Metamath Proof Explorer


Theorem poimirlem20

Description: Lemma for poimir establishing existence for poimirlem21 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem22.s
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
poimirlem22.1
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
poimirlem22.2
|- ( ph -> T e. S )
poimirlem22.3
|- ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 )
poimirlem21.4
|- ( ph -> ( 2nd ` T ) = N )
Assertion poimirlem20
|- ( ph -> E. z e. S z =/= T )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem22.s
 |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
3 poimirlem22.1
 |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
4 poimirlem22.2
 |-  ( ph -> T e. S )
5 poimirlem22.3
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 )
6 poimirlem21.4
 |-  ( ph -> ( 2nd ` T ) = N )
7 oveq2
 |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) )
8 7 eleq1d
 |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) )
9 oveq2
 |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) )
10 9 eleq1d
 |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) )
11 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
12 11 oveq1d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) )
13 12 adantl
 |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) )
14 elrabi
 |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
15 14 2 eleq2s
 |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
16 4 15 syl
 |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
17 xp1st
 |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
18 16 17 syl
 |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
19 xp1st
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
20 18 19 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
21 elmapi
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
22 20 21 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
23 xp2nd
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
24 18 23 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
25 fvex
 |-  ( 2nd ` ( 1st ` T ) ) e. _V
26 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
27 25 26 elab
 |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
28 24 27 sylib
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
29 f1of
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
30 28 29 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) )
31 elfz1end
 |-  ( N e. NN <-> N e. ( 1 ... N ) )
32 1 31 sylib
 |-  ( ph -> N e. ( 1 ... N ) )
33 30 32 ffvelrnd
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) )
34 22 33 ffvelrnd
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) )
35 elfzonn0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 )
36 34 35 syl
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 )
37 fvex
 |-  ( ( 2nd ` ( 1st ` T ) ) ` N ) e. _V
38 eleq1
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( n e. ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) )
39 38 anbi2d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ph /\ n e. ( 1 ... N ) ) <-> ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) ) )
40 fveq2
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( p ` n ) = ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
41 40 neeq1d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( p ` n ) =/= 0 <-> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) )
42 41 rexbidv
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( E. p e. ran F ( p ` n ) =/= 0 <-> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) )
43 39 42 imbi12d
 |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 ) <-> ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) )
44 37 43 5 vtocl
 |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 )
45 33 44 mpdan
 |-  ( ph -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 )
46 fveq1
 |-  ( p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
47 22 ffnd
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
48 47 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) )
49 1ex
 |-  1 e. _V
50 fnconstg
 |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) )
51 49 50 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) )
52 c0ex
 |-  0 e. _V
53 fnconstg
 |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
54 52 53 ax-mp
 |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) )
55 51 54 pm3.2i
 |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
56 dff1o3
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) )
57 56 simprbi
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) )
58 28 57 syl
 |-  ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) )
59 imain
 |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
60 58 59 syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
61 elfznn0
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 )
62 61 nn0red
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR )
63 62 ltp1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) )
64 fzdisj
 |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) )
65 63 64 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) )
66 65 imaeq2d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) )
67 ima0
 |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/)
68 66 67 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = (/) )
69 60 68 sylan9req
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) )
70 fnun
 |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
71 55 69 70 sylancr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) )
72 imaundi
 |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
73 nn0p1nn
 |-  ( y e. NN0 -> ( y + 1 ) e. NN )
74 nnuz
 |-  NN = ( ZZ>= ` 1 )
75 73 74 eleqtrdi
 |-  ( y e. NN0 -> ( y + 1 ) e. ( ZZ>= ` 1 ) )
76 61 75 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) )
77 76 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) )
78 1 nncnd
