| Step | Hyp | Ref | Expression | 
						
							| 1 |  | poimir.0 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | poimirlem22.s |  |-  S = { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } | 
						
							| 3 |  | poimirlem22.1 |  |-  ( ph -> F : ( 0 ... ( N - 1 ) ) --> ( ( 0 ... K ) ^m ( 1 ... N ) ) ) | 
						
							| 4 |  | poimirlem22.2 |  |-  ( ph -> T e. S ) | 
						
							| 5 |  | poimirlem22.3 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> E. p e. ran F ( p ` n ) =/= 0 ) | 
						
							| 6 |  | poimirlem21.4 |  |-  ( ph -> ( 2nd ` T ) = N ) | 
						
							| 7 | 1 2 3 4 5 6 | poimirlem20 |  |-  ( ph -> E. z e. S z =/= T ) | 
						
							| 8 | 6 | adantr |  |-  ( ( ph /\ z e. S ) -> ( 2nd ` T ) = N ) | 
						
							| 9 | 1 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 10 | 9 | ltm1d |  |-  ( ph -> ( N - 1 ) < N ) | 
						
							| 11 |  | nnm1nn0 |  |-  ( N e. NN -> ( N - 1 ) e. NN0 ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> ( N - 1 ) e. NN0 ) | 
						
							| 13 | 12 | nn0red |  |-  ( ph -> ( N - 1 ) e. RR ) | 
						
							| 14 | 13 9 | ltnled |  |-  ( ph -> ( ( N - 1 ) < N <-> -. N <_ ( N - 1 ) ) ) | 
						
							| 15 | 10 14 | mpbid |  |-  ( ph -> -. N <_ ( N - 1 ) ) | 
						
							| 16 |  | elfzle2 |  |-  ( N e. ( 1 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 17 | 15 16 | nsyl |  |-  ( ph -> -. N e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 18 |  | eleq1 |  |-  ( ( 2nd ` z ) = N -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) <-> N e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 19 | 18 | notbid |  |-  ( ( 2nd ` z ) = N -> ( -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) <-> -. N e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 20 | 17 19 | syl5ibrcom |  |-  ( ph -> ( ( 2nd ` z ) = N -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 21 | 20 | necon2ad |  |-  ( ph -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` z ) =/= N ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` z ) =/= N ) ) | 
						
							| 23 | 1 | ad2antrr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> N e. NN ) | 
						
							| 24 |  | fveq2 |  |-  ( t = z -> ( 2nd ` t ) = ( 2nd ` z ) ) | 
						
							| 25 | 24 | breq2d |  |-  ( t = z -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` z ) ) ) | 
						
							| 26 | 25 | ifbid |  |-  ( t = z -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) ) | 
						
							| 27 | 26 | csbeq1d |  |-  ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 28 |  | 2fveq3 |  |-  ( t = z -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` z ) ) ) | 
						
							| 29 |  | 2fveq3 |  |-  ( t = z -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` z ) ) ) | 
						
							| 30 | 29 | imaeq1d |  |-  ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) ) | 
						
							| 31 | 30 | xpeq1d |  |-  ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 32 | 29 | imaeq1d |  |-  ( t = z -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 33 | 32 | xpeq1d |  |-  ( t = z -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 34 | 31 33 | uneq12d |  |-  ( t = z -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 35 | 28 34 | oveq12d |  |-  ( t = z -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 36 | 35 | csbeq2dv |  |-  ( t = z -> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 37 | 27 36 | eqtrd |  |-  ( t = z -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 38 | 37 | mpteq2dv |  |-  ( t = z -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 39 | 38 | eqeq2d |  |-  ( t = z -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 40 | 39 2 | elrab2 |  |-  ( z e. S <-> ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 41 | 40 | simprbi |  |-  ( z e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 42 | 41 | ad2antlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` z ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` z ) ) oF + ( ( ( ( 2nd ` ( 1st ` z ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` z ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 43 |  | elrabi |  |-  ( z e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 44 | 43 2 | eleq2s |  |-  ( z e. S -> z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 45 |  | xp1st |  |-  ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 46 | 44 45 | syl |  |-  ( z e. S -> ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 47 |  | xp1st |  |-  ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 48 | 46 47 | syl |  |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 49 |  | elmapi |  |-  ( ( 1st ` ( 1st ` z ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 51 |  | elfzoelz |  |-  ( n e. ( 0 ..^ K ) -> n e. ZZ ) | 
						
							| 52 | 51 | ssriv |  |-  ( 0 ..^ K ) C_ ZZ | 
						
							| 53 |  | fss |  |-  ( ( ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 54 | 50 52 53 | sylancl |  |-  ( z e. S -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 55 | 54 | ad2antlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 1st ` ( 1st ` z ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 56 |  | xp2nd |  |-  ( ( 1st ` z ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 57 | 46 56 | syl |  |-  ( z e. S -> ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 58 |  | fvex |  |-  ( 2nd ` ( 1st ` z ) ) e. _V | 
						
