Metamath Proof Explorer


Theorem poimirlem20

Description: Lemma for poimir establishing existence for poimirlem21 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
poimirlem22.2 ( 𝜑𝑇𝑆 )
poimirlem22.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 0 )
poimirlem21.4 ( 𝜑 → ( 2nd𝑇 ) = 𝑁 )
Assertion poimirlem20 ( 𝜑 → ∃ 𝑧𝑆 𝑧𝑇 )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
3 poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
4 poimirlem22.2 ( 𝜑𝑇𝑆 )
5 poimirlem22.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 0 )
6 poimirlem21.4 ( 𝜑 → ( 2nd𝑇 ) = 𝑁 )
7 oveq2 ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 1 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) )
8 7 eleq1d ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 1 ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ∈ ( 0 ..^ 𝐾 ) ) )
9 oveq2 ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 0 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) )
10 9 eleq1d ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 0 ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ∈ ( 0 ..^ 𝐾 ) ) )
11 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
12 11 oveq1d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 1 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) )
13 12 adantl ( ( 𝜑𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 1 ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) )
14 elrabi ( 𝑇 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
15 14 2 eleq2s ( 𝑇𝑆𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
16 4 15 syl ( 𝜑𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
17 xp1st ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
18 16 17 syl ( 𝜑 → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
19 xp1st ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
20 18 19 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
21 elmapi ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
22 20 21 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
23 xp2nd ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
24 18 23 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
25 fvex ( 2nd ‘ ( 1st𝑇 ) ) ∈ V
26 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 1st𝑇 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
27 25 26 elab ( ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
28 24 27 sylib ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
29 f1of ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
30 28 29 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
31 elfz1end ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( 1 ... 𝑁 ) )
32 1 31 sylib ( 𝜑𝑁 ∈ ( 1 ... 𝑁 ) )
33 30 32 ffvelrnd ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) )
34 22 33 ffvelrnd ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ( 0 ..^ 𝐾 ) )
35 elfzonn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ0 )
36 34 35 syl ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ0 )
37 fvex ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ V
38 eleq1 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) )
39 38 anbi2d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ↔ ( 𝜑 ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) ) )
40 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( 𝑝𝑛 ) = ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
41 40 neeq1d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( 𝑝𝑛 ) ≠ 0 ↔ ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ) )
42 41 rexbidv ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 0 ↔ ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ) )
43 39 42 imbi12d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 0 ) ↔ ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ) ) )
44 37 43 5 vtocl ( ( 𝜑 ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 )
45 33 44 mpdan ( 𝜑 → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 )
46 fveq1 ( 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
47 22 ffnd ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
48 47 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
49 1ex 1 ∈ V
50 fnconstg ( 1 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) )
51 49 50 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) )
52 c0ex 0 ∈ V
53 fnconstg ( 0 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
54 52 53 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) )
55 51 54 pm3.2i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
56 dff1o3 ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ( 2nd ‘ ( 1st𝑇 ) ) ) )
57 56 simprbi ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ( 2nd ‘ ( 1st𝑇 ) ) )
58 28 57 syl ( 𝜑 → Fun ( 2nd ‘ ( 1st𝑇 ) ) )
59 imain ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
60 58 59 syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
61 elfznn0 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℕ0 )
62 61 nn0red ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ )
63 62 ltp1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 < ( 𝑦 + 1 ) )
64 fzdisj ( 𝑦 < ( 𝑦 + 1 ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ∅ )
65 63 64 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ∅ )
66 65 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) )
67 ima0 ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) = ∅
68 66 67 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ )
69 60 68 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ )
70 fnun ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
71 55 69 70 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
72 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
73 nn0p1nn ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ )
74 nnuz ℕ = ( ℤ ‘ 1 )
75 73 74 eleqtrdi ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) )
76 61 75 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) )
77 76 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) )
78 1 nncnd ( 𝜑𝑁 ∈ ℂ )
79 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