 |-  ( ph -> N e. CC )
79 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
80 78 79 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
81 80 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N )
82 elfzuz3
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) )
83 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
84 82 83 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
85 84 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) )
86 81 85 eqeltrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) )
87 fzsplit2
 |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` y ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) )
88 77 86 87 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) )
89 88 imaeq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) )
90 f1ofo
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) )
91 foima
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
92 28 90 91 3syl
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
93 92 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) )
94 89 93 eqtr3d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) )
95 72 94 eqtr3id
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) )
96 95 fneq2d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) )
97 71 96 mpbid
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) )
98 ovex
 |-  ( 1 ... N ) e. _V
99 98 a1i
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V )
100 inidm
 |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N )
101 eqidd
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
102 f1ofn
 |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
103 28 102 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
104 103 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) )
105 fzss1
 |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
106 76 105 syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
107 106 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) )
108 eluzp1p1
 |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) )
109 uzss
 |-  ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) C_ ( ZZ>= ` ( y + 1 ) ) )
110 82 108 109 3syl
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) C_ ( ZZ>= ` ( y + 1 ) ) )
111 110 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) C_ ( ZZ>= ` ( y + 1 ) ) )
112 1 nnzd
 |-  ( ph -> N e. ZZ )
113 112 uzidd
 |-  ( ph -> N e. ( ZZ>= ` N ) )
114 80 fveq2d
 |-  ( ph -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) )
115 113 114 eleqtrrd
 |-  ( ph -> N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) )
116 115 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) )
117 111 116 sseldd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) )
118 eluzfz2
 |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> N e. ( ( y + 1 ) ... N ) )
119 117 118 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( y + 1 ) ... N ) )
120 fnfvima
 |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( y + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( y + 1 ) ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
121 104 107 119 120 syl3anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
122 fvun2
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
123 51 54 122 mp3an12
 |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
124 69 121 123 syl2anc
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
125 52 fvconst2
 |-  ( ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 )
126 121 125 syl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 )
127 124 126 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 )
128 127 adantr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 )
129 48 97 99 99 100 101 128 ofval
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) )
130 33 129 mpidan
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) )
131 36 nn0cnd
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. CC )
132 131 addid1d
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
133 132 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
134 130 133 eqtrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
135 46 134 sylan9eqr
 |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
136 135 adantllr
 |-  ( ( ( ( ph /\ p e. ran F ) /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
137 fveq2
 |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) )
138 137 breq2d
 |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) )
139 138 ifbid
 |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) )
140 2fveq3
 |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
141 2fveq3
 |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) )
142 141 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) )
143 142 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) )
144 141 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) )
145 144 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
146 143 145 uneq12d
 |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
147 140 146 oveq12d
 |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
148 139 147 csbeq12dv
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
149 148 mpteq2dv
 |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
150 149 eqeq2d
 |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
151 150 2 elrab2
 |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
152 151 simprbi
 |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
153 4 152 syl
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
154 62 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR )
155 peano2zm
 |-  ( N e. ZZ -> ( N - 1 ) e. ZZ )
156 112 155 syl
 |-  ( ph -> ( N - 1 ) e. ZZ )
157 156 zred
 |-  ( ph -> ( N - 1 ) e. RR )
158 157 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR )
159 1 nnred
 |-  ( ph -> N e. RR )
160 159 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR )
161 elfzle2
