Metamath Proof Explorer


Theorem poimirlem21

Description: Lemma for poimir stating that, given a face not on a back face of the cube and a simplex in which it's opposite the final point of the walk, there exists exactly one other simplex containing it. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0
|- ( ph -> N e. NN )
poimirlem22.s
|- S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
poimirlem22.1
|- ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
poimirlem22.2
|- ( ph -> T e. S )
poimirlem22.3
|- ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 )
poimirlem21.4
|- ( ph -> ( 2nd ` T ) = N )
Assertion poimirlem21
|- ( ph -> E! z e. S z =/= T )

Proof

Step Hyp Ref Expression
1 poimir.0
 |-  ( ph -> N e. NN )
2 poimirlem22.s
 |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) }
3 poimirlem22.1
 |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) )
4 poimirlem22.2
 |-  ( ph -> T e. S )
5 poimirlem22.3
 |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 )
6 poimirlem21.4
 |-  ( ph -> ( 2nd ` T ) = N )
7 1 2 3 4 5 6 poimirlem20
 |-  ( ph -> E. z e. S z =/= T )
8 6 adantr
 |-  ( ( ph /\ z e. S ) -> ( 2nd ` T ) = N )
9 1 nnred
 |-  ( ph -> N e. RR )
10 9 ltm1d
 |-  ( ph -> ( N - 1 ) < N )
11 nnm1nn0
 |-  ( N e. NN -> ( N - 1 ) e. NN0 )
12 1 11 syl
 |-  ( ph -> ( N - 1 ) e. NN0 )
13 12 nn0red
 |-  ( ph -> ( N - 1 ) e. RR )
14 13 9 ltnled
 |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) )
15 10 14 mpbid
 |-  ( ph -> -. N <_ ( N - 1 ) )
16 elfzle2
 |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) )
17 15 16 nsyl
 |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) )
18 eleq1
 |-  ( ( 2nd ` z ) = N -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) )
19 18 notbid
 |-  ( ( 2nd ` z ) = N -> ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) <-> -. N e. ( 1 ... ( N - 1 ) ) ) )
20 17 19 syl5ibrcom
 |-  ( ph -> ( ( 2nd ` z ) = N -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) )
21 20 necon2ad
 |-  ( ph -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` z ) =/= N ) )
22 21 adantr
 |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` z ) =/= N ) )
23 1 ad2antrr
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> N e. NN )
24 fveq2
 |-  ( t = z -> ( 2nd ` t ) = ( 2nd ` z ) )
25 24 breq2d
 |-  ( t = z -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` z ) ) )
26 25 ifbid
 |-  ( t = z -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) )
27 26 csbeq1d
 |-  ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
28 2fveq3
 |-  ( t = z -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` z ) ) )
29 2fveq3
 |-  ( t = z -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` z ) ) )
30 29 imaeq1d
 |-  ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) )
31 30 xpeq1d
 |-  ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) )
32 29 imaeq1d
 |-  ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) )
33 32 xpeq1d
 |-  ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
34 31 33 uneq12d
 |-  ( t = z -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
35 28 34 oveq12d
 |-  ( t = z -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
36 35 csbeq2dv
 |-  ( t = z -> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
37 27 36 eqtrd
 |-  ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
38 37 mpteq2dv
 |-  ( t = z -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
39 38 eqeq2d
 |-  ( t = z -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
40 39 2 elrab2
 |-  ( z e. S <-> ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
41 40 simprbi
 |-  ( z e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
42 41 ad2antlr
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
43 elrabi
 |-  ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
44 43 2 eleq2s
 |-  ( z e. S -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
45 xp1st
 |-  ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
46 44 45 syl
 |-  ( z e. S -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
47 xp1st
 |-  ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
48 46 47 syl
 |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
49 elmapi
 |-  ( ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
50 48 49 syl
 |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
51 elfzoelz
 |-  ( n e. ( 0 ..^ K ) -> n e. ZZ )
52 51 ssriv
 |-  ( 0 ..^ K ) C_ ZZ
53 fss
 |-  ( ( ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ )
54 50 52 53 sylancl
 |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ )
55 54 ad2antlr
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ )
56 xp2nd
 |-  ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
57 46 56 syl
 |-  ( z e. S -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
58 fvex
 |-  ( 2nd ` ( 1st ` z ) ) e. _V
59 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` z ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
60 58 59 elab
 |-  ( ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
61 57 60 sylib
 |-  ( z e. S -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
62 61 ad2antlr
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
63 simpr
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) )
64 23 42 55 62 63 poimirlem1
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) )
65 1 ad2antrr
 |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> N e. NN )
66 fveq2
 |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) )
67 66 breq2d
 |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) )
68 67 ifbid
 |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) )
69 68 csbeq1d
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
