| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem22.s |  |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } | 
						
							| 3 |  | poimirlem22.1 |  |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 4 |  | poimirlem22.2 |  |-  ( ph -> T e. S ) | 
						
							| 5 |  | poimirlem22.3 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 ) | 
						
							| 6 |  | poimirlem21.4 |  |-  ( ph -> ( 2nd ` T ) = N ) | 
						
							| 7 |  | oveq2 |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( 1 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) ) | 
						
							| 9 |  | oveq2 |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) = ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) | 
						
							| 10 | 9 | eleq1d |  |-  ( 0 = if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) -> ( ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) ) | 
						
							| 11 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) ) | 
						
							| 14 |  | elrabi |  |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 15 | 14 2 | eleq2s |  |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 16 | 4 15 | syl |  |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 17 |  | xp1st |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 19 |  | xp1st |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 21 |  | elmapi |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 23 |  | xp2nd |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 24 | 18 23 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 25 |  | fvex |  |-  ( 2nd ` ( 1st ` T ) ) e. _V | 
						
							| 26 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 27 | 25 26 | elab |  |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 28 | 24 27 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 29 |  | f1of |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 1 ... N ) ) | 
						
							| 31 |  | elfz1end |  |-  ( N e. NN <-> N e. ( 1 ... N ) ) | 
						
							| 32 | 1 31 | sylib |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 33 | 30 32 | ffvelcdmd |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) | 
						
							| 34 | 22 33 | ffvelcdmd |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) ) | 
						
							| 35 |  | elfzonn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 ) | 
						
							| 36 | 34 35 | syl |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 ) | 
						
							| 37 |  | fvex |  |-  ( ( 2nd ` ( 1st ` T ) ) ` N ) e. _V | 
						
							| 38 |  | eleq1 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( n e. ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) ) | 
						
							| 39 | 38 | anbi2d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ph /\ n e. ( 1 ... N ) ) <-> ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) ) ) | 
						
							| 40 |  | fveq2 |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( p ` n ) = ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 41 | 40 | neeq1d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( p ` n ) =/= 0 <-> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) | 
						
							| 42 | 41 | rexbidv |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( E. p e. ran F ( p ` n ) =/= 0 <-> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) | 
						
							| 43 | 39 42 | imbi12d |  |-  ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) -> ( ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 ) <-> ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) ) | 
						
							| 44 | 37 43 5 | vtocl |  |-  ( ( ph /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) | 
						
							| 45 | 33 44 | mpdan |  |-  ( ph -> E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) | 
						
							| 46 |  | fveq1 |  |-  ( p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 47 | 22 | ffnd |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 49 |  | 1ex |  |-  1 e. _V | 
						
							| 50 |  | fnconstg |  |-  ( 1 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) | 
						
							| 51 | 49 50 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) | 
						
							| 52 |  | c0ex |  |-  0 e. _V | 
						
							| 53 |  | fnconstg |  |-  ( 0 e. _V -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 54 | 52 53 | ax-mp |  |-  ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) | 
						
							| 55 | 51 54 | pm3.2i |  |-  ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 56 |  | dff1o3 |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) /\ Fun `' ( 2nd ` ( 1st ` T ) ) ) ) | 
						
							| 57 | 56 | simprbi |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 58 | 28 57 | syl |  |-  ( ph -> Fun `' ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 59 |  | imain |  |-  ( Fun `' ( 2nd ` ( 1st ` T ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 61 |  | elfznn0 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. NN0 ) | 
						
							| 62 | 61 | nn0red |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y e. RR ) | 
						
							| 63 | 62 | ltp1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y < ( y + 1 ) ) | 
						
							| 64 |  | fzdisj |  |-  ( y < ( y + 1 ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) ) | 
						
							| 65 | 63 64 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) = (/) ) | 
						
							| 66 | 65 | imaeq2d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = ( ( 2nd ` ( 1st ` T ) ) " (/) ) ) | 
						
							| 67 |  | ima0 |  |-  ( ( 2nd ` ( 1st ` T ) ) " (/) ) = (/) | 
						
							| 68 | 66 67 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) i^i ( ( y + 1 ) ... N ) ) ) = (/) ) | 
						
