Metamath Proof Explorer


Theorem poimirlem19

Description: Lemma for poimir establishing the vertices of the simplex in poimirlem20 . (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 ( 𝜑𝑁 ∈ ℕ )
poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
poimirlem22.2 ( 𝜑𝑇𝑆 )
poimirlem22.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 0 )
poimirlem21.4 ( 𝜑 → ( 2nd𝑇 ) = 𝑁 )
Assertion poimirlem19 ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 poimir.0 ( 𝜑𝑁 ∈ ℕ )
2 poimirlem22.s 𝑆 = { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) }
3 poimirlem22.1 ( 𝜑𝐹 : ( 0 ... ( 𝑁 − 1 ) ) ⟶ ( ( 0 ... 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
4 poimirlem22.2 ( 𝜑𝑇𝑆 )
5 poimirlem22.3 ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ∃ 𝑝 ∈ ran 𝐹 ( 𝑝𝑛 ) ≠ 0 )
6 poimirlem21.4 ( 𝜑 → ( 2nd𝑇 ) = 𝑁 )
7 fveq2 ( 𝑡 = 𝑇 → ( 2nd𝑡 ) = ( 2nd𝑇 ) )
8 7 breq2d ( 𝑡 = 𝑇 → ( 𝑦 < ( 2nd𝑡 ) ↔ 𝑦 < ( 2nd𝑇 ) ) )
9 8 ifbid ( 𝑡 = 𝑇 → if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) )
10 2fveq3 ( 𝑡 = 𝑇 → ( 1st ‘ ( 1st𝑡 ) ) = ( 1st ‘ ( 1st𝑇 ) ) )
11 2fveq3 ( 𝑡 = 𝑇 → ( 2nd ‘ ( 1st𝑡 ) ) = ( 2nd ‘ ( 1st𝑇 ) ) )
12 11 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) )
13 12 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) )
14 11 imaeq1d ( 𝑡 = 𝑇 → ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) )
15 14 xpeq1d ( 𝑡 = 𝑇 → ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) )
16 13 15 uneq12d ( 𝑡 = 𝑇 → ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
17 10 16 oveq12d ( 𝑡 = 𝑇 → ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
18 9 17 csbeq12dv ( 𝑡 = 𝑇 if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
19 18 mpteq2dv ( 𝑡 = 𝑇 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
20 19 eqeq2d ( 𝑡 = 𝑇 → ( 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ↔ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
21 20 2 elrab2 ( 𝑇𝑆 ↔ ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∧ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) ) )
22 21 simprbi ( 𝑇𝑆𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
23 4 22 syl ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
24 elrabi ( 𝑇 ∈ { 𝑡 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) ∣ 𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑡 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑡 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑡 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) } → 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
25 24 2 eleq2s ( 𝑇𝑆𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
26 4 25 syl ( 𝜑𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) )
27 xp1st ( 𝑇 ∈ ( ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) × ( 0 ... 𝑁 ) ) → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
28 26 27 syl ( 𝜑 → ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) )
29 xp1st ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
30 28 29 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) )
31 elmapfn ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
32 30 31 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
33 32 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1st ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
34 1ex 1 ∈ V
35 fnconstg ( 1 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) )
36 34 35 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) )
37 c0ex 0 ∈ V
38 fnconstg ( 0 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
39 37 38 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) )
40 36 39 pm3.2i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
41 xp2nd ( ( 1st𝑇 ) ∈ ( ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) × { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ) → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
42 28 41 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } )
43 fvex ( 2nd ‘ ( 1st𝑇 ) ) ∈ V
44 f1oeq1 ( 𝑓 = ( 2nd ‘ ( 1st𝑇 ) ) → ( 𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
45 43 44 elab ( ( 2nd ‘ ( 1st𝑇 ) ) ∈ { 𝑓𝑓 : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) } ↔ ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
46 42 45 sylib ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
47 dff1o3 ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ( 2nd ‘ ( 1st𝑇 ) ) ) )
48 47 simprbi ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ( 2nd ‘ ( 1st𝑇 ) ) )
49 46 48 syl ( 𝜑 → Fun ( 2nd ‘ ( 1st𝑇 ) ) )
50 imain ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
51 49 50 syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
52 elfznn0 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℕ0 )
53 52 nn0red ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℝ )
54 53 ltp1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 < ( 𝑦 + 1 ) )
55 fzdisj ( 𝑦 < ( 𝑦 + 1 ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ∅ )
56 54 55 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ∅ )
57 56 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) )
58 ima0 ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) = ∅
59 57 58 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ )
60 51 59 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ )
61 fnun ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
62 40 60 61 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
63 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
64 nn0p1nn ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ )
65 52 64 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℕ )
66 nnuz ℕ = ( ℤ ‘ 1 )
67 65 66 eleqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) )
68 67 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) )
69 1 nncnd ( 𝜑𝑁 ∈ ℂ )
70 npcan1 ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
71 69 70 syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
72 71 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 )
73 elfzuz3 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) )
74 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
75 73 74 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
76 75 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ𝑦 ) )
77 72 76 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ𝑦 ) )
78 fzsplit2 ( ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ𝑦 ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
79 68 77 78 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
80 79 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) )
81 f1ofo ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
82 foima ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
83 46 81 82 3syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
84 83 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
85 80 84 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
86 63 85 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
87 86 fneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ) )
88 62 87 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) )
89 ovexd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) ∈ V )
90 inidm ( ( 1 ... 𝑁 ) ∩ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 )