70 2fveq3
 |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) )
71 2fveq3
 |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) )
72 71 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) )
73 72 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) )
74 71 imaeq1d
 |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) )
75 74 xpeq1d
 |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) )
76 73 75 uneq12d
 |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) )
77 70 76 oveq12d
 |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
78 77 csbeq2dv
 |-  ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
79 69 78 eqtrd
 |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) )
80 79 mpteq2dv
 |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
81 80 eqeq2d
 |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
82 81 2 elrab2
 |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) )
83 82 simprbi
 |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
84 4 83 syl
 |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
85 84 ad2antrr
 |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) )
86 elrabi
 |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
87 86 2 eleq2s
 |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
88 4 87 syl
 |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) )
89 xp1st
 |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
90 88 89 syl
 |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
91 xp1st
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
92 90 91 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) )
93 elmapi
 |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
94 92 93 syl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) )
95 fss
 |-  ( ( ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ )
96 94 52 95 sylancl
 |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ )
97 96 ad2antrr
 |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ )
98 xp2nd
 |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
99 90 98 syl
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
100 fvex
 |-  ( 2nd ` ( 1st ` T ) ) e. _V
101 f1oeq1
 |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
102 100 101 elab
 |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
103 99 102 sylib
 |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
104 103 ad2antrr
 |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
105 simplr
 |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) )
106 xp2nd
 |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` T ) e. ( 0 ... N ) )
107 88 106 syl
 |-  ( ph -> ( 2nd ` T ) e. ( 0 ... N ) )
108 107 adantr
 |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) e. ( 0 ... N ) )
109 eldifsn
 |-  ( ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) <-> ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) )
110 109 biimpri
 |-  ( ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) )
111 108 110 sylan
 |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) )
112 65 85 97 104 105 111 poimirlem2
 |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) )
113 112 ex
 |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= ( 2nd ` z ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) )
114 113 necon1bd
 |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) )
115 114 adantlr
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) )
116 64 115 mpd
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = ( 2nd ` z ) )
117 116 neeq1d
 |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= N <-> ( 2nd ` z ) =/= N ) )
118 117 exbiri
 |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( ( 2nd ` z ) =/= N -> ( 2nd ` T ) =/= N ) ) )
119 22 118 mpdd
 |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) =/= N ) )
120 119 necon2bd
 |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` T ) = N -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) )
121 8 120 mpd
 |-  ( ( ph /\ z e. S ) -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) )
122 xp2nd
 |-  ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` z ) e. ( 0 ... N ) )
123 44 122 syl
 |-  ( z e. S -> ( 2nd ` z ) e. ( 0 ... N ) )
124 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
125 12 124 eleqtrdi
 |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) )
126 fzpred
 |-  ( ( N - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) )
127 125 126 syl
 |-  ( ph -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) )
128 0p1e1
 |-  ( 0 + 1 ) = 1
129 128 oveq1i
 |-  ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) )
130 129 uneq2i
 |-  ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) = ( { 0 } u. ( 1 ... ( N - 1 ) ) )
131 127 130 eqtrdi
 |-  ( ph -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( 1 ... ( N - 1 ) ) ) )
132 131 eleq2d
 |-  ( ph -> ( ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) )
133 132 notbid
 |-  ( ph -> ( -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> -. ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) )
134 ioran
 |-  ( -. ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) )
135 elun
 |-  ( ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. { 0 } \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) )
136 fvex
 |-  ( 2nd ` z ) e. _V
137 136 elsn
 |-  ( ( 2nd ` z ) e. { 0 } <-> ( 2nd ` z ) = 0 )
138 137 orbi1i
 |-  ( ( ( 2nd ` z ) e. { 0 } \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) )
139 135 138 bitri
 |-  ( ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) )
140 134 139 xchnxbir
 |-  ( -. ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) )
141 133 140 bitrdi