							| 69 | 60 68 | sylan9req |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) | 
						
							| 70 |  | fnun |  |-  ( ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 71 | 55 69 70 | sylancr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 72 |  | imaundi |  |-  ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 73 |  | nn0p1nn |  |-  ( y e. NN0 -> ( y + 1 ) e. NN ) | 
						
							| 74 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 75 | 73 74 | eleqtrdi |  |-  ( y e. NN0 -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 76 | 61 75 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 77 | 76 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 78 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 79 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 80 | 78 79 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 82 |  | elfzuz3 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( N - 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 83 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 84 | 82 83 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` y ) ) | 
						
							| 86 | 81 85 | eqeltrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` y ) ) | 
						
							| 87 |  | fzsplit2 |  |-  ( ( ( y + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` y ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) | 
						
							| 88 | 77 86 87 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) | 
						
							| 89 | 88 | imaeq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) ) | 
						
							| 90 |  | f1ofo |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) ) | 
						
							| 91 |  | foima |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -onto-> ( 1 ... N ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 92 | 28 90 91 | 3syl |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 93 | 92 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... N ) ) = ( 1 ... N ) ) | 
						
							| 94 | 89 93 | eqtr3d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) " ( ( 1 ... y ) u. ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 95 | 72 94 | eqtr3id |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = ( 1 ... N ) ) | 
						
							| 96 | 95 | fneq2d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) u. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) <-> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) ) | 
						
							| 97 | 71 96 | mpbid |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) Fn ( 1 ... N ) ) | 
						
							| 98 |  | ovex |  |-  ( 1 ... N ) e. _V | 
						
							| 99 | 98 | a1i |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 1 ... N ) e. _V ) | 
						
							| 100 |  | inidm |  |-  ( ( 1 ... N ) i^i ( 1 ... N ) ) = ( 1 ... N ) | 
						
							| 101 |  | eqidd |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 102 |  | f1ofn |  |-  ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 103 | 28 102 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) ) | 
						
							| 105 |  | fzss1 |  |-  ( ( y + 1 ) e. ( ZZ>= ` 1 ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 106 | 76 105 | syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 107 | 106 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( y + 1 ) ... N ) C_ ( 1 ... N ) ) | 
						
							| 108 |  | eluzp1p1 |  |-  ( ( N - 1 ) e. ( ZZ>= ` y ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 109 |  | uzss |  |-  ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( y + 1 ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) C_ ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 110 | 82 108 109 | 3syl |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) C_ ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) C_ ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 112 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 113 | 112 | uzidd |  |-  ( ph -> N e. ( ZZ>= ` N ) ) | 
						
							| 114 | 80 | fveq2d |  |-  ( ph -> ( ZZ>= ` ( ( N - 1 ) + 1 ) ) = ( ZZ>= ` N ) ) | 
						
							| 115 | 113 114 | eleqtrrd |  |-  ( ph -> N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 116 | 115 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( ( N - 1 ) + 1 ) ) ) | 
						
							| 117 | 111 116 | sseldd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ZZ>= ` ( y + 1 ) ) ) | 
						
							| 118 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` ( y + 1 ) ) -> N e. ( ( y + 1 ) ... N ) ) | 
						
							| 119 | 117 118 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. ( ( y + 1 ) ... N ) ) | 
						
							| 120 |  | fnfvima |  |-  ( ( ( 2nd ` ( 1st ` T ) ) Fn ( 1 ... N ) /\ ( ( y + 1 ) ... N ) C_ ( 1 ... N ) /\ N e. ( ( y + 1 ) ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 121 | 104 107 119 120 | syl3anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 122 |  | fvun2 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) /\ ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) Fn ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) /\ ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 123 | 51 54 122 | mp3an12 |  |-  ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) i^i ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) = (/) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 124 | 69 121 123 | syl2anc |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 125 | 52 | fvconst2 |  |-  ( ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 ) | 
						
							| 126 | 121 125 | syl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 ) | 
						
							| 127 | 124 126 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 ) | 
						
							| 128 | 127 | adantr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = 0 ) | 
						
							| 129 | 48 97 99 99 100 101 128 | ofval |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ ( ( 2nd ` ( 1st ` T ) ) ` N ) e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) ) | 
						
							| 130 | 33 129 | mpidan |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) ) | 
						
							| 131 | 36 | nn0cnd |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. CC ) | 
						
							| 132 | 131 | addridd |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) + 0 ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 134 | 130 133 | eqtrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 135 | 46 134 | sylan9eqr |  |-  ( ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 136 | 135 | adantllr |  |-  ( ( ( ( ph /\ p e. ran F ) /\ y e. ( 0 ... ( N - 1 ) ) ) /\ p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 137 |  | fveq2 |  |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) | 
						
							| 138 | 137 | breq2d |  |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) | 
						
							| 139 | 138 | ifbid |  |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) | 
						
							| 140 |  | 2fveq3 |  |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) | 
						
							| 141 |  | 2fveq3 |  |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 142 | 141 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) | 
						
							| 143 | 142 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 144 | 141 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 145 | 144 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 146 | 143 145 | uneq12d |  |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 147 | 140 146 | oveq12d |  |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 148 | 139 147 | csbeq12dv |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 149 | 148 | mpteq2dv |  |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 150 | 149 | eqeq2d |  |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 151 | 150 2 | elrab2 |  |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 152 | 151 | simprbi |  |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 153 | 4 152 | syl |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 154 | 62 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y e. RR ) | 
						
							| 155 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 156 | 112 155 | syl |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 157 | 156 | zred |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 158 | 157 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) e. RR ) | 
						
							| 159 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> N e. RR ) | 
						
							| 161 |  | elfzle2 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> y <_ ( N - 1 ) ) | 
						
							| 162 | 161 | adantl |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y <_ ( N - 1 ) ) | 
						
							| 163 | 159 | ltm1d |  |-  ( ph -> ( N - 1 ) < N ) | 
						
							| 164 | 163 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( N - 1 ) < N ) | 
						
							| 165 | 154 158 160 162 164 | lelttrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < N ) | 
						
							| 166 | 6 | adantr |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = N ) | 
						
							| 167 | 165 166 | breqtrrd |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> y < ( 2nd ` T ) ) | 
						
							| 168 | 167 | iftrued |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) = y ) | 
						
							| 169 | 168 | csbeq1d |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 170 |  | vex |  |-  y e. _V | 
						
							| 171 |  | oveq2 |  |-  ( j = y -> ( 1 ... j ) = ( 1 ... y ) ) | 
						
							| 172 | 171 | imaeq2d |  |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) ) | 
						
							| 173 | 172 | xpeq1d |  |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) ) | 
						
							| 174 |  | oveq1 |  |-  ( j = y -> ( j + 1 ) = ( y + 1 ) ) | 
						
							| 175 | 174 | oveq1d |  |-  ( j = y -> ( ( j + 1 ) ... N ) = ( ( y + 1 ) ... N ) ) | 
						
							| 176 | 175 | imaeq2d |  |-  ( j = y -> ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) ) | 
						
							| 177 | 176 | xpeq1d |  |-  ( j = y -> ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 178 | 173 177 | uneq12d |  |-  ( j = y -> ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 179 | 178 | oveq2d |  |-  ( j = y -> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 180 | 170 179 | csbie |  |-  [_ y / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 181 | 169 180 | eqtrdi |  |-  ( ( ph /\ y e. ( 0 ... ( N - 1 ) ) ) -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 182 | 181 | mpteq2dva |  |-  ( ph -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 183 | 153 182 | eqtrd |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 184 | 183 | rneqd |  |-  ( ph -> ran F = ran ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 185 | 184 | eleq2d |  |-  ( ph -> ( p e. ran F <-> p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 186 |  | eqid |  |-  ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 187 |  | ovex |  |-  ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) e. _V | 
						
