 588 593 nfima
 |-  F/_ n ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) )
595 nfcv
 |-  F/_ n { 0 }
596 594 595 nfxp
 |-  F/_ n ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } )
597 592 596 nfun
 |-  F/_ n ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
598 597 dffn5f
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) <-> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
599 585 598 sylib
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) )
600 89 582 583 584 599 offval2
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = ( n e. ( 1 ... N ) |-> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ` n ) ) ) )
601 558 581 600 3eqtr4rd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
602 601 mpteq2dva
 |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
603 23 602 eqtr4d
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) )