91 eqidd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) = ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) )
92 eqidd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
93 33 88 89 89 90 91 92 offval ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
94 elmapi ( ( 1st ‘ ( 1st𝑇 ) ) ∈ ( ( 0 ..^ 𝐾 ) ↑m ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
95 30 94 syl ( 𝜑 → ( 1st ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) ⟶ ( 0 ..^ 𝐾 ) )
96 95 ffvelrnda ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) )
97 elfzonn0 ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ( 0 ..^ 𝐾 ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
98 96 97 syl ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℕ0 )
99 98 nn0cnd ( ( 𝜑𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ )
100 99 adantlr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) ∈ ℂ )
101 ax-1cn 1 ∈ ℂ
102 0cn 0 ∈ ℂ
103 101 102 ifcli if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ∈ ℂ
104 103 a1i ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ∈ ℂ )
105 snssi ( 1 ∈ ℂ → { 1 } ⊆ ℂ )
106 101 105 ax-mp { 1 } ⊆ ℂ
107 snssi ( 0 ∈ ℂ → { 0 } ⊆ ℂ )
108 102 107 ax-mp { 0 } ⊆ ℂ
109 106 108 unssi ( { 1 } ∪ { 0 } ) ⊆ ℂ
110 34 fconst ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ⟶ { 1 }
111 37 fconst ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ { 0 }
112 110 111 pm3.2i ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ⟶ { 1 } ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ { 0 } )
113 simpr ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
114 1 nnzd ( 𝜑𝑁 ∈ ℤ )
115 1z 1 ∈ ℤ
116 peano2z ( 1 ∈ ℤ → ( 1 + 1 ) ∈ ℤ )
117 115 116 ax-mp ( 1 + 1 ) ∈ ℤ
118 114 117 jctil ( 𝜑 → ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
119 elfzelz ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑛 ∈ ℤ )
120 119 115 jctir ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
121 fzsubel ( ( ( ( 1 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
122 118 120 121 syl2an ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
123 113 122 mpbid ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
124 101 101 pncan3oi ( ( 1 + 1 ) − 1 ) = 1
125 124 oveq1i ( ( ( 1 + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( 1 ... ( 𝑁 − 1 ) )
126 123 125 eleqtrdi ( ( 𝜑𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑛 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) )
127 126 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑛 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) )
128 simpr ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
129 peano2zm ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ )
130 114 129 syl ( 𝜑 → ( 𝑁 − 1 ) ∈ ℤ )
131 130 115 jctil ( 𝜑 → ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) )
132 elfzelz ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ )
133 132 115 jctir ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) )
134 fzaddel ( ( ( 1 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
135 131 133 134 syl2an ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) ) )
136 128 135 mpbid ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) )
137 71 oveq2d ( 𝜑 → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
138 137 adantr ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( ( 1 + 1 ) ... ( ( 𝑁 − 1 ) + 1 ) ) = ( ( 1 + 1 ) ... 𝑁 ) )
139 136 138 eleqtrd ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) )
140 119 zcnd ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑛 ∈ ℂ )
141 132 zcnd ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℂ )
142 subadd2 ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑛 − 1 ) = 𝑦 ↔ ( 𝑦 + 1 ) = 𝑛 ) )
143 101 142 mp3an2 ( ( 𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( ( 𝑛 − 1 ) = 𝑦 ↔ ( 𝑦 + 1 ) = 𝑛 ) )
144 eqcom ( 𝑦 = ( 𝑛 − 1 ) ↔ ( 𝑛 − 1 ) = 𝑦 )
145 eqcom ( 𝑛 = ( 𝑦 + 1 ) ↔ ( 𝑦 + 1 ) = 𝑛 )
146 143 144 145 3bitr4g ( ( 𝑛 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
147 140 141 146 syl2anr ( ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) → ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
148 147 ralrimiva ( 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
149 148 adantl ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) )
150 reu6i ( ( ( 𝑦 + 1 ) ∈ ( ( 1 + 1 ) ... 𝑁 ) ∧ ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑦 = ( 𝑛 − 1 ) ↔ 𝑛 = ( 𝑦 + 1 ) ) ) → ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) )
151 139 149 150 syl2anc ( ( 𝜑𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ) → ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) )
152 151 ralrimiva ( 𝜑 → ∀ 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) )
153 eqid ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) )
154 153 f1ompt ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) ↔ ( ∀ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ( 𝑛 − 1 ) ∈ ( 1 ... ( 𝑁 − 1 ) ) ∧ ∀ 𝑦 ∈ ( 1 ... ( 𝑁 − 1 ) ) ∃! 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) 𝑦 = ( 𝑛 − 1 ) ) )
155 127 152 154 sylanbrc ( 𝜑 → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) )
156 f1osng ( ( 1 ∈ V ∧ 𝑁 ∈ ℕ ) → { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } )
157 34 1 156 sylancr ( 𝜑 → { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } )
158 1 nnred ( 𝜑𝑁 ∈ ℝ )
159 158 ltm1d ( 𝜑 → ( 𝑁 − 1 ) < 𝑁 )
160 130 zred ( 𝜑 → ( 𝑁 − 1 ) ∈ ℝ )
161 160 158 ltnled ( 𝜑 → ( ( 𝑁 − 1 ) < 𝑁 ↔ ¬ 𝑁 ≤ ( 𝑁 − 1 ) ) )
162 159 161 mpbid ( 𝜑 → ¬ 𝑁 ≤ ( 𝑁 − 1 ) )
163 elfzle2 ( 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) → 𝑁 ≤ ( 𝑁 − 1 ) )
164 162 163 nsyl ( 𝜑 → ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
165 disjsn ( ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ↔ ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) )
166 164 165 sylibr ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ )
167 1re 1 ∈ ℝ
168 167 ltp1i 1 < ( 1 + 1 )
169 117 zrei ( 1 + 1 ) ∈ ℝ
170 167 169 ltnlei ( 1 < ( 1 + 1 ) ↔ ¬ ( 1 + 1 ) ≤ 1 )
171 168 170 mpbi ¬ ( 1 + 1 ) ≤ 1
172 elfzle1 ( 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) → ( 1 + 1 ) ≤ 1 )
173 171 172 mto ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 )
174 disjsn ( ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ↔ ¬ 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
175 173 174 mpbir ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅
176 f1oun ( ( ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) ∧ { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } ) ∧ ( ( ( ( 1 + 1 ) ... 𝑁 ) ∩ { 1 } ) = ∅ ∧ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) ) → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
177 175 176 mpanr1 ( ( ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) : ( ( 1 + 1 ) ... 𝑁 ) –1-1-onto→ ( 1 ... ( 𝑁 − 1 ) ) ∧ { ⟨ 1 , 𝑁 ⟩ } : { 1 } –1-1-onto→ { 𝑁 } ) ∧ ( ( 1 ... ( 𝑁 − 1 ) ) ∩ { 𝑁 } ) = ∅ ) → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
178 155 157 166 177 syl21anc ( 𝜑 → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
179 eleq1 ( 𝑛 = 1 → ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↔ 1 ∈ ( ( 1 + 1 ) ... 𝑁 ) ) )
180 173 179 mtbiri ( 𝑛 = 1 → ¬ 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) )
181 180 necon2ai ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → 𝑛 ≠ 1 )
182 ifnefalse ( 𝑛 ≠ 1 → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = ( 𝑛 − 1 ) )
183 181 182 syl ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = ( 𝑛 − 1 ) )
184 183 mpteq2ia ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) )
185 184 uneq1i ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) = ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } )
186 34 a1i ( 𝜑 → 1 ∈ V )
187 1 66 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ ‘ 1 ) )
188 fzpred ( 𝑁 ∈ ( ℤ ‘ 1 ) → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
189 187 188 syl ( 𝜑 → ( 1 ... 𝑁 ) = ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) )
190 uncom ( { 1 } ∪ ( ( 1 + 1 ) ... 𝑁 ) ) = ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } )
191 189 190 eqtr2di ( 𝜑 → ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) = ( 1 ... 𝑁 ) )
192 iftrue ( 𝑛 = 1 → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = 𝑁 )
193 192 adantl ( ( 𝜑𝑛 = 1 ) → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = 𝑁 )
194 186 1 191 193 fmptapd ( 𝜑 → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
195 185 194 eqtr3id ( 𝜑 → ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
196 71 187 eqeltrd ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
197 uzid ( ( 𝑁 − 1 ) ∈ ℤ → ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
198 peano2uz ( ( 𝑁 − 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
199 130 197 198 3syl ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
200 71 199 eqeltrrd ( 𝜑𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) )
201 fzsplit2 ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
202 196 200 201 syl2anc ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
203 71 oveq1d ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = ( 𝑁 ... 𝑁 ) )
204 fzsn ( 𝑁 ∈ ℤ → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
205 114 204 syl ( 𝜑 → ( 𝑁 ... 𝑁 ) = { 𝑁 } )
206 203 205 eqtrd ( 𝜑 → ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) = { 𝑁 } )
207 206 uneq2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
208 202 207 eqtr2d ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) = ( 1 ... 𝑁 ) )
209 195 191 208 f1oeq123d ( 𝜑 → ( ( ( 𝑛 ∈ ( ( 1 + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ∪ { ⟨ 1 , 𝑁 ⟩ } ) : ( ( ( 1 + 1 ) ... 𝑁 ) ∪ { 1 } ) –1-1-onto→ ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) )
210 178 209 mpbid ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
211 f1oco ( ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
212 46 210 211 syl2anc ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) )
213 dff1o3 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) ↔ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) ∧ Fun ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) ) )
214 213 simprbi ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → Fun ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) )
215 imain ( Fun ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
216 212 214 215 3syl ( 𝜑 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
217 65 nnred ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℝ )
218 217 ltp1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) )
219 fzdisj ( ( 𝑦 + 1 ) < ( ( 𝑦 + 1 ) + 1 ) → ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
220 218 219 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ∅ )
221 220 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ∅ ) )
222 ima0 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ∅ ) = ∅
223 221 222 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∩ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
224 216 223 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ )
225 fun ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ⟶ { 1 } ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) : ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ⟶ { 0 } ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
226 112 224 225 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) )
227 imaundi ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
228 65 peano2nnd ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ℕ )
229 228 66 eleqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
230 229 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) )
231 eluzp1p1 ( ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
232 73 231 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
233 232 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
234 72 233 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) )
235 fzsplit2 ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
236 230 234 235 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
237 236 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) )
238 f1ofo ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) )
239 foima ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) : ( 1 ... 𝑁 ) –onto→ ( 1 ... 𝑁 ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
240 212 238 239 3syl ( 𝜑 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
241 240 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... 𝑁 ) ) = ( 1 ... 𝑁 ) )
242 237 241 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 ... ( 𝑦 + 1 ) ) ∪ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
243 227 242 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( 1 ... 𝑁 ) )
244 243 feq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) ⟶ ( { 1 } ∪ { 0 } ) ↔ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) ) )
245 226 244 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) : ( 1 ... 𝑁 ) ⟶ ( { 1 } ∪ { 0 } ) )
246 245 ffvelrnda ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ∈ ( { 1 } ∪ { 0 } ) )
247 109 246 sselid ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ∈ ℂ )
248 100 104 247 subadd23d ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) )
249 oveq2 ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 1 ) = ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) )
250 249 eqeq1d ( 1 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 1 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ↔ ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
251 oveq2 ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 0 ) = ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) )
252 251 eqeq1d ( 0 = if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) → ( ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 0 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ↔ ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
253 1m1e0 ( 1 − 1 ) = 0
254 f1ofn ( ( 2nd ‘ ( 1st𝑇 ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
255 46 254 syl ( 𝜑 → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
256 255 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) )
257 imassrn ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ⊆ ran ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) )