							| 59 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` z ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 60 | 58 59 | elab |  |-  ( ( 2nd ` ( 1st ` z ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 61 | 57 60 | sylib |  |-  ( z e. S -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 62 | 61 | ad2antlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` ( 1st ` z ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 63 |  | simpr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 64 | 23 42 55 62 63 | poimirlem1 |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) | 
						
							| 65 | 1 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> N e. NN ) | 
						
							| 66 |  | fveq2 |  |-  ( t = T -> ( 2nd ` t ) = ( 2nd ` T ) ) | 
						
							| 67 | 66 | breq2d |  |-  ( t = T -> ( y < ( 2nd ` t ) <-> y < ( 2nd ` T ) ) ) | 
						
							| 68 | 67 | ifbid |  |-  ( t = T -> if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) = if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) ) | 
						
							| 69 | 68 | csbeq1d |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 70 |  | 2fveq3 |  |-  ( t = T -> ( 1st ` ( 1st ` t ) ) = ( 1st ` ( 1st ` T ) ) ) | 
						
							| 71 |  | 2fveq3 |  |-  ( t = T -> ( 2nd ` ( 1st ` t ) ) = ( 2nd ` ( 1st ` T ) ) ) | 
						
							| 72 | 71 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) ) | 
						
							| 73 | 72 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) ) | 
						
							| 74 | 71 | imaeq1d |  |-  ( t = T -> ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) = ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) ) | 
						
							| 75 | 74 | xpeq1d |  |-  ( t = T -> ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) = ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) | 
						
							| 76 | 73 75 | uneq12d |  |-  ( t = T -> ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) = ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) | 
						
							| 77 | 70 76 | oveq12d |  |-  ( t = T -> ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 78 | 77 | csbeq2dv |  |-  ( t = T -> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 79 | 69 78 | eqtrd |  |-  ( t = T -> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) = [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) | 
						
							| 80 | 79 | mpteq2dv |  |-  ( t = T -> ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 81 | 80 | eqeq2d |  |-  ( t = T -> ( F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) <-> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 82 | 81 2 | elrab2 |  |-  ( T e. S <-> ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) /\ F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) ) | 
						
							| 83 | 82 | simprbi |  |-  ( T e. S -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 84 | 4 83 | syl |  |-  ( ph -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 85 | 84 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` T ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` T ) ) oF + ( ( ( ( 2nd ` ( 1st ` T ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` T ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) ) | 
						
							| 86 |  | elrabi |  |-  ( T e. { t e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) | F = ( y e. ( 0 ... ( N - 1 ) ) |-> [_ if ( y < ( 2nd ` t ) , y , ( y + 1 ) ) / j ]_ ( ( 1st ` ( 1st ` t ) ) oF + ( ( ( ( 2nd ` ( 1st ` t ) ) " ( 1 ... j ) ) X. { 1 } ) u. ( ( ( 2nd ` ( 1st ` t ) ) " ( ( j + 1 ) ... N ) ) X. { 0 } ) ) ) ) } -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 87 | 86 2 | eleq2s |  |-  ( T e. S -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 88 | 4 87 | syl |  |-  ( ph -> T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) ) | 
						
							| 89 |  | xp1st |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 90 | 88 89 | syl |  |-  ( ph -> ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) ) | 
						
							| 91 |  | xp1st |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 92 | 90 91 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) ) | 
						
							| 93 |  | elmapi |  |-  ( ( 1st ` ( 1st ` T ) ) e. ( ( 0 ..^ K ) ^m ( 1 ... N ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 94 | 92 93 | syl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) ) | 
						
							| 95 |  | fss |  |-  ( ( ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ( 0 ..^ K ) /\ ( 0 ..^ K ) C_ ZZ ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 96 | 94 52 95 | sylancl |  |-  ( ph -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 97 | 96 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 1st ` ( 1st ` T ) ) : ( 1 ... N ) --> ZZ ) | 
						
							| 98 |  | xp2nd |  |-  ( ( 1st ` T ) e. ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 99 | 90 98 | syl |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) | 
						
							| 100 |  | fvex |  |-  ( 2nd ` ( 1st ` T ) ) e. _V | 
						
							| 101 |  | f1oeq1 |  |-  ( f = ( 2nd ` ( 1st ` T ) ) -> ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) ) | 
						
							| 102 | 100 101 | elab |  |-  ( ( 2nd ` ( 1st ` T ) ) e. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } <-> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 103 | 99 102 | sylib |  |-  ( ph -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 104 | 103 | ad2antrr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` ( 1st ` T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) | 
						
							| 105 |  | simplr |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 106 |  | xp2nd |  |-  ( T e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` T ) e. ( 0 ... N ) ) | 
						
							| 107 | 88 106 | syl |  |-  ( ph -> ( 2nd ` T ) e. ( 0 ... N ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) e. ( 0 ... N ) ) | 
						
							| 109 |  | eldifsn |  |-  ( ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) <-> ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) ) | 
						
							| 110 | 109 | biimpri |  |-  ( ( ( 2nd ` T ) e. ( 0 ... N ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) ) | 
						