							| 188 | 186 187 | elrnmpti |  |-  ( p e. ran ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 189 | 185 188 | bitrdi |  |-  ( ph -> ( p e. ran F <-> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 190 | 189 | biimpa |  |-  ( ( ph /\ p e. ran F ) -> E. y e. ( 0 ... ( N - 1 ) ) p = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... y ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( y + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 191 | 136 190 | r19.29a |  |-  ( ( ph /\ p e. ran F ) -> ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) = ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 192 | 191 | neeq1d |  |-  ( ( ph /\ p e. ran F ) -> ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 <-> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) | 
						
							| 193 | 192 | biimpd |  |-  ( ( ph /\ p e. ran F ) -> ( ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) | 
						
							| 194 | 193 | rexlimdva |  |-  ( ph -> ( E. p e. ran F ( p ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) | 
						
							| 195 | 45 194 | mpd |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) | 
						
							| 196 |  | elnnne0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) =/= 0 ) ) | 
						
							| 197 | 36 195 196 | sylanbrc |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN ) | 
						
							| 198 |  | nnm1nn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. NN0 ) | 
						
							| 199 | 197 198 | syl |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. NN0 ) | 
						
							| 200 |  | elfzo0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) <-> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K ) ) | 
						
							| 201 | 34 200 | sylib |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. NN0 /\ K e. NN /\ ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K ) ) | 
						
							| 202 | 201 | simp2d |  |-  ( ph -> K e. NN ) | 
						
							| 203 | 199 | nn0red |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. RR ) | 
						
							| 204 | 36 | nn0red |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. RR ) | 
						
							| 205 | 202 | nnred |  |-  ( ph -> K e. RR ) | 
						
							| 206 | 204 | ltm1d |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) < ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) ) | 
						
							| 207 |  | elfzolt2 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K ) | 
						
							| 208 | 34 207 | syl |  |-  ( ph -> ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) < K ) | 
						
							| 209 | 203 204 205 206 208 | lttrd |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) < K ) | 
						
							| 210 |  | elfzo0 |  |-  ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. ( 0 ..^ K ) <-> ( ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. NN0 /\ K e. NN /\ ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) < K ) ) | 
						
							| 211 | 199 202 209 210 | syl3anbrc |  |-  ( ph -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. ( 0 ..^ K ) ) | 
						
							| 212 | 211 | adantr |  |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` ( ( 2nd ` ( 1st ` T ) ) ` N ) ) - 1 ) e. ( 0 ..^ K ) ) | 
						
							| 213 | 13 212 | eqeltrd |  |-  ( ( ph /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) e. ( 0 ..^ K ) ) | 
						
							| 214 | 213 | adantlr |  |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 1 ) e. ( 0 ..^ K ) ) | 
						
							| 215 | 22 | ffvelcdmda |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) ) | 
						
							| 216 |  | elfzonn0 |  |-  ( ( ( 1st ` ( 1st ` T ) ) ` n ) e. ( 0 ..^ K ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 217 | 215 216 | syl |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. NN0 ) | 
						
							| 218 | 217 | nn0cnd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( 1st ` ( 1st ` T ) ) ` n ) e. CC ) | 
						
							| 219 | 218 | subid1d |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) = ( ( 1st ` ( 1st ` T ) ) ` n ) ) | 
						
							| 220 | 219 215 | eqeltrd |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) e. ( 0 ..^ K ) ) | 
						
							| 221 | 220 | adantr |  |-  ( ( ( ph /\ n e. ( 1 ... N ) ) /\ -. n = ( ( 2nd ` ( 1st ` T ) ) ` N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - 0 ) e. ( 0 ..^ K ) ) | 
						
							| 222 | 8 10 214 221 | ifbothda |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) e. ( 0 ..^ K ) ) | 
						
							| 223 | 222 | fmpttd |  |-  ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 224 |  | ovex |  |-  ( 0 ..^ K ) e. _V | 
						
							| 225 | 224 98 | elmap |  |-  ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) <-> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 226 | 223 225 | sylibr |  |-  ( ph -> ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 227 |  | simpr |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> n e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 228 |  | 1z |  |-  1 e. ZZ | 
						
							| 229 |  | peano2z |  |-  ( 1 e. ZZ -> ( 1 + 1 ) e. ZZ ) | 
						
							| 230 | 228 229 | ax-mp |  |-  ( 1 + 1 ) e. ZZ | 
						
							| 231 | 112 230 | jctil |  |-  ( ph -> ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) ) | 
						
							| 232 |  | elfzelz |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. ZZ ) | 
						
							| 233 | 232 228 | jctir |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> ( n e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 234 |  | fzsubel |  |-  ( ( ( ( 1 + 1 ) e. ZZ /\ N e. ZZ ) /\ ( n e. ZZ /\ 1 e. ZZ ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 235 | 231 233 234 | syl2an |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n e. ( ( 1 + 1 ) ... N ) <-> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 236 | 227 235 | mpbid |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) ) | 
						
							| 237 |  | ax-1cn |  |-  1 e. CC | 
						
							| 238 | 237 237 | pncan3oi |  |-  ( ( 1 + 1 ) - 1 ) = 1 | 
						
							| 239 | 238 | oveq1i |  |-  ( ( ( 1 + 1 ) - 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) | 
						
							| 240 | 236 239 | eleqtrdi |  |-  ( ( ph /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( n - 1 ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 241 | 240 | ralrimiva |  |-  ( ph -> A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 242 |  | simpr |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> y e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 243 | 156 228 | jctil |  |-  ( ph -> ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) ) | 
						
							| 244 |  | elfzelz |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. ZZ ) | 
						
							| 245 | 244 228 | jctir |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> ( y e. ZZ /\ 1 e. ZZ ) ) | 
						
							| 246 |  | fzaddel |  |-  ( ( ( 1 e. ZZ /\ ( N - 1 ) e. ZZ ) /\ ( y e. ZZ /\ 1 e. ZZ ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 247 | 243 245 246 | syl2an |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y e. ( 1 ... ( N - 1 ) ) <-> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) ) | 
						
							| 248 | 242 247 | mpbid |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) ) | 
						
							| 249 | 80 | oveq2d |  |-  ( ph -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 250 | 249 | adantr |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( ( 1 + 1 ) ... ( ( N - 1 ) + 1 ) ) = ( ( 1 + 1 ) ... N ) ) | 
						
							| 251 | 248 250 | eleqtrd |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> ( y + 1 ) e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 252 | 232 | zcnd |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> n e. CC ) | 
						
							| 253 | 244 | zcnd |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> y e. CC ) | 
						
							| 254 |  | subadd2 |  |-  ( ( n e. CC /\ 1 e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) ) | 
						
							| 255 | 237 254 | mp3an2 |  |-  ( ( n e. CC /\ y e. CC ) -> ( ( n - 1 ) = y <-> ( y + 1 ) = n ) ) | 
						
							| 256 |  | eqcom |  |-  ( y = ( n - 1 ) <-> ( n - 1 ) = y ) | 
						
							| 257 |  | eqcom |  |-  ( n = ( y + 1 ) <-> ( y + 1 ) = n ) | 
						
							| 258 | 255 256 257 | 3bitr4g |  |-  ( ( n e. CC /\ y e. CC ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 259 | 252 253 258 | syl2anr |  |-  ( ( y e. ( 1 ... ( N - 1 ) ) /\ n e. ( ( 1 + 1 ) ... N ) ) -> ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 260 | 259 | ralrimiva |  |-  ( y e. ( 1 ... ( N - 1 ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 261 | 260 | adantl |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) | 
						
							| 262 |  | reu6i |  |-  ( ( ( y + 1 ) e. ( ( 1 + 1 ) ... N ) /\ A. n e. ( ( 1 + 1 ) ... N ) ( y = ( n - 1 ) <-> n = ( y + 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) | 
						
							| 263 | 251 261 262 | syl2anc |  |-  ( ( ph /\ y e. ( 1 ... ( N - 1 ) ) ) -> E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) | 
						
							| 264 | 263 | ralrimiva |  |-  ( ph -> A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) | 
						
							| 265 |  | eqid |  |-  ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) | 
						
							| 266 | 265 | f1ompt |  |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) <-> ( A. n e. ( ( 1 + 1 ) ... N ) ( n - 1 ) e. ( 1 ... ( N - 1 ) ) /\ A. y e. ( 1 ... ( N - 1 ) ) E! n e. ( ( 1 + 1 ) ... N ) y = ( n - 1 ) ) ) | 
						
							| 267 | 241 264 266 | sylanbrc |  |-  ( ph -> ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) ) | 
						
							| 268 |  | f1osng |  |-  ( ( 1 e. _V /\ N e. NN ) -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) | 
						
							| 269 | 49 1 268 | sylancr |  |-  ( ph -> { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) | 
						
							| 270 | 157 159 | ltnled |  |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) | 
						
							| 271 | 163 270 | mpbid |  |-  ( ph -> -. N <_ ( N - 1 ) ) | 
						
							| 272 |  | elfzle2 |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 273 | 271 272 | nsyl |  |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 274 |  | disjsn |  |-  ( ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 275 | 273 274 | sylibr |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) | 
						
							| 276 |  | 1re |  |-  1 e. RR | 
						
							| 277 | 276 | ltp1i |  |-  1 < ( 1 + 1 ) | 
						
							| 278 | 230 | zrei |  |-  ( 1 + 1 ) e. RR | 
						
							| 279 | 276 278 | ltnlei |  |-  ( 1 < ( 1 + 1 ) <-> -. ( 1 + 1 ) <_ 1 ) | 
						
							| 280 | 277 279 | mpbi |  |-  -. ( 1 + 1 ) <_ 1 | 
						
							| 281 |  | elfzle1 |  |-  ( 1 e. ( ( 1 + 1 ) ... N ) -> ( 1 + 1 ) <_ 1 ) | 
						
							| 282 | 280 281 | mto |  |-  -. 1 e. ( ( 1 + 1 ) ... N ) | 
						
							| 283 |  | disjsn |  |-  ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) <-> -. 1 e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 284 | 282 283 | mpbir |  |-  ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) | 
						
							| 285 |  | f1oun |  |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( ( ( 1 + 1 ) ... N ) i^i { 1 } ) = (/) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 286 | 284 285 | mpanr1 |  |-  ( ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) : ( ( 1 + 1 ) ... N ) -1-1-onto-> ( 1 ... ( N - 1 ) ) /\ { <. 1 , N >. } : { 1 } -1-1-onto-> { N } ) /\ ( ( 1 ... ( N - 1 ) ) i^i { N } ) = (/) ) -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 287 | 267 269 275 286 | syl21anc |  |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 288 |  | eleq1 |  |-  ( n = 1 -> ( n e. ( ( 1 + 1 ) ... N ) <-> 1 e. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 289 | 282 288 | mtbiri |  |-  ( n = 1 -> -. n e. ( ( 1 + 1 ) ... N ) ) | 
						
							| 290 | 289 | necon2ai |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> n =/= 1 ) | 
						
							| 291 |  | ifnefalse |  |-  ( n =/= 1 -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) ) | 
						
							| 292 | 290 291 | syl |  |-  ( n e. ( ( 1 + 1 ) ... N ) -> if ( n = 1 , N , ( n - 1 ) ) = ( n - 1 ) ) | 
						
							| 293 | 292 | mpteq2ia |  |-  ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) = ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) | 
						
							| 294 | 293 | uneq1i |  |-  ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) | 
						
							| 295 | 49 | a1i |  |-  ( ph -> 1 e. _V ) | 
						
							| 296 | 1 74 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 297 |  | fzpred |  |-  ( N e. ( ZZ>= ` 1 ) -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 298 | 296 297 | syl |  |-  ( ph -> ( 1 ... N ) = ( { 1 } u. ( ( 1 + 1 ) ... N ) ) ) | 
						
							| 299 |  | uncom |  |-  ( { 1 } u. ( ( 1 + 1 ) ... N ) ) = ( ( ( 1 + 1 ) ... N ) u. { 1 } ) | 
						
							| 300 | 298 299 | eqtr2di |  |-  ( ph -> ( ( ( 1 + 1 ) ... N ) u. { 1 } ) = ( 1 ... N ) ) | 
						