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) )
162 161 adantl
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) )
163 159 ltm1d
 |-  ( ph -> ( N - 1 ) < N )
164 163 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N )
165 154 158 160 162 164 lelttrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N )
166 6 adantr
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = N )
167 165 166 breqtrrd
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < ( 2nd ` T ) )
168 167 iftrued
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = y )
169 168 csbeq1d
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
170 vex
 |-  y e. _V
171 oveq2
 |-  ( j = y -> ( 1 ... j ) = ( 1 ... y ) )
172 171 imaeq2d
 |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) )
173 172 xpeq1d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) )
174 oveq1
 |-  ( j = y -> ( j + 1 ) = ( y + 1 ) )
175 174 oveq1d
 |-  ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) )
176 175 imaeq2d
 |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) )
177 176 xpeq1d
 |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) )
178 173 177 uneq12d
 |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
179 178 oveq2d
 |-  ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
180 170 179 csbie
 |-  [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) )
181 169 180 eqtrdi
 |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
182 181 mpteq2dva
 |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
183 153 182 eqtrd
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
184 183 rneqd
 |-  ( ph -> ran F = ran ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
185 184 eleq2d
 |-  ( ph -> ( p e. ran F <-> p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
186 eqid
 |-  ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
187 ovex
 |-  ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V
188 186 187 elrnmpti
 |-  ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
189 185 188 bitrdi
 |-  ( ph -> ( p e. ran F <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
190 189 biimpa
 |-  ( ( ph /\ p e. ran F ) -> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) )
191 136 190 r19.29a
 |-  ( ( ph /\ p e. ran F ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
192 191 neeq1d
 |-  ( ( ph /\ p e. ran F ) -> ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 <-> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) )
193 192 biimpd
 |-  ( ( ph /\ p e. ran F ) -> ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) )
194 193 rexlimdva
 |-  ( ph -> ( E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) )
195 45 194 mpd
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 )
196 elnnne0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) )
197 36 195 196 sylanbrc
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN )
198 nnm1nn0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. NN0 )
199 197 198 syl
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. NN0 )
200 elfzo0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K ) )
201 34 200 sylib
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K ) )
202 201 simp2d
 |-  ( ph -> K e. NN )
203 199 nn0red
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. RR )
204 36 nn0red
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. RR )
205 202 nnred
 |-  ( ph -> K e. RR )
206 204 ltm1d
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) < ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) )
207 elfzolt2
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K )
208 34 207 syl
 |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K )
209 203 204 205 206 208 lttrd
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) < K )
210 elfzo0
 |-  ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. ( 0 ..^ K ) <-> ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. NN0 /\ K e. NN /\ ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) < K ) )
211 199 202 209 210 syl3anbrc
 |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. ( 0 ..^ K ) )
212 211 adantr
 |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. ( 0 ..^ K ) )
213 13 212 eqeltrd
 |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) e. ( 0 ..^ K ) )
214 213 adantlr
 |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) e. ( 0 ..^ K ) )
215 22 ffvelrnda
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) )
216 elfzonn0
 |-  ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 )
217 215 216 syl
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 )
218 217 nn0cnd
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC )
219 218 subid1d
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) = ( ( 1st ` ( 1st ` T ) ) ` n ) )
220 219 215 eqeltrd
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) e. ( 0 ..^ K ) )
221 220 adantr
 |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) e. ( 0 ..^ K ) )
222 8 10 214 221 ifbothda
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. ( 0 ..^ K ) )
223 222 fmpttd
 |-  ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
224 ovex
 |-  ( 0 ..^ K ) e. _V
225 224 98 elmap
 |-  ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) <-> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
226 223 225 sylibr
 |-  ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
227 simpr
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> n e. ( ( 1 + 1 ) ... N ) )
228 1z
 |-  1 e. ZZ
229 peano2z
 |-  ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ )
230 228 229 ax-mp
 |-  ( 1 + 1 ) e. ZZ
231 112 230 jctil
 |-  ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) )
232 elfzelz
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. ZZ )
233 232 228 jctir
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> ( n e. ZZ /\ 1 e. ZZ ) )
234 fzsubel
 |-  ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) )
235 231 233 234 syl2an