80 78 79 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
81 80 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
82 elfzuz3 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) )
83 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
84 82 83 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
85 84 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
86 81 85 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ𝑦 ) )
87 fzsplit2 ( ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ𝑦 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
88 77 86 87 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
89 88 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
90 f1ofo ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
91 foima ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
92 28 90 91 3syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
93 92 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
94 89 93 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
95 72 94 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
96 95 fneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) )
97 71 96 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) )
98 ovex ( 1 ... 𝑁 ) ∈ V
99 98 a1i ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) ∈ V )
100 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
101 eqidd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
102 f1ofn ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
103 28 102 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
104 103 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
105 fzss1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
106 76 105 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
107 106 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
108 eluzp1p1 ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
109 uzss ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) → ( ℤ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ⊆ ( ℤ ‘ ( 𝑦 + 1 ) ) )
110 82 108 109 3syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ℤ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ⊆ ( ℤ ‘ ( 𝑦 + 1 ) ) )
111 110 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ℤ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ⊆ ( ℤ ‘ ( 𝑦 + 1 ) ) )
112 1 nnzd ( 𝜑𝑁 ∈ ℤ )
113 112 uzidd ( 𝜑𝑁 ∈ ( ℤ𝑁 ) )
114 80 fveq2d ( 𝜑 → ( ℤ ‘ ( ( 𝑁 − 1 ) + 1 ) ) = ( ℤ𝑁 ) )
115 113 114 eleqtrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( ( 𝑁 − 1 ) + 1 ) ) )
116 115 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( ( 𝑁 − 1 ) + 1 ) ) )
117 111 116 sseldd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
118 eluzfz2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) → 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) )
119 117 118 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) )
120 fnfvima ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
121 104 107 119 120 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
122 fvun2 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
123 51 54 122 mp3an12 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
124 69 121 123 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
125 52 fvconst2 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 0 )
126 121 125 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 0 )
127 124 126 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 0 )
128 127 adantr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 0 )
129 48 97 99 99 100 101 128 ofval ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) + 0 ) )
130 33 129 mpidan ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) + 0 ) )
131 36 nn0cnd ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℂ )
132 131 addid1d ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) + 0 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
133 132 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) + 0 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
134 130 133 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
135 46 134 sylan9eqr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
136 135 adantllr ( ( ( ( 𝜑𝑝 ∈ ran 𝐹 ) ∧ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
137 fveq2 ( 𝑡 = 𝑇 → ( 2nd𝑡 ) = ( 2nd𝑇 ) )
138 137 breq2d ( 𝑡 = 𝑇 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑇 ) ) )
139 138 ifbid ( 𝑡 = 𝑇 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) )
140 2fveq3 ( 𝑡 = 𝑇 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑇 ) ) )
141 2fveq3 ( 𝑡 = 𝑇 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑇 ) ) )
142 141 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) )
143 142 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
144 141 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
145 144 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
146 143 145 uneq12d ( 𝑡 = 𝑇 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
147 140 146 oveq12d ( 𝑡 = 𝑇 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
148 139 147 csbeq12dv ( 𝑡 = 𝑇 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
149 148 mpteq2dv ( 𝑡 = 𝑇 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
150 149 eqeq2d ( 𝑡 = 𝑇 → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
151 150 2 elrab2 ( 𝑇𝑆 ↔ ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
152 151 simprbi ( 𝑇𝑆𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
153 4 152 syl ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
154 62 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℝ )
155 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
156 112 155 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
157 156 zred ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ )
158 157 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ℝ )
159 1 nnred ( 𝜑𝑁 ∈ ℝ )
160 159 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℝ )
161 elfzle2 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ≤ ( 𝑁 − 1 ) )
162 161 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ≤ ( 𝑁 − 1 ) )