							| 301 |  | iftrue |  |-  ( n = 1 -> if ( n = 1 , N , ( n - 1 ) ) = N ) | 
						
							| 302 | 301 | adantl |  |-  ( ( ph /\ n = 1 ) -> if ( n = 1 , N , ( n - 1 ) ) = N ) | 
						
							| 303 | 295 1 300 302 | fmptapd |  |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 304 | 294 303 | eqtr3id |  |-  ( ph -> ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) = ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) | 
						
							| 305 | 80 296 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 306 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 307 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 308 | 156 306 307 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 309 | 80 308 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 310 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 311 | 305 309 310 | syl2anc |  |-  ( ph -> ( 1 ... N ) = ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 312 | 80 | oveq1d |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) | 
						
							| 313 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 314 | 112 313 | syl |  |-  ( ph -> ( N ... N ) = { N } ) | 
						
							| 315 | 312 314 | eqtrd |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) | 
						
							| 316 | 315 | uneq2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 1 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 317 | 311 316 | eqtr2d |  |-  ( ph -> ( ( 1 ... ( N - 1 ) ) u. { N } ) = ( 1 ... N ) ) | 
						
							| 318 | 304 300 317 | f1oeq123d |  |-  ( ph -> ( ( ( n e. ( ( 1 + 1 ) ... N ) |-> ( n - 1 ) ) u. { <. 1 , N >. } ) : ( ( ( 1 + 1 ) ... N ) u. { 1 } ) -1-1-onto-> ( ( 1 ... ( N - 1 ) ) u. { N } ) <-> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 319 | 287 318 | mpbid |  |-  ( ph -> ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 320 |  | f1oco |  |-  ( ( ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) /\ ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 321 | 28 319 320 | syl2anc |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 322 | 98 | mptex |  |-  ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) e. _V | 
						
							| 323 | 25 322 | coex |  |-  ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) e. _V | 
						
							| 324 |  | f1oeq1 |  |-  ( f = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 325 | 323 324 | elab |  |-  ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 326 | 321 325 | sylibr |  |-  ( ph -> ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 327 | 226 326 | opelxpd |  |-  ( ph -> <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 328 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 329 |  | 0elfz |  |-  ( N e. NN0 -> 0 e. ( 0 ... N ) ) | 
						
							| 330 | 328 329 | syl |  |-  ( ph -> 0 e. ( 0 ... N ) ) | 
						
							| 331 | 327 330 | opelxpd |  |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 332 | 1 2 3 4 5 6 | poimirlem19 |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 333 |  | elfzle1 |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> 0 <_ y ) | 
						
							| 334 |  | 0re |  |-  0 e. RR | 
						
							| 335 |  | lenlt |  |-  ( ( 0 e. RR /\ y e. RR ) -> ( 0 <_ y <-> -. y < 0 ) ) | 
						
							| 336 | 334 62 335 | sylancr |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> ( 0 <_ y <-> -. y < 0 ) ) | 
						
							| 337 | 333 336 | mpbid |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> -. y < 0 ) | 
						
							| 338 | 337 | iffalsed |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> if ( y < 0 , y , ( y + 1 ) ) = ( y + 1 ) ) | 
						
							| 339 | 338 | csbeq1d |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ ( y + 1 ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 340 |  | ovex |  |-  ( y + 1 ) e. _V | 
						
							| 341 |  | oveq2 |  |-  ( j = ( y + 1 ) -> ( 1 ... j ) = ( 1 ... ( y + 1 ) ) ) | 
						
							| 342 | 341 | imaeq2d |  |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) ) | 
						
							| 343 | 342 | xpeq1d |  |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) ) | 
						
							| 344 |  | oveq1 |  |-  ( j = ( y + 1 ) -> ( j + 1 ) = ( ( y + 1 ) + 1 ) ) | 
						
							| 345 | 344 | oveq1d |  |-  ( j = ( y + 1 ) -> ( ( j + 1 ) ... N ) = ( ( ( y + 1 ) + 1 ) ... N ) ) | 
						
							| 346 | 345 | imaeq2d |  |-  ( j = ( y + 1 ) -> ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) ) | 
						