258 f1of ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
259 210 258 syl ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) ⟶ ( 1 ... 𝑁 ) )
260 259 frnd ( 𝜑 → ran ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ⊆ ( 1 ... 𝑁 ) )
261 257 260 sstrid ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ⊆ ( 1 ... 𝑁 ) )
262 261 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ⊆ ( 1 ... 𝑁 ) )
263 eqidd ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
264 eluzfz1 ( 𝑁 ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) )
265 187 264 syl ( 𝜑 → 1 ∈ ( 1 ... 𝑁 ) )
266 263 193 265 1 fvmptd ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ‘ 1 ) = 𝑁 )
267 266 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ‘ 1 ) = 𝑁 )
268 f1ofn ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) : ( 1 ... 𝑁 ) –1-1-onto→ ( 1 ... 𝑁 ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) Fn ( 1 ... 𝑁 ) )
269 210 268 syl ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) Fn ( 1 ... 𝑁 ) )
270 269 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) Fn ( 1 ... 𝑁 ) )
271 fzss2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) → ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
272 234 271 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
273 eluzfz1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
274 67 273 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
275 274 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) )
276 fnfvima ( ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) Fn ( 1 ... 𝑁 ) ∧ ( 1 ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) ∧ 1 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ‘ 1 ) ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
277 270 272 275 276 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ‘ 1 ) ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
278 267 277 eqeltrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
279 fnfvima ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ⊆ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) )
280 256 262 278 279 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) )
281 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
282 280 281 eleqtrrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
283 fnconstg ( 1 ∈ V → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) )
284 34 283 ax-mp ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) )
285 fnconstg ( 0 ∈ V → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
286 37 285 ax-mp ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
287 fvun1 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ∧ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
288 284 286 287 mp3an12 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ∩ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
289 224 282 288 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
290 34 fvconst2 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 1 )
291 282 290 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 1 )
292 289 291 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 1 )
293 292 oveq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) = ( 1 − 1 ) )
294 fzss1 ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
295 67 294 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
296 295 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
297 eluzfz2 ( 𝑁 ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) → 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) )
298 234 297 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) )
299 fnfvima ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ ( ( 𝑦 + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( ( 𝑦 + 1 ) ... 𝑁 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
300 256 296 298 299 syl3anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
301 fvun2 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ∧ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
302 36 39 301 mp3an12 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) = ∅ ∧ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
303 60 300 302 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
304 37 fvconst2 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ∈ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 0 )
305 300 304 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 0 )
306 303 305 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) = 0 )
307 253 293 306 3eqtr4a ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
308 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
309 308 oveq1d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 1 ) = ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) )
310 fveq2 ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
311 309 310 eqeq12d ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 1 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ↔ ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) − 1 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ) )
312 307 311 syl5ibrcom ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 1 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
313 312 imp ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 1 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
314 313 adantlr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 1 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
315 247 subid1d ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 0 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
316 315 adantr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 0 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
317 eldifsn ( 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
318 df-ne ( 𝑛 ≠ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ↔ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) )
319 318 anbi2i ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ 𝑛 ≠ ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
320 317 319 bitri ( 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ↔ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) )
321 fnconstg ( 0 ∈ V → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
322 37 321 ax-mp ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
323 36 322 pm3.2i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
324 imain ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
325 49 324 syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
326 fzdisj ( 𝑦 < ( 𝑦 + 1 ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ∅ )
327 54 326 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) = ∅ )
328 327 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ∅ ) )
329 328 58 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∩ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ∅ )
330 325 329 sylan9req ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ∅ )