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) )
236 227 235 mpbid
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) )
237 ax-1cn
 |-  1 e. CC
238 237 237 pncan3oi
 |-  ( ( 1 + 1 ) - 1 ) = 1
239 238 oveq1i
 |-  ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) )
240 236 239 eleqtrdi
 |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( 1 ... ( N - 1 ) ) )
241 240 ralrimiva
 |-  ( ph -> A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) )
242 simpr
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> y e. ( 1 ... ( N - 1 ) ) )
243 156 228 jctil
 |-  ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) )
244 elfzelz
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. ZZ )
245 244 228 jctir
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> ( y e. ZZ /\ 1 e. ZZ ) )
246 fzaddel
 |-  ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
247 243 245 246 syl2an
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) )
248 242 247 mpbid
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) )
249 80 oveq2d
 |-  ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) )
250 249 adantr
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) )
251 248 250 eleqtrd
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... N ) )
252 232 zcnd
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. CC )
253 244 zcnd
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. CC )
254 subadd2
 |-  ( ( n e. CC /\ 1 e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) )
255 237 254 mp3an2
 |-  ( ( n e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) )
256 eqcom
 |-  ( y = ( n - 1 ) <-> ( n - 1 ) = y )
257 eqcom
 |-  ( n = ( y + 1 ) <-> ( y + 1 ) = n )
258 255 256 257 3bitr4g
 |-  ( ( n e. CC /\ y e. CC ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
259 252 253 258 syl2anr
 |-  ( ( y e. ( 1 ... ( N - 1 ) ) /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
260 259 ralrimiva
 |-  ( y e. ( 1 ... ( N - 1 ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
261 260 adantl
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) )
262 reu6i
 |-  ( ( ( y + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) )
263 251 261 262 syl2anc
 |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) )
264 263 ralrimiva
 |-  ( ph -> A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) )
265 eqid
 |-  ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) )
266 265 f1ompt
 |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) <-> ( A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) )
267 241 264 266 sylanbrc
 |-  ( ph -> ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) )
268 f1osng
 |-  ( ( 1 e. _V /\ N e. NN ) -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } )
269 49 1 268 sylancr
 |-  ( ph -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } )
270 157 159 ltnled
 |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) )
271 163 270 mpbid
 |-  ( ph -> -. N <_ ( N - 1 ) )
272 elfzle2
 |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) )
273 271 272 nsyl
 |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) )
274 disjsn
 |-  ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) )
275 273 274 sylibr
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) )
276 1re
 |-  1 e. RR
277 276 ltp1i
 |-  1 < ( 1 + 1 )
278 230 zrei
 |-  ( 1 + 1 ) e. RR
279 276 278 ltnlei
 |-  ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 )
280 277 279 mpbi
 |-  -. ( 1 + 1 ) <_ 1
281 elfzle1
 |-  ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 )
282 280 281 mto
 |-  -. 1 e. ( ( 1 + 1 ) ... N )
283 disjsn
 |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) )
284 282 283 mpbir
 |-  ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/)
285 f1oun
 |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) )
286 284 285 mpanr1
 |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) )
287 267 269 275 286 syl21anc
 |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) )
288 eleq1
 |-  ( n = 1 -> ( n e. ( ( 1 + 1 ) ... N ) <-> 1 e. ( ( 1 + 1 ) ... N ) ) )
289 282 288 mtbiri
 |-  ( n = 1 -> -. n e. ( ( 1 + 1 ) ... N ) )
290 289 necon2ai
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> n =/= 1 )
291 ifnefalse
 |-  ( n =/= 1 -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) )
292 290 291 syl
 |-  ( n e. ( ( 1 + 1 ) ... N ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) )
293 292 mpteq2ia
 |-  ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) )
294 293 uneq1i
 |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } )
295 49 a1i
 |-  ( ph -> 1 e. _V )
296 1 74 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 1 ) )
297 fzpred
 |-  ( N e. ( ZZ>= ` 1 ) -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) )
298 296 297 syl
 |-  ( ph -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) )
299 uncom
 |-  ( { 1 } u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } )
300 298 299 eqtr2di
 |-  ( ph -> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) = ( 1 ... N ) )
301 iftrue
 |-  ( n = 1 -> if ( n = 1 , N , ( n - 1 ) ) = N )
302 301 adantl
 |-  ( ( ph /\ n = 1 ) -> if ( n = 1 , N , ( n - 1 ) ) = N )
303 295 1 300 302 fmptapd
 |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
304 294 303 eqtr3id
 |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) )
305 80 296 eqeltrd
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) )
306 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
307 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
308 156 306 307 3syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
309 80 308 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
310 fzsplit2
 |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
311 305 309 310 syl2anc
 |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
312 80 oveq1d
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) )
313 fzsn
 |-  ( N e. ZZ -> ( N ... N ) = { N } )
314 112 313 syl
 |-  ( ph -> ( N ... N ) = { N } )
315 312 314 eqtrd
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } )
316 315 uneq2d
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) )
317 311 316 eqtr2d
 |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) )
318 304 300 317 f1oeq123d
 |-  ( ph -> ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
319 287 318 mpbid
 |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
320 f1oco
 |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
321 28 319 320 syl2anc
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
322 98 mptex
 |-  ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) e. _V
323 25 322 coex
 |-  ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) e. _V
324 f1oeq1
 |-  ( f = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
325 323 324 elab
 |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
326 321 325 sylibr
 |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
327 226 326 opelxpd
 |-  ( ph -> <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
328 1 nnnn0d
 |-  ( ph -> N e. NN0 )
329 0elfz
 |-  ( N e. NN0 -> 0 e. ( 0 ... N ) )
330 328 329 syl
 |-  ( ph -> 0 e. ( 0 ... N ) )
331 327 330 opelxpd
 |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
332 1 2 3 4 5 6 poimirlem19
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
333 elfzle1
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> 0 <_ y )
334 0re
 |-  0 e. RR
335 lenlt
 |-  ( ( 0 e. RR /\ y e. RR ) -> ( 0 <_ y <-> -. y < 0 ) )
336 334 62 335 sylancr
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 0 <_ y <-> -. y < 0 ) )
337 333 336 mpbid
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> -. y < 0 )
338 337 iffalsed
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> if ( y < 0 , y , ( y + 1 ) ) = ( y + 1 ) )
339 338 csbeq1d
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
340 ovex
 |-  ( y + 1 ) e. _V
341 oveq2
 |-  ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) )
342 341 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) )
343 342 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) )
344 oveq1
 |-  ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) )
345 344 oveq1d
 |-  ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) )
346 345 imaeq2d
 |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) )
347 346 xpeq1d
 |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) )
348 343 347 uneq12d
 |-  ( j = ( y + 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
349 348 oveq2d
 |-  ( j = ( y + 1 ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
350 340 349 csbie
 |-  [_ ( y + 1 ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) )
351 339 350 eqtrdi
 |-  ( y e. ( 0 ... ( N - 1 ) ) -> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
352 351 mpteq2ia
 |-  ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) )
353 332 352 eqtr4di
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
354 opex
 |-  <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. e. _V
355 354 52 op2ndd
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 2nd ` t ) = 0 )
356 355 breq2d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( y < ( 2nd ` t ) <-> y < 0 ) )
357 356 ifbid
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < 0 , y , ( y + 1 ) ) )
358 354 52 op1std
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. )
359 98 mptex
 |-  ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) e. _V
360 359 323 op1std
 |-  ( ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. -> ( 1st ` ( 1st ` t ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) )
361 358 360 syl
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 1st ` ( 1st ` t ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) )
362 359 323 op2ndd
 |-  ( ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) )
363 358 362 syl
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) )
364 363 imaeq1d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) )
365 364 xpeq1d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) )
366 363 imaeq1d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) )
367 366 xpeq1d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
368 365 367 uneq12d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
369 361 368 oveq12d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
370 357 369 csbeq12dv
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
371 370 mpteq2dv
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
372 371 eqeq2d
 |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
373 372 2 elrab2
 |-  ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. S <-> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
374 331 353 373 sylanbrc
 |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. S )
375 354 52 op2ndd
 |-  ( T = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 2nd ` T ) = 0 )
376 375 eqcoms
 |-  ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. = T -> ( 2nd ` T ) = 0 )
377 1 nnne0d
 |-  ( ph -> N =/= 0 )
378 377 necomd
 |-  ( ph -> 0 =/= N )
379 neeq1
 |-  ( ( 2nd ` T ) = 0 -> ( ( 2nd ` T ) =/= N <-> 0 =/= N ) )
380 378 379 syl5ibrcom
 |-  ( ph -> ( ( 2nd ` T ) = 0 -> ( 2nd ` T ) =/= N ) )
381 376 380 syl5
 |-  ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. = T -> ( 2nd ` T ) =/= N ) )
382 381 necon2d
 |-  ( ph -> ( ( 2nd ` T ) = N -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T ) )
383 6 382 mpd
 |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T )
384 neeq1
 |-  ( z = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( z =/= T <-> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T ) )
385 384 rspcev
 |-  ( ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. S /\ <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T ) -> E. z e. S z =/= T )
386 374 383 385 syl2anc
 |-  ( ph -> E. z e. S z =/= T )