							| 111 | 108 110 | sylan |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> ( 2nd ` T ) e. ( ( 0 ... N ) \ { ( 2nd ` z ) } ) ) | 
						
							| 112 | 65 85 97 104 105 111 | poimirlem2 |  |-  ( ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) /\ ( 2nd ` T ) =/= ( 2nd ` z ) ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) | 
						
							| 113 | 112 | ex |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= ( 2nd ` z ) -> E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) ) ) | 
						
							| 114 | 113 | necon1bd |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) ) | 
						
							| 115 | 114 | adantlr |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( -. E* n e. ( 1 ... N ) ( ( F ` ( ( 2nd ` z ) - 1 ) ) ` n ) =/= ( ( F ` ( 2nd ` z ) ) ` n ) -> ( 2nd ` T ) = ( 2nd ` z ) ) ) | 
						
							| 116 | 64 115 | mpd |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` T ) = ( 2nd ` z ) ) | 
						
							| 117 | 116 | neeq1d |  |-  ( ( ( ph /\ z e. S ) /\ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( ( 2nd ` T ) =/= N <-> ( 2nd ` z ) =/= N ) ) | 
						
							| 118 | 117 | exbiri |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( ( 2nd ` z ) =/= N -> ( 2nd ` T ) =/= N ) ) ) | 
						
							| 119 | 22 118 | mpdd |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) -> ( 2nd ` T ) =/= N ) ) | 
						
							| 120 | 119 | necon2bd |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` T ) = N -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 121 | 8 120 | mpd |  |-  ( ( ph /\ z e. S ) -> -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 122 |  | xp2nd |  |-  ( z e. ( ( ( ( 0 ..^ K ) ^m ( 1 ... N ) ) X. { f | f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) X. ( 0 ... N ) ) -> ( 2nd ` z ) e. ( 0 ... N ) ) | 
						
							| 123 | 44 122 | syl |  |-  ( z e. S -> ( 2nd ` z ) e. ( 0 ... N ) ) | 
						
							| 124 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 125 | 12 124 | eleqtrdi |  |-  ( ph -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 126 |  | fzpred |  |-  ( ( N - 1 ) e. ( ZZ>= ` 0 ) -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 127 | 125 126 | syl |  |-  ( ph -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) ) | 
						
							| 128 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 129 | 128 | oveq1i |  |-  ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) | 
						
							| 130 | 129 | uneq2i |  |-  ( { 0 } u. ( ( 0 + 1 ) ... ( N - 1 ) ) ) = ( { 0 } u. ( 1 ... ( N - 1 ) ) ) | 
						
							| 131 | 127 130 | eqtrdi |  |-  ( ph -> ( 0 ... ( N - 1 ) ) = ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 132 | 131 | eleq2d |  |-  ( ph -> ( ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 133 | 132 | notbid |  |-  ( ph -> ( -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> -. ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 134 |  | ioran |  |-  ( -. ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 135 |  | elun |  |-  ( ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. { 0 } \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 136 |  | fvex |  |-  ( 2nd ` z ) e. _V | 
						
							| 137 | 136 | elsn |  |-  ( ( 2nd ` z ) e. { 0 } <-> ( 2nd ` z ) = 0 ) | 
						
							| 138 | 137 | orbi1i |  |-  ( ( ( 2nd ` z ) e. { 0 } \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 139 | 135 138 | bitri |  |-  ( ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) = 0 \/ ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 140 | 134 139 | xchnxbir |  |-  ( -. ( 2nd ` z ) e. ( { 0 } u. ( 1 ... ( N - 1 ) ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 141 | 133 140 | bitrdi |  |-  ( ph -> ( -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) <-> ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 142 | 141 | anbi2d |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) ) ) | 
						
							| 143 |  | uncom |  |-  ( ( 0 ... ( N - 1 ) ) u. { N } ) = ( { N } u. ( 0 ... ( N - 1 ) ) ) | 
						
							| 144 | 143 | difeq1i |  |-  ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) = ( ( { N } u. ( 0 ... ( N - 1 ) ) ) \ ( 0 ... ( N - 1 ) ) ) | 
						
							| 145 |  | difun2 |  |-  ( ( { N } u. ( 0 ... ( N - 1 ) ) ) \ ( 0 ... ( N - 1 ) ) ) = ( { N } \ ( 0 ... ( N - 1 ) ) ) | 
						
							| 146 | 144 145 | eqtri |  |-  ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) = ( { N } \ ( 0 ... ( N - 1 ) ) ) | 
						
							| 147 | 1 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 148 |  | npcan1 |  |-  ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 149 | 147 148 | syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 150 | 1 | nnnn0d |  |-  ( ph -> N e. NN0 ) | 
						
							| 151 | 150 124 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 0 ) ) | 
						
							| 152 | 149 151 | eqeltrd |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) ) | 
						
							| 153 | 12 | nn0zd |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 154 |  | uzid |  |-  ( ( N - 1 ) e. ZZ -> ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 155 |  | peano2uz |  |-  ( ( N - 1 ) