Step |
Hyp |
Ref |
Expression |
1 |
|
poimir.0 |
|- ( ph -> N e. NN ) |
2 |
|
poimirlem22.s |
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } |
3 |
|
poimirlem22.1 |
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) |
4 |
|
poimirlem22.2 |
|- ( ph -> T e. S ) |
5 |
|
poimirlem22.3 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 ) |
6 |
|
poimirlem21.4 |
|- ( ph -> ( 2nd ` T ) = N ) |
7 |
1 2 3 4 5 6
|
poimirlem20 |
|- ( ph -> E. z e. S z =/= T ) |
8 |
6
|
adantr |
|- ( ( ph /\ z e. S ) -> ( 2nd ` T ) = N ) |
9 |
1
|
nnred |
|- ( ph -> N e. RR ) |
10 |
9
|
ltm1d |
|- ( ph -> ( N - 1 ) < N ) |
11 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
12 |
1 11
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
13 |
12
|
nn0red |
|- ( ph -> ( N - 1 ) e. RR ) |
14 |
13 9
|
ltnled |
|- ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) |
15 |
10 14
|
mpbid |
|- ( ph -> -. N <_ ( N - 1 ) ) |
16 |
|
elfzle2 |
|- ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) |
17 |
15 16
|
nsyl |
|- ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) |
18 |
|
eleq1 |
|- ( ( 2nd ` z ) = N -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) ) |
19 |
18
|
notbid |
|- ( ( 2nd ` z ) = N -> ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) <-> -. N e. ( 1 ... ( N - 1 ) ) ) ) |
20 |
17 19
|
syl5ibrcom |
|- ( ph -> ( ( 2nd ` z ) = N -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) |
21 |
20
|
necon2ad |
|- ( ph -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` z ) =/= N ) ) |
22 |
21
|
adantr |
|- ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` z ) =/= N ) ) |
23 |
1
|
ad2antrr |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> N e. NN ) |
24 |
|
fveq2 |
|- ( t = z -> ( 2nd ` t ) = ( 2nd ` z ) ) |
25 |
24
|
breq2d |
|- ( t = z -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` z ) ) ) |
26 |
25
|
ifbid |
|- ( t = z -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) ) |
27 |
26
|
csbeq1d |
|- ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
28 |
|
2fveq3 |
|- ( t = z -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` z ) ) ) |
29 |
|
2fveq3 |
|- ( t = z -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` z ) ) ) |
30 |
29
|
imaeq1d |
|- ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) ) |
31 |
30
|
xpeq1d |
|- ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
32 |
29
|
imaeq1d |
|- ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) ) |
33 |
32
|
xpeq1d |
|- ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
34 |
31 33
|
uneq12d |
|- ( t = z -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
35 |
28 34
|
oveq12d |
|- ( t = z -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
36 |
35
|
csbeq2dv |
|- ( t = z -> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
37 |
27 36
|
eqtrd |
|- ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
38 |
37
|
mpteq2dv |
|- ( t = z -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
39 |
38
|
eqeq2d |
|- ( t = z -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
40 |
39 2
|
elrab2 |
|- ( z e. S <-> ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
41 |
40
|
simprbi |
|- ( z e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
42 |
41
|
ad2antlr |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
43 |
|
elrabi |
|- ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
44 |
43 2
|
eleq2s |
|- ( z e. S -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
45 |
|
xp1st |
|- ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
46 |
44 45
|
syl |
|- ( z e. S -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
47 |
|
xp1st |
|- ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
48 |
46 47
|
syl |
|- ( z e. S -> ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
49 |
|
elmapi |
|- ( ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
50 |
48 49
|
syl |
|- ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
51 |
|
elfzoelz |
|- ( n e. ( 0 ..^ K ) -> n e. ZZ ) |
52 |
51
|
ssriv |
|- ( 0 ..^ K ) C_ ZZ |
53 |
|
fss |
|- ( ( ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) |
54 |
50 52 53
|
sylancl |
|- ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) |
55 |
54
|
ad2antlr |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) |
56 |
|
xp2nd |
|- ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
57 |
46 56
|
syl |