 |-  ( ph -> ( -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) )
142 141 anbi2d
 |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) ) )
143 uncom
 |-  ( ( 0 ... ( N - 1 ) ) u. { N } ) = ( { N } u. ( 0 ... ( N - 1 ) ) )
144 143 difeq1i
 |-  ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) = ( ( { N } u. ( 0 ... ( N - 1 ) ) ) \ ( 0 ... ( N - 1 ) ) )
145 difun2
 |-  ( ( { N } u. ( 0 ... ( N - 1 ) ) ) \ ( 0 ... ( N - 1 ) ) ) = ( { N } \ ( 0 ... ( N - 1 ) ) )
146 144 145 eqtri
 |-  ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) = ( { N } \ ( 0 ... ( N - 1 ) ) )
147 1 nncnd
 |-  ( ph -> N e. CC )
148 npcan1
 |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N )
149 147 148 syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) = N )
150 1 nnnn0d
 |-  ( ph -> N e. NN0 )
151 150 124 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 0 ) )
152 149 151 eqeltrd
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) )
153 12 nn0zd
 |-  ( ph -> ( N - 1 ) e. ZZ )
154 uzid
 |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
155 peano2uz
 |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
156 153 154 155 3syl
 |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) )
157 149 156 eqeltrrd
 |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) )
158 fzsplit2
 |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
159 152 157 158 syl2anc
 |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) )
160 149 oveq1d
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) )
161 1 nnzd
 |-  ( ph -> N e. ZZ )
162 fzsn
 |-  ( N e. ZZ -> ( N ... N ) = { N } )
163 161 162 syl
 |-  ( ph -> ( N ... N ) = { N } )
164 160 163 eqtrd
 |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } )
165 164 uneq2d
 |-  ( ph -> ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) )
166 159 165 eqtrd
 |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) )
167 166 difeq1d
 |-  ( ph -> ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) = ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) )
168 elfzle2
 |-  ( N e. ( 0 ... ( N - 1 ) ) -> N <_ ( N - 1 ) )
169 15 168 nsyl
 |-  ( ph -> -. N e. ( 0 ... ( N - 1 ) ) )
170 incom
 |-  ( ( 0 ... ( N - 1 ) ) i^i { N } ) = ( { N } i^i ( 0 ... ( N - 1 ) ) )
171 170 eqeq1i
 |-  ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> ( { N } i^i ( 0 ... ( N - 1 ) ) ) = (/) )
172 disjsn
 |-  ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 0 ... ( N - 1 ) ) )
173 disj3
 |-  ( ( { N } i^i ( 0 ... ( N - 1 ) ) ) = (/) <-> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) )
174 171 172 173 3bitr3i
 |-  ( -. N e. ( 0 ... ( N - 1 ) ) <-> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) )
175 169 174 sylib
 |-  ( ph -> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) )
176 146 167 175 3eqtr4a
 |-  ( ph -> ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) = { N } )
177 176 eleq2d
 |-  ( ph -> ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) <-> ( 2nd ` z ) e. { N } ) )
178 eldif
 |-  ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) )
179 136 elsn
 |-  ( ( 2nd ` z ) e. { N } <-> ( 2nd ` z ) = N )
180 177 178 179 3bitr3g
 |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) <-> ( 2nd ` z ) = N ) )
181 142 180 bitr3d
 |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) <-> ( 2nd ` z ) = N ) )
182 181 biimpd
 |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) -> ( 2nd ` z ) = N ) )
183 182 expdimp
 |-  ( ( ph /\ ( 2nd ` z ) e. ( 0 ... N ) ) -> ( ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) = N ) )
184 123 183 sylan2
 |-  ( ( ph /\ z e. S ) -> ( ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) = N ) )
185 121 184 mpan2d
 |-  ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = 0 -> ( 2nd ` z ) = N ) )
186 1 2 3 poimirlem14
 |-  ( ph -> E* z e. S ( 2nd ` z ) = N )
187 fveqeq2
 |-  ( z = s -> ( ( 2nd ` z ) = N <-> ( 2nd ` s ) = N ) )
188 187 rmo4
 |-  ( E* z e. S ( 2nd ` z ) = N <-> A. z e. S A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) )
189 186 188 sylib
 |-  ( ph -> A. z e. S A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) )
190 189 r19.21bi
 |-  ( ( ph /\ z e. S ) -> A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) )
191 4 adantr
 |-  ( ( ph /\ z e. S ) -> T e. S )
192 fveqeq2
 |-  ( s = T -> ( ( 2nd ` s ) = N <-> ( 2nd ` T ) = N ) )
193 192 anbi2d
 |-  ( s = T -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) <-> ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) ) )
194 eqeq2
 |-  ( s = T -> ( z = s <-> z = T ) )
195 193 194 imbi12d
 |-  ( s = T -> ( ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) <-> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) )
196 195 rspccv
 |-  ( A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) -> ( T e. S -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) )
197 190 191 196 sylc
 |-  ( ( ph /\ z e. S ) -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) )
198 8 197 mpan2d
 |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) = N -> z = T ) )
199 185 198 syld
 |-  ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = 0 -> z = T ) )
200 199 necon1ad
 |-  ( ( ph /\ z e. S ) -> ( z =/= T -> ( 2nd ` z ) = 0 ) )
201 200 ralrimiva
 |-  ( ph -> A. z e. S ( z =/= T -> ( 2nd ` z ) = 0 ) )
202 1 2 3 poimirlem13
 |-  ( ph -> E* z e. S ( 2nd ` z ) = 0 )
203 rmoim
 |-  ( A. z e. S ( z =/= T -> ( 2nd ` z ) = 0 ) -> ( E* z e. S ( 2nd ` z ) = 0 -> E* z e. S z =/= T ) )
204 201 202 203 sylc
 |-  ( ph -> E* z e. S z =/= T )
205 reu5
 |-  ( E! z e. S z =/= T <-> ( E. z e. S z =/= T /\ E* z e. S z =/= T ) )
206 7 204 205 sylanbrc
 |-  ( ph -> E! z e. S z =/= T )