163 159 ltm1d ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 )
164 163 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) < 𝑁 )
165 154 158 160 162 164 lelttrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < 𝑁 )
166 6 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd𝑇 ) = 𝑁 )
167 165 166 breqtrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < ( 2nd𝑇 ) )
168 167 iftrued ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = 𝑦 )
169 168 csbeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
170 vex 𝑦 ∈ V
171 oveq2 ( 𝑗 = 𝑦 → ( 1 ... 𝑗 ) = ( 1 ... 𝑦 ) )
172 171 imaeq2d ( 𝑗 = 𝑦 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) )
173 172 xpeq1d ( 𝑗 = 𝑦 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) )
174 oveq1 ( 𝑗 = 𝑦 → ( 𝑗 + 1 ) = ( 𝑦 + 1 ) )
175 174 oveq1d ( 𝑗 = 𝑦 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑦 + 1 ) ... 𝑁 ) )
176 175 imaeq2d ( 𝑗 = 𝑦 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
177 176 xpeq1d ( 𝑗 = 𝑦 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) )
178 173 177 uneq12d ( 𝑗 = 𝑦 → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
179 178 oveq2d ( 𝑗 = 𝑦 → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
180 170 179 csbie 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
181 169 180 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
182 181 mpteq2dva ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
183 153 182 eqtrd ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
184 183 rneqd ( 𝜑 → ran 𝐹 = ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
185 184 eleq2d ( 𝜑 → ( 𝑝 ∈ ran 𝐹𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
186 eqid ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
187 ovex ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ∈ V
188 186 187 elrnmpti ( 𝑝 ∈ ran ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
189 185 188 bitrdi ( 𝜑 → ( 𝑝 ∈ ran 𝐹 ↔ ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
190 189 biimpa ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ∃ 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) 𝑝 = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
191 136 190 r19.29a ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
192 191 neeq1d ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ( ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ↔ ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ) )
193 192 biimpd ( ( 𝜑𝑝 ∈ ran 𝐹 ) → ( ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ) )
194 193 rexlimdva ( 𝜑 → ( ∃ 𝑝 ∈ ran 𝐹 ( 𝑝 ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ) )
195 45 194 mpd ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 )
196 elnnne0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ0 ∧ ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ≠ 0 ) )
197 36 195 196 sylanbrc ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ )
198 nnm1nn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) ∈ ℕ0 )
199 197 198 syl ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) ∈ ℕ0 )
200 elfzo0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ0𝐾 ∈ ℕ ∧ ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) < 𝐾 ) )
201 34 200 sylib ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℕ0𝐾 ∈ ℕ ∧ ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) < 𝐾 ) )
202 201 simp2d ( 𝜑𝐾 ∈ ℕ )
203 199 nn0red ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) ∈ ℝ )
204 36 nn0red ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ℝ )
205 202 nnred ( 𝜑𝐾 ∈ ℝ )
206 204 ltm1d ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) < ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
207 elfzolt2 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) < 𝐾 )
208 34 207 syl ( 𝜑 → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) < 𝐾 )
209 203 204 205 206 208 lttrd ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) < 𝐾 )
210 elfzo0 ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) ∈ ( 0 ..^ 𝐾 ) ↔ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) ∈ ℕ0𝐾 ∈ ℕ ∧ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) < 𝐾 ) )
211 199 202 209 210 syl3anbrc ( 𝜑 → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) ∈ ( 0 ..^ 𝐾 ) )
212 211 adantr ( ( 𝜑𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) ∈ ( 0 ..^ 𝐾 ) )
213 13 212 eqeltrd ( ( 𝜑𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 1 ) ∈ ( 0 ..^ 𝐾 ) )
214 213 adantlr ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 1 ) ∈ ( 0 ..^ 𝐾 ) )
215 22 ffvelrnda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) )
216 elfzonn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
217 215 216 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
218 217 nn0cnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ )
219 218 subid1d ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 0 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) )
220 219 215 eqeltrd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 0 ) ∈ ( 0 ..^ 𝐾 ) )
221 220 adantr ( ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − 0 ) ∈ ( 0 ..^ 𝐾 ) )
222 8 10 214 221 ifbothda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ∈ ( 0 ..^ 𝐾 ) )
223 222 fmpttd ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
224 ovex ( 0 ..^ 𝐾 ) ∈ V
225 224 98 elmap ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
226 223 225 sylibr ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
227 simpr ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
228 1z 1 ∈ ℤ
229 peano2z ( 1 ∈ ℤ → ( 1 + 1 ) ∈ ℤ )
230 228 229 ax-mp ( 1 + 1 ) ∈ ℤ
231 112 230 jctil ( 𝜑 → ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
232 elfzelz ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑛 ∈ ℤ )
233 232 228 jctir ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
234 fzsubel ( ( ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
235 231 233 234 syl2an ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
236 227 235 mpbid ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