|- ( z e. S -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
58 |
|
fvex |
|- ( 2nd ` ( 1st ` z ) ) e. _V |
59 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` z ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
60 |
58 59
|
elab |
|- ( ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
61 |
57 60
|
sylib |
|- ( z e. S -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
62 |
61
|
ad2antlr |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
63 |
|
simpr |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) |
64 |
23 42 55 62 63
|
poimirlem1 |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) |
65 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> N e. NN ) |
66 |
|
fveq2 |
|- ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) |
67 |
66
|
breq2d |
|- ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) |
68 |
67
|
ifbid |
|- ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) |
69 |
68
|
csbeq1d |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
70 |
|
2fveq3 |
|- ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) |
71 |
|
2fveq3 |
|- ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) |
72 |
71
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) |
73 |
72
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) |
74 |
71
|
imaeq1d |
|- ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) |
75 |
74
|
xpeq1d |
|- ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) |
76 |
73 75
|
uneq12d |
|- ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) |
77 |
70 76
|
oveq12d |
|- ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
78 |
77
|
csbeq2dv |
|- ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
79 |
69 78
|
eqtrd |
|- ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) |
80 |
79
|
mpteq2dv |
|- ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
81 |
80
|
eqeq2d |
|- ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
82 |
81 2
|
elrab2 |
|- ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) |
83 |
82
|
simprbi |
|- ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
84 |
4 83
|
syl |
|- ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
85 |
84
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) |
86 |
|
elrabi |
|- ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
87 |
86 2
|
eleq2s |
|- ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
88 |
4 87
|
syl |
|- ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) |
89 |
|
xp1st |
|- ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
90 |
88 89
|
syl |
|- ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) |
91 |
|
xp1st |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
92 |
90 91
|
syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) |
93 |
|
elmapi |
|- ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
94 |
92 93
|
syl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) |
95 |
|
fss |
|- ( ( ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) |
96 |
94 52 95
|
sylancl |
|- ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) |
97 |
96
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) |
98 |
|
xp2nd |
|- ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
99 |
90 98
|
syl |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) |
100 |
|
fvex |
|- ( 2nd ` ( 1st ` T ) ) e. _V |
101 |
|
f1oeq1 |
|- ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) |
102 |
100 101
|
elab |
|- ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
103 |
99 102
|
sylib |
|- ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
104 |
103
|
ad2antrr |
|- ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) |
105 |
|
simplr |
|- ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) |
106 |
|
xp2nd |
|- ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` T ) e. ( 0 ... N ) ) |
107 |
88 106
|
syl |
|- ( ph -> ( 2nd ` T ) e. ( 0 ... N ) ) |
108 |
107
|
adantr |
|- ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) e. ( 0 ... N ) ) |
109 |
|
eldifsn |
|- ( ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) <-> ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) ) |
110 |
109
|
biimpri |
|- ( ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) ) |
111 |
108 110
|
sylan |
|- ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) ) |
112 |
65 85 97 104 105 111
|
poimirlem2 |
|- ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) |
113 |
112
|
ex |
|- ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= ( 2nd ` z ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) ) |
114 |
113
|
necon1bd |
|- ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) ) |
115 |
114
|
adantlr |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) ) |
116 |
64 115
|
mpd |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = ( 2nd ` z ) ) |
117 |
116
|
neeq1d |
|- ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= N <-> ( 2nd ` z ) =/= N ) ) |
118 |
117
|
exbiri |
|- ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( ( 2nd ` z ) =/= N -> ( 2nd ` T ) =/= N ) ) ) |
119 |
22 118
|
mpdd |
|- ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) =/= N ) ) |
120 |
119
|
necon2bd |
|- ( ( ph /\ z e. S ) -> ( ( 2nd ` T ) = N -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) |
121 |
8 120
|
mpd |
|- ( ( ph /\ z e. S ) -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) |
122 |
|
xp2nd |
|- ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` z ) e. ( 0 ... N ) ) |
123 |
44 122
|
syl |
|- ( z e. S -> ( 2nd ` z ) e. ( 0 ... N ) ) |
124 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
125 |
12 124
|
eleqtrdi |
|- ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
126 |
|
fzpred |
|- ( ( N - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) ) |
127 |
125 126
|
syl |
|- ( ph -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) ) |
128 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
129 |
128
|
oveq1i |
|- ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) |
130 |
129
|
uneq2i |
|- ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) = ( { 0 } u. ( 1 ... ( N - 1 ) ) ) |
131 |
127 130
|
eqtrdi |
|- ( ph -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) |
132 |
131
|
eleq2d |
|- ( ph -> ( ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) ) |
133 |
132
|
notbid |
|- ( ph -> ( -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> -. ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) ) |
134 |
|
ioran |
|- ( -. ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) |
135 |
|
elun |
|- ( ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. { 0 } \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) |
136 |
|
fvex |
|- ( 2nd ` z ) e. _V |
137 |
136
|
elsn |
|- ( ( 2nd ` z ) e. { 0 } <-> ( 2nd ` z ) = 0 ) |
138 |
137
|
orbi1i |
|- ( ( ( 2nd ` z ) e. { 0 } \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) |
139 |
135 138
|
bitri |
|- ( ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) |
140 |
134 139
|
xchnxbir |
|- ( -. ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) |
141 |
133 140
|
bitrdi |
|- ( ph -> ( -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) ) |
142 |
141
|
anbi2d |
|- ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) ) ) |
143 |
|
uncom |
|- ( ( 0 ... ( N - 1 ) ) u. { N } ) = ( { N } u. ( 0 ... ( N - 1 ) ) ) |
144 |
143
|
difeq1i |
|- ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) = ( ( { N } u. ( 0 ... ( N - 1 ) ) ) \ ( 0 ... ( N - 1 ) ) ) |
145 |
|
difun2 |
|- ( ( { N } u. ( 0 ... ( N - 1 ) ) ) \ ( 0 ... ( N - 1 ) ) ) = ( { N } \ ( 0 ... ( N - 1 ) ) ) |
146 |
144 145
|
eqtri |
|- ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) = ( { N } \ ( 0 ... ( N - 1 ) ) ) |
147 |
1
|
nncnd |
|- ( ph -> N e. CC ) |
148 |
|
npcan1 |
|- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
149 |
147 148
|
syl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
150 |
1
|
nnnn0d |
|- ( ph -> N e. NN0 ) |
151 |
150 124
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 0 ) ) |
152 |
149 151
|
eqeltrd |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) ) |
153 |
12
|
nn0zd |
|- ( ph -> ( N - 1 ) e. ZZ ) |
154 |
|
uzid |
|- ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
155 |
|
peano2uz |
|- ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
156 |
153 154 155
|
3syl |
|- ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) |
157 |
149 156
|
eqeltrrd |
|- ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
158 |
|
fzsplit2 |
|- ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
159 |
152 157 158
|
syl2anc |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) |
160 |
149
|
oveq1d |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) |
161 |
1
|
nnzd |
|- ( ph -> N e. ZZ ) |
162 |
|
fzsn |