							| 347 | 346 | xpeq1d |  |-  ( j = ( y + 1 ) -> ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 348 | 343 347 | uneq12d |  |-  ( j = ( y + 1 ) -> ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 349 | 348 | oveq2d |  |-  ( j = ( y + 1 ) -> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 350 | 340 349 | csbie |  |-  [_ ( y + 1 ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 351 | 339 350 | eqtrdi |  |-  ( y e. ( 0 ... ( N - 1 ) ) -> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 352 | 351 | mpteq2ia |  |-  ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... ( y + 1 ) ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( ( y + 1 ) + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 353 | 332 352 | eqtr4di |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 354 |  | opex |  |-  <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. e. _V | 
						
							| 355 | 354 52 | op2ndd |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 2nd ` t ) = 0 ) | 
						
							| 356 | 355 | breq2d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( y < ( 2nd ` t ) <-> y < 0 ) ) | 
						
							| 357 | 356 | ifbid |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < 0 , y , ( y + 1 ) ) ) | 
						
							| 358 | 354 52 | op1std |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. ) | 
						
							| 359 | 98 | mptex |  |-  ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) e. _V | 
						
							| 360 | 359 323 | op1std |  |-  ( ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. -> ( 1st ` ( 1st ` t ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) ) | 
						
							| 361 | 358 360 | syl |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 1st ` ( 1st ` t ) ) = ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) ) | 
						
							| 362 | 359 323 | op2ndd |  |-  ( ( 1st ` t ) = <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) ) | 
						
							| 363 | 358 362 | syl |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 2nd ` ( 1st ` t ) ) = ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) ) | 
						
							| 364 | 363 | imaeq1d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) ) | 
						
							| 365 | 364 | xpeq1d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 366 | 363 | imaeq1d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 367 | 366 | xpeq1d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 368 | 365 367 | uneq12d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 369 | 361 368 | oveq12d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 370 | 357 369 | csbeq12dv |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 371 | 370 | mpteq2dv |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 372 | 371 | eqeq2d |  |-  ( t = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 373 | 372 2 | elrab2 |  |-  ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. S <-> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < 0 , y , ( y + 1 ) ) / j ]_ ( ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) oF + ( ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 374 | 331 353 373 | sylanbrc |  |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. S ) | 
						
							| 375 | 354 52 | op2ndd |  |-  ( T = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( 2nd ` T ) = 0 ) | 
						
							| 376 | 375 | eqcoms |  |-  ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. = T -> ( 2nd ` T ) = 0 ) | 
						
							| 377 | 1 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 378 | 377 | necomd |  |-  ( ph -> 0 =/= N ) | 
						
							| 379 |  | neeq1 |  |-  ( ( 2nd ` T ) = 0 -> ( ( 2nd ` T ) =/= N <-> 0 =/= N ) ) | 
						
							| 380 | 378 379 | syl5ibrcom |  |-  ( ph -> ( ( 2nd ` T ) = 0 -> ( 2nd ` T ) =/= N ) ) | 
						
							| 381 | 376 380 | syl5 |  |-  ( ph -> ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. = T -> ( 2nd ` T ) =/= N ) ) | 
						
							| 382 | 381 | necon2d |  |-  ( ph -> ( ( 2nd ` T ) = N -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T ) ) | 
						
							| 383 | 6 382 | mpd |  |-  ( ph -> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T ) | 
						
							| 384 |  | neeq1 |  |-  ( z = <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. -> ( z =/= T <-> <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T ) ) | 
						
							| 385 | 384 | rspcev |  |-  ( ( <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. e. S /\ <. <. ( n e. ( 1 ... N ) |-> ( ( ( 1st ` ( 1st ` T ) ) ` n ) - if ( n = ( ( 2nd ` ( 1st ` T ) ) ` N ) , 1 , 0 ) ) ) , ( ( 2nd ` ( 1st ` T ) ) o. ( n e. ( 1 ... N ) |-> if ( n = 1 , N , ( n - 1 ) ) ) ) >. , 0 >. =/= T ) -> E. z e. S z =/= T ) | 
						
							| 386 | 374 383 385 | syl2anc |  |-  ( ph -> E. z e. S z =/= T ) |