331 fnun ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) Fn ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) ∧ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∩ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ∅ ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
332 323 330 331 sylancr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
333 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
334 202 207 eqtrd ( 𝜑 → ( 1 ... 𝑁 ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
335 334 difeq1d ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) )
336 difun2 ( ( ( 1 ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ∖ { 𝑁 } ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } )
337 335 336 eqtrdi ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( 1 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) )
338 difsn ( ¬ 𝑁 ∈ ( 1 ... ( 𝑁 − 1 ) ) → ( ( 1 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) )
339 164 338 syl ( 𝜑 → ( ( 1 ... ( 𝑁 − 1 ) ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) )
340 337 339 eqtrd ( 𝜑 → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) )
341 340 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( 1 ... ( 𝑁 − 1 ) ) )
342 73 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) )
343 fzsplit2 ( ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) ∧ ( 𝑁 − 1 ) ∈ ( ℤ𝑦 ) ) → ( 1 ... ( 𝑁 − 1 ) ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
344 68 342 343 syl2anc ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... ( 𝑁 − 1 ) ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
345 341 344 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) = ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
346 345 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) )
347 imadif ( Fun ( 2nd ‘ ( 1st𝑇 ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) ) )
348 49 347 syl ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) ) )
349 elfz1end ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( 1 ... 𝑁 ) )
350 1 349 sylib ( 𝜑𝑁 ∈ ( 1 ... 𝑁 ) )
351 fnsnfv ( ( ( 2nd ‘ ( 1st𝑇 ) ) Fn ( 1 ... 𝑁 ) ∧ 𝑁 ∈ ( 1 ... 𝑁 ) ) → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) )
352 255 350 351 syl2anc ( 𝜑 → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) )
353 352 eqcomd ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) = { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } )
354 83 353 difeq12d ( 𝜑 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑁 ) ) ∖ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
355 348 354 eqtrd ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
356 355 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑁 ) ∖ { 𝑁 } ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
357 346 356 eqtr3d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 1 ... 𝑦 ) ∪ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
358 333 357 eqtr3id ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) = ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
359 358 fneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ) ↔ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) )
360 332 359 mpbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
361 disjdifr ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ∅
362 fnconstg ( 1 ∈ V → ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } )
363 34 362 ax-mp ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) }
364 fvun1 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∧ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) )
365 363 364 mp3an2 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) )
366 fnconstg ( 0 ∈ V → ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } )
367 37 366 ax-mp ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) }
368 fvun1 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∧ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) Fn { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) )
369 367 368 mp3an2 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ‘ 𝑛 ) )
370 365 369 eqtr4d ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∧ ( ( ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∩ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ∅ ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) )
371 361 370 mpanr1 ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) Fn ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) )
372 360 371 sylan ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( 1 ... 𝑁 ) ∖ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) )
373 320 372 sylan2br ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ ( 𝑛 ∈ ( 1 ... 𝑁 ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) )
374 373 anassrs ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) )
375 imaundi ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ { 1 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ { 1 } ) )
376 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
377 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ { 1 } ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) )
378 376 377 uneq12i ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ { 1 } ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) ) )
379 375 378 eqtri ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ { 1 } ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) ) )
380 fzpred ( ( 𝑦 + 1 ) ∈ ( ℤ ‘ 1 ) → ( 1 ... ( 𝑦 + 1 ) ) = ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
381 67 380 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑦 + 1 ) ) = ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
382 uncom ( { 1 } ∪ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) = ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ { 1 } )
383 381 382 eqtrdi ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 1 ... ( 𝑦 + 1 ) ) = ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ { 1 } ) )
384 383 imaeq2d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ { 1 } ) ) )
385 384 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∪ { 1 } ) ) )
386 elfzelz ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ∈ ℤ )
387 124 a1i ( 𝑦 ∈ ℤ → ( ( 1 + 1 ) − 1 ) = 1 )
388 zcn ( 𝑦 ∈ ℤ → 𝑦 ∈ ℂ )
389 pncan1 ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 )
390 388 389 syl ( 𝑦 ∈ ℤ → ( ( 𝑦 + 1 ) − 1 ) = 𝑦 )
391 387 390 oveq12d ( 𝑦 ∈ ℤ → ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) = ( 1 ... 𝑦 ) )
392 elfzelz ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → 𝑗 ∈ ℤ )
393 392 zcnd ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → 𝑗 ∈ ℂ )
394 pncan1 ( 𝑗 ∈ ℂ → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 )
395 393 394 syl ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 )
396 395 eleq1d ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → ( ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ↔ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
397 396 ibir ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) )
398 397 adantl ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) )
399 peano2z ( 𝑦 ∈ ℤ → ( 𝑦 + 1 ) ∈ ℤ )
400 399 117 jctil ( 𝑦 ∈ ℤ → ( ( 1 + 1 ) ∈ ℤ ∧ ( 𝑦 + 1 ) ∈ ℤ ) )
401 392 peano2zd ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → ( 𝑗 + 1 ) ∈ ℤ )
402 401 115 jctir ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → ( ( 𝑗 + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) )
403 fzsubel ( ( ( ( 1 + 1 ) ∈ ℤ ∧ ( 𝑦 + 1 ) ∈ ℤ ) ∧ ( ( 𝑗 + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( 𝑗 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↔ ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
404 400 402 403 syl2an ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) → ( ( 𝑗 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↔ ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
405 398 404 mpbird ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
406 395 eqcomd ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → 𝑗 = ( ( 𝑗 + 1 ) − 1 ) )
407 406 adantl ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) → 𝑗 = ( ( 𝑗 + 1 ) − 1 ) )
408 oveq1 ( 𝑛 = ( 𝑗 + 1 ) → ( 𝑛 − 1 ) = ( ( 𝑗 + 1 ) − 1 ) )
409 408 rspceeqv ( ( ( 𝑗 + 1 ) ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ∧ 𝑗 = ( ( 𝑗 + 1 ) − 1 ) ) → ∃ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) 𝑗 = ( 𝑛 − 1 ) )
410 405 407 409 syl2anc ( ( 𝑦 ∈ ℤ ∧ 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) → ∃ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) 𝑗 = ( 𝑛 − 1 ) )
411 410 ex ( 𝑦 ∈ ℤ → ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) → ∃ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) 𝑗 = ( 𝑛 − 1 ) ) )
412 simpr ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
413 elfzelz ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → 𝑛 ∈ ℤ )
414 413 115 jctir ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
415 fzsubel ( ( ( ( 1 + 1 ) ∈ ℤ ∧ ( 𝑦 + 1 ) ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
416 400 414 415 syl2an ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
417 412 416 mpbid ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) )
418 eleq1 ( 𝑗 = ( 𝑛 − 1 ) → ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
419 417 418 syl5ibrcom ( ( 𝑦 ∈ ℤ ∧ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) → ( 𝑗 = ( 𝑛 − 1 ) → 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
420 419 rexlimdva ( 𝑦 ∈ ℤ → ( ∃ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) 𝑗 = ( 𝑛 − 1 ) → 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ) )
421 411 420 impbid ( 𝑦 ∈ ℤ → ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ↔ ∃ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) 𝑗 = ( 𝑛 − 1 ) ) )
422 eqid ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) )
423 422 elrnmpt ( 𝑗 ∈ V → ( 𝑗 ∈ ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) ↔ ∃ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) 𝑗 = ( 𝑛 − 1 ) ) )
424 423 elv ( 𝑗 ∈ ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) ↔ ∃ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) 𝑗 = ( 𝑛 − 1 ) )
425 421 424 bitr4di ( 𝑦 ∈ ℤ → ( 𝑗 ∈ ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) ↔ 𝑗 ∈ ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) ) )
426 425 eqrdv ( 𝑦 ∈ ℤ → ( ( ( 1 + 1 ) − 1 ) ... ( ( 𝑦 + 1 ) − 1 ) ) = ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) )
427 391 426 eqtr3d ( 𝑦 ∈ ℤ → ( 1 ... 𝑦 ) = ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) )
428 386 427 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 1 ... 𝑦 ) = ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) )
429 428 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑦 ) = ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) )
430 df-ima ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) = ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
431 uzid ( 1 ∈ ℤ → 1 ∈ ( ℤ ‘ 1 ) )
432 peano2uz ( 1 ∈ ( ℤ ‘ 1 ) → ( 1 + 1 ) ∈ ( ℤ ‘ 1 ) )
433 115 431 432 mp2b ( 1 + 1 ) ∈ ( ℤ ‘ 1 )
434 fzss1 ( ( 1 + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... ( 𝑦 + 1 ) ) )
435 433 434 ax-mp ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... ( 𝑦 + 1 ) )
436 435 272 sstrid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ⊆ ( 1 ... 𝑁 ) )
437 436 resmptd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
438 elfzle1 ( 1 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → ( 1 + 1 ) ≤ 1 )
439 171 438 mto ¬ 1 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) )
440 eleq1 ( 𝑛 = 1 → ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↔ 1 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
441 439 440 mtbiri ( 𝑛 = 1 → ¬ 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) )
442 441 necon2ai ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → 𝑛 ≠ 1 )
443 442 182 syl ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = ( 𝑛 − 1 ) )
444 443 mpteq2ia ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) )
445 437 444 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) = ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) )
446 445 rneqd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) = ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) )
447 430 446 eqtrid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) = ran ( 𝑛 ∈ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ↦ ( 𝑛 − 1 ) ) )
448 429 447 eqtr4d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 ... 𝑦 ) = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) )
449 448 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) )
450 266 sneqd ( 𝜑 → { ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ‘ 1 ) } = { 𝑁 } )
451 fnsnfv ( ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) Fn ( 1 ... 𝑁 ) ∧ 1 ∈ ( 1 ... 𝑁 ) ) → { ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ‘ 1 ) } = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) )
452 269 265 451 syl2anc ( 𝜑 → { ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ‘ 1 ) } = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) )
453 450 452 eqtr3d ( 𝜑 → { 𝑁 } = ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) )
454 453 imaeq2d ( 𝜑 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) ) )
455 352 454 eqtrd ( 𝜑 → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) ) )
456 455 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) ) )
457 449 456 uneq12d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( 1 + 1 ) ... ( 𝑦 + 1 ) ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ { 1 } ) ) ) )
458 379 385 457 3eqtr4a ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
459 458 xpeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) × { 1 } ) )
460 xpundir ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) )
461 459 460 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) )
462 imaco ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
463 df-ima ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
464 fzss1 ( ( ( 𝑦 + 1 ) + 1 ) ∈ ( ℤ ‘ 1 ) → ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
465 230 464 syl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ⊆ ( 1 ... 𝑁 ) )
466 465 resmptd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
467 1red ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 1 ∈ ℝ )
468 65 nnzd ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℤ )
469 468 peano2zd ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ )
470 469 zred ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 𝑦 + 1 ) + 1 ) ∈ ℝ )
471 65 nnge1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 1 ≤ ( 𝑦 + 1 ) )
472 467 217 470 471 218 lelttrd ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 1 < ( ( 𝑦 + 1 ) + 1 ) )
473 467 470 ltnled ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 1 < ( ( 𝑦 + 1 ) + 1 ) ↔ ¬ ( ( 𝑦 + 1 ) + 1 ) ≤ 1 ) )
474 472 473 mpbid ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ¬ ( ( 𝑦 + 1 ) + 1 ) ≤ 1 )
475 elfzle1 ( 1 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) → ( ( 𝑦 + 1 ) + 1 ) ≤ 1 )
476 474 475 nsyl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ¬ 1 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
477 eleq1 ( 𝑛 = 1 → ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↔ 1 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
478 477 notbid ( 𝑛 = 1 → ( ¬ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↔ ¬ 1 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
479 476 478 syl5ibrcom ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑛 = 1 → ¬ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) )
480 479 necon2ad ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) → 𝑛 ≠ 1 ) )
481 480 imp ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) → 𝑛 ≠ 1 )
482 481 182 syl ( ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ∧ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) → if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) = ( 𝑛 − 1 ) )
483 482 mpteq2dva ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) )
484 483 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) = ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) )
485 466 484 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) )
486 485 rneqd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ran ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ↾ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ran ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) )
487 463 486 eqtrid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ran ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) )
488 eqid ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) = ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) )
489 488 elrnmpt ( 𝑗 ∈ V → ( 𝑗 ∈ ran ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ↔ ∃ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) 𝑗 = ( 𝑛 − 1 ) ) )
490 489 elv ( 𝑗 ∈ ran ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ↔ ∃ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) 𝑗 = ( 𝑛 − 1 ) )
491 simpr ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) → 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
492 114 469 anim12ci ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) )
493 elfzelz ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) → 𝑛 ∈ ℤ )
494 493 115 jctir ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) → ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) )
495 fzsubel ( ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
496 492 494 495 syl2an ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) → ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
497 491 496 mpbid ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) → ( 𝑛 − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
498 eleq1 ( 𝑗 = ( 𝑛 − 1 ) → ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ↔ ( 𝑛 − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
499 497 498 syl5ibrcom ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) → ( 𝑗 = ( 𝑛 − 1 ) → 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
500 499 rexlimdva ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) 𝑗 = ( 𝑛 − 1 ) → 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
501 elfzelz ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℤ )
502 501 zcnd ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℂ )
503 502 394 syl ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → ( ( 𝑗 + 1 ) − 1 ) = 𝑗 )
504 503 eleq1d ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → ( ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ↔ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
505 504 ibir ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
506 505 adantl ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
507 501 peano2zd ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℤ )
508 507 115 jctir ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → ( ( 𝑗 + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) )
509 fzsubel ( ( ( ( ( 𝑦 + 1 ) + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑗 + 1 ) ∈ ℤ ∧ 1 ∈ ℤ ) ) → ( ( 𝑗 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↔ ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
510 492 508 509 syl2an ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↔ ( ( 𝑗 + 1 ) − 1 ) ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
511 506 510 mpbird ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
512 503 eqcomd ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → 𝑗 = ( ( 𝑗 + 1 ) − 1 ) )
513 512 adantl ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) → 𝑗 = ( ( 𝑗 + 1 ) − 1 ) )
514 408 rspceeqv ( ( ( 𝑗 + 1 ) ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ∧ 𝑗 = ( ( 𝑗 + 1 ) − 1 ) ) → ∃ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) 𝑗 = ( 𝑛 − 1 ) )
515 511 513 514 syl2anc ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) → ∃ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) 𝑗 = ( 𝑛 − 1 ) )
516 515 ex ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) → ∃ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) 𝑗 = ( 𝑛 − 1 ) ) )
517 500 516 impbid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ∃ 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) 𝑗 = ( 𝑛 − 1 ) ↔ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
518 490 517 syl5bb ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 ∈ ran ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) ↔ 𝑗 ∈ ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) ) )
519 518 eqrdv ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ran ( 𝑛 ∈ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ↦ ( 𝑛 − 1 ) ) = ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) )
520 65 nncnd ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑦 + 1 ) ∈ ℂ )
521 pncan1 ( ( 𝑦 + 1 ) ∈ ℂ → ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) = ( 𝑦 + 1 ) )
522 520 521 syl ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) = ( 𝑦 + 1 ) )
523 522 oveq1d ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
524 523 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 𝑦 + 1 ) + 1 ) − 1 ) ... ( 𝑁 − 1 ) ) = ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
525 487 519 524 3eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) )
526 525 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
527 462 526 eqtrid ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) )
528 527 xpeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) )
529 461 528 uneq12d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) )