|- ( N e. ZZ -> ( N ... N ) = { N } ) |
163 |
161 162
|
syl |
|- ( ph -> ( N ... N ) = { N } ) |
164 |
160 163
|
eqtrd |
|- ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) |
165 |
164
|
uneq2d |
|- ( ph -> ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
166 |
159 165
|
eqtrd |
|- ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) |
167 |
166
|
difeq1d |
|- ( ph -> ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) = ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) ) |
168 |
|
elfzle2 |
|- ( N e. ( 0 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) |
169 |
15 168
|
nsyl |
|- ( ph -> -. N e. ( 0 ... ( N - 1 ) ) ) |
170 |
|
incom |
|- ( ( 0 ... ( N - 1 ) ) i^i { N } ) = ( { N } i^i ( 0 ... ( N - 1 ) ) ) |
171 |
170
|
eqeq1i |
|- ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> ( { N } i^i ( 0 ... ( N - 1 ) ) ) = (/) ) |
172 |
|
disjsn |
|- ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 0 ... ( N - 1 ) ) ) |
173 |
|
disj3 |
|- ( ( { N } i^i ( 0 ... ( N - 1 ) ) ) = (/) <-> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) ) |
174 |
171 172 173
|
3bitr3i |
|- ( -. N e. ( 0 ... ( N - 1 ) ) <-> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) ) |
175 |
169 174
|
sylib |
|- ( ph -> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) ) |
176 |
146 167 175
|
3eqtr4a |
|- ( ph -> ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) = { N } ) |
177 |
176
|
eleq2d |
|- ( ph -> ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) <-> ( 2nd ` z ) e. { N } ) ) |
178 |
|
eldif |
|- ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) ) |
179 |
136
|
elsn |
|- ( ( 2nd ` z ) e. { N } <-> ( 2nd ` z ) = N ) |
180 |
177 178 179
|
3bitr3g |
|- ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) <-> ( 2nd ` z ) = N ) ) |
181 |
142 180
|
bitr3d |
|- ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) <-> ( 2nd ` z ) = N ) ) |
182 |
181
|
biimpd |
|- ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) -> ( 2nd ` z ) = N ) ) |
183 |
182
|
expdimp |
|- ( ( ph /\ ( 2nd ` z ) e. ( 0 ... N ) ) -> ( ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) = N ) ) |
184 |
123 183
|
sylan2 |
|- ( ( ph /\ z e. S ) -> ( ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) = N ) ) |
185 |
121 184
|
mpan2d |
|- ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = 0 -> ( 2nd ` z ) = N ) ) |
186 |
1 2 3
|
poimirlem14 |
|- ( ph -> E* z e. S ( 2nd ` z ) = N ) |
187 |
|
fveqeq2 |
|- ( z = s -> ( ( 2nd ` z ) = N <-> ( 2nd ` s ) = N ) ) |
188 |
187
|
rmo4 |
|- ( E* z e. S ( 2nd ` z ) = N <-> A. z e. S A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) ) |
189 |
186 188
|
sylib |
|- ( ph -> A. z e. S A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) ) |
190 |
189
|
r19.21bi |
|- ( ( ph /\ z e. S ) -> A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) ) |
191 |
4
|
adantr |
|- ( ( ph /\ z e. S ) -> T e. S ) |
192 |
|
fveqeq2 |
|- ( s = T -> ( ( 2nd ` s ) = N <-> ( 2nd ` T ) = N ) ) |
193 |
192
|
anbi2d |
|- ( s = T -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) <-> ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) ) ) |
194 |
|
eqeq2 |
|- ( s = T -> ( z = s <-> z = T ) ) |
195 |
193 194
|
imbi12d |
|- ( s = T -> ( ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) <-> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) ) |
196 |
195
|
rspccv |
|- ( A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) -> ( T e. S -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) ) |
197 |
190 191 196
|
sylc |
|- ( ( ph /\ z e. S ) -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) |
198 |
8 197
|
mpan2d |
|- ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) = N -> z = T ) ) |
199 |
185 198
|
syld |
|- ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = 0 -> z = T ) ) |
200 |
199
|
necon1ad |
|- ( ( ph /\ z e. S ) -> ( z =/= T -> ( 2nd ` z ) = 0 ) ) |
201 |
200
|
ralrimiva |
|- ( ph -> A. z e. S ( z =/= T -> ( 2nd ` z ) = 0 ) ) |
202 |
1 2 3
|
poimirlem13 |
|- ( ph -> E* z e. S ( 2nd ` z ) = 0 ) |
203 |
|
rmoim |
|- ( A. z e. S ( z =/= T -> ( 2nd ` z ) = 0 ) -> ( E* z e. S ( 2nd ` z ) = 0 -> E* z e. S z =/= T ) ) |
204 |
201 202 203
|
sylc |
|- ( ph -> E* z e. S z =/= T ) |
205 |
|
reu5 |
|- ( E! z e. S z =/= T <-> ( E. z e. S z =/= T /\ E* z e. S z =/= T ) ) |
206 |
7 204 205
|
sylanbrc |
|- ( ph -> E! z e. S z =/= T ) |