237 ax-1cn 1 ∈ ℂ
238 237 237 pncan3oi ( ( 1 + 1 ) − 1 ) = 1
239 238 oveq1i ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) )
240 236 239 eleqtrdi ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑛 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) )
241 240 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑛 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) )
242 simpr ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
243 156 228 jctil ( 𝜑 → ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) )
244 elfzelz ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ )
245 244 228 jctir ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) )
246 fzaddel ( ( ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
247 243 245 246 syl2an ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
248 242 247 mpbid ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) )
249 80 oveq2d ( 𝜑 → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
250 249 adantr ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
251 248 250 eleqtrd ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) )
252 232 zcnd ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑛 ∈ ℂ )
253 244 zcnd ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℂ )
254 subadd2 ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑛 − 1 ) = 𝑦 ↔ ( 𝑦 + 1 ) = 𝑛 ) )
255 237 254 mp3an2 ( ( 𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑛 − 1 ) = 𝑦 ↔ ( 𝑦 + 1 ) = 𝑛 ) )
256 eqcom ( 𝑦 = ( 𝑛 − 1 ) ↔ ( 𝑛 − 1 ) = 𝑦 )
257 eqcom ( 𝑛 = ( 𝑦 + 1 ) ↔ ( 𝑦 + 1 ) = 𝑛 )
258 255 256 257 3bitr4g ( ( 𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
259 252 253 258 syl2anr ( ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
260 259 ralrimiva ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
261 260 adantl ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
262 reu6i ( ( ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) ∧ ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) ) → ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) )
263 251 261 262 syl2anc ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) )
264 263 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) )
265 eqid ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) )
266 265 f1ompt ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑛 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) ) )
267 241 264 266 sylanbrc ( 𝜑 → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) )
268 f1osng ( ( 1 ∈ V ∧ 𝑁 ∈ ℕ ) → { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } )
269 49 1 268 sylancr ( 𝜑 → { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } )
270 157 159 ltnled ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) )
271 163 270 mpbid ( 𝜑 → ¬ 𝑁 ≤ ( 𝑁 − 1 ) )
272 elfzle2 ( 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) )
273 271 272 nsyl ( 𝜑 → ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
274 disjsn ( ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
275 273 274 sylibr ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ )
276 1re 1 ∈ ℝ
277 276 ltp1i 1 < ( 1 + 1 )
278 230 zrei ( 1 + 1 ) ∈ ℝ
279 276 278 ltnlei ( 1 < ( 1 + 1 ) ↔ ¬ ( 1 + 1 ) ≤ 1 )
280 277 279 mpbi ¬ ( 1 + 1 ) ≤ 1
281 elfzle1 ( 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 1 + 1 ) ≤ 1 )
282 280 281 mto ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 )
283 disjsn ( ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
284 282 283 mpbir ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅
285 f1oun ( ( ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) ∧ { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } ) ∧ ( ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ∧ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) ) → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
286 284 285 mpanr1 ( ( ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) ∧ { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } ) ∧ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
287 267 269 275 286 syl21anc ( 𝜑 → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
288 eleq1 ( 𝑛 = 1 → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) )
289 282 288 mtbiri ( 𝑛 = 1 → ¬ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
290 289 necon2ai ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑛 ≠ 1 )
291 ifnefalse ( 𝑛 ≠ 1 → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = ( 𝑛 − 1 ) )
292 290 291 syl ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = ( 𝑛 − 1 ) )
293 292 mpteq2ia ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) )
294 293 uneq1i ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) = ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } )
295 49 a1i ( 𝜑 → 1 ∈ V )
296 1 74 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 1 ) )
297 fzpred ( 𝑁 ∈ ( ℤ ‘ 1 ) → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
298 296 297 syl ( 𝜑 → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
299 uncom ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } )
300 298 299 eqtr2di ( 𝜑 → ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) = ( 1 ... 𝑁 ) )
301 iftrue ( 𝑛 = 1 → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = 𝑁 )
302 301 adantl ( ( 𝜑𝑛 = 1 ) → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = 𝑁 )
303 295 1 300 302 fmptapd ( 𝜑 → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
304 294 303 eqtr3id ( 𝜑 → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
305 80 296 eqeltrd ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
306 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
307 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
308 156 306 307 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
309 80 308 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
310 fzsplit2 ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
311 305 309 310 syl2anc ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
312 80 oveq1d ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑁 ... 𝑁 ) )