530 un23 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) )
531 529 530 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) )
532 531 fveq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) )
533 532 ad2antrr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 1 } ) ) ‘ 𝑛 ) )
534 imaundi ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) )
535 fzsplit2 ( ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ ‘ ( 𝑦 + 1 ) ) ∧ 𝑁 ∈ ( ℤ ‘ ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
536 232 200 535 syl2anr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) )
537 206 uneq2d ( 𝜑 → ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
538 537 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ ( ( ( 𝑁 − 1 ) + 1 ) ... 𝑁 ) ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
539 536 538 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑦 + 1 ) ... 𝑁 ) = ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) )
540 539 imaeq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ∪ { 𝑁 } ) ) )
541 352 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } = ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) )
542 541 uneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ∪ ( ( 2nd ‘ ( 1st𝑇 ) ) “ { 𝑁 } ) ) )
543 534 540 542 3eqtr4a ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) )
544 543 xpeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) × { 0 } ) )
545 xpundir ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) ∪ { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } ) × { 0 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) )
546 544 545 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) )
547 546 uneq2d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ) )
548 unass ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) )
549 547 548 eqtr4di ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) )
550 549 fveq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) )
551 550 ad2antrr ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... ( 𝑁 − 1 ) ) ) × { 0 } ) ) ∪ ( { ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) } × { 0 } ) ) ‘ 𝑛 ) )
552 374 533 551 3eqtr4d ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
553 316 552 eqtrd ( ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) ∧ ¬ 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − 0 ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
554 250 252 314 553 ifbothda ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) = ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) )
555 554 oveq2d ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) = ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
556 248 555 eqtr2d ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) = ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
557 556 mpteq2dva ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
558 93 557 eqtrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
559 53 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ∈ ℝ )
560 160 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) ∈ ℝ )
561 158 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ℝ )
562 elfzle2 ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑦 ≤ ( 𝑁 − 1 ) )
563 562 adantl ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 ≤ ( 𝑁 − 1 ) )
564 159 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑁 − 1 ) < 𝑁 )
565 559 560 561 563 564 lelttrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < 𝑁 )
566 6 adantr ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2nd𝑇 ) = 𝑁 )
567 565 566 breqtrrd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑦 < ( 2nd𝑇 ) )
568 567 iftrued ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) = 𝑦 )
569 568 csbeq1d ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
570 vex 𝑦 ∈ V
571 oveq2 ( 𝑗 = 𝑦 → ( 1 ... 𝑗 ) = ( 1 ... 𝑦 ) )
572 571 imaeq2d ( 𝑗 = 𝑦 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) )
573 572 xpeq1d ( 𝑗 = 𝑦 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) )
574 oveq1 ( 𝑗 = 𝑦 → ( 𝑗 + 1 ) = ( 𝑦 + 1 ) )
575 574 oveq1d ( 𝑗 = 𝑦 → ( ( 𝑗 + 1 ) ... 𝑁 ) = ( ( 𝑦 + 1 ) ... 𝑁 ) )
576 575 imaeq2d ( 𝑗 = 𝑦 → ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) = ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) )
577 576 xpeq1d ( 𝑗 = 𝑦 → ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) = ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) )
578 573 577 uneq12d ( 𝑗 = 𝑦 → ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
579 578 oveq2d ( 𝑗 = 𝑦 → ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
580 570 579 csbie 𝑦 / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) )
581 569 580 eqtrdi ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑦 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑦 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
582 ovexd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ∈ V )
583 fvexd ( ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ∈ V )
584 eqidd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) )
585 245 ffnd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) )
586 nfcv 𝑛 ( 2nd ‘ ( 1st𝑇 ) )
587 nfmpt1 𝑛 ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) )
588 586 587 nfco 𝑛 ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) )
589 nfcv 𝑛 ( 1 ... ( 𝑦 + 1 ) )
590 588 589 nfima 𝑛 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) )
591 nfcv 𝑛 { 1 }
592 590 591 nfxp 𝑛 ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } )
593 nfcv 𝑛 ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 )
594 588 593 nfima 𝑛 ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) )
595 nfcv 𝑛 { 0 }
596 594 595 nfxp 𝑛 ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } )
597 592 596 nfun 𝑛 ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) )
598 597 dffn5f ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) Fn ( 1 ... 𝑁 ) ↔ ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
599 585 598 sylib ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) )
600 89 582 583 584 599 offval2 ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) + ( ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ‘ 𝑛 ) ) ) )
601 558 581 600 3eqtr4rd ( ( 𝜑𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) = if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) )
602 601 mpteq2dva ( 𝜑 → ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ if ( 𝑦 < ( 2nd𝑇 ) , 𝑦 , ( 𝑦 + 1 ) ) / 𝑗 ( ( 1st ‘ ( 1st𝑇 ) ) ∘f + ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( 1 ... 𝑗 ) ) × { 1 } ) ∪ ( ( ( 2nd ‘ ( 1st𝑇 ) ) “ ( ( 𝑗 + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )
603 23 602 eqtr4d ( 𝜑𝐹 = ( 𝑦 ∈ ( 0 ... ( 𝑁 − 1 ) ) ↦ ( ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ ( ( ( 1st ‘ ( 1st𝑇 ) ) ‘ 𝑛 ) − if ( 𝑛 = ( ( 2nd ‘ ( 1st𝑇 ) ) ‘ 𝑁 ) , 1 , 0 ) ) ) ∘f + ( ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( 1 ... ( 𝑦 + 1 ) ) ) × { 1 } ) ∪ ( ( ( ( 2nd ‘ ( 1st𝑇 ) ) ∘ ( 𝑛 ∈ ( 1 ... 𝑁 ) ↦ if ( 𝑛 = 1 , 𝑁 , ( 𝑛 − 1 ) ) ) ) “ ( ( ( 𝑦 + 1 ) + 1 ) ... 𝑁 ) ) × { 0 } ) ) ) ) )