313 fzsn ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
314 112 313 syl ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
315 312 314 eqtrd ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = { 𝑁 } )
316 315 uneq2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
317 311 316 eqtr2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) = ( 1 ... 𝑁 ) )
318 304 300 317 f1oeq123d ( 𝜑 → ( ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
319 287 318 mpbid ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
320 f1oco ( ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
321 28 319 320 syl2anc ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
322 98 mptex ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ∈ V
323 25 322 coex ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ∈ V
324 f1oeq1 ( 𝑓 = ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
325 323 324 elab ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
326 321 325 sylibr ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
327 226 326 opelxpd ( 𝜑 → ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
328 1 nnnn0d ( 𝜑𝑁 ∈ ℕ0 )
329 0elfz ( 𝑁 ∈ ℕ0 → 0 ∈ ( 0 ... 𝑁 ) )
330 328 329 syl ( 𝜑 → 0 ∈ ( 0 ... 𝑁 ) )
331 327 330 opelxpd ( 𝜑 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
332 1 2 3 4 5 6 poimirlem19 ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
333 elfzle1 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 0 ≤ 𝑦 )
334 0re 0 ∈ ℝ
335 lenlt ( ( 0 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 0 ≤ 𝑦 ↔ ¬ 𝑦 < 0 ) )
336 334 62 335 sylancr ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 0 ≤ 𝑦 ↔ ¬ 𝑦 < 0 ) )
337 333 336 mpbid ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ¬ 𝑦 < 0 )
338 337 iffalsed ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) = ( 𝑦 + 1 ) )
339 338 csbeq1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑦 + 1 ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
340 ovex ( 𝑦 + 1 ) ∈ V
341 oveq2 ( 𝑗 = ( 𝑦 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑦 + 1 ) ) )
342 341 imaeq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
343 342 xpeq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) )
344 oveq1 ( 𝑗 = ( 𝑦 + 1 ) → ( 𝑗 + 1 ) = ( ( 𝑦 + 1 ) + 1 ) )
345 344 oveq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
346 345 imaeq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
347 346 xpeq1d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) )
348 343 347 uneq12d ( 𝑗 = ( 𝑦 + 1 ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
349 348 oveq2d ( 𝑗 = ( 𝑦 + 1 ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
350 340 349 csbie ( 𝑦 + 1 ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
351 339 350 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
352 351 mpteq2ia ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
353 332 352 eqtr4di ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
354 opex ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ ∈ V
355 354 52 op2ndd ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 2nd𝑡 ) = 0 )
356 355 breq2d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < 0 ) )
357 356 ifbid ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) )
358 354 52 op1std ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 1st𝑡 ) = ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ )
359 98 mptex ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∈ V
360 359 323 op1std ( ( 1st𝑡 ) = ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ → ( 1st ‘ ( 1st𝑡 ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) )
361 358 360 syl ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 1st ‘ ( 1st𝑡 ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) )
362 359 323 op2ndd ( ( 1st𝑡 ) = ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ → ( 2nd ‘ ( 1st𝑡 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) )
363 358 362 syl ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 2nd ‘ ( 1st𝑡 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) )
364 363 imaeq1d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) )
365 364 xpeq1d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
366 363 imaeq1d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
367 366 xpeq1d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
368 365 367 uneq12d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
369 361 368 oveq12d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
370 357 369 csbeq12dv ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
371 370 mpteq2dv ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
372 371 eqeq2d ( 𝑡 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
373 372 2 elrab2 ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ∈ 𝑆 ↔ ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < 0 , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
374 331 353 373 sylanbrc ( 𝜑 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ∈ 𝑆 )
375 354 52 op2ndd ( 𝑇 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 2nd𝑇 ) = 0 )
376 375 eqcoms ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ = 𝑇 → ( 2nd𝑇 ) = 0 )
377 1 nnne0d ( 𝜑𝑁 ≠ 0 )
378 377 necomd ( 𝜑 → 0 ≠ 𝑁 )
379 neeq1 ( ( 2nd𝑇 ) = 0 → ( ( 2nd𝑇 ) ≠ 𝑁 ↔ 0 ≠ 𝑁 ) )
380 378 379 syl5ibrcom ( 𝜑 → ( ( 2nd𝑇 ) = 0 → ( 2nd𝑇 ) ≠ 𝑁 ) )
381 376 380 syl5 ( 𝜑 → ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ = 𝑇 → ( 2nd𝑇 ) ≠ 𝑁 ) )
382 381 necon2d ( 𝜑 → ( ( 2nd𝑇 ) = 𝑁 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ≠ 𝑇 ) )
383 6 382 mpd ( 𝜑 → ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ≠ 𝑇 )
384 neeq1 ( 𝑧 = ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ → ( 𝑧𝑇 ↔ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ≠ 𝑇 ) )
385 384 rspcev ( ( ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ∈ 𝑆 ∧ ⟨ ⟨ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) , ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ⟩ , 0 ⟩ ≠ 𝑇 ) → ∃ 𝑧𝑆 𝑧𝑇 )
386 374 383 385 syl2anc ( 𝜑 → ∃ 𝑧𝑆 𝑧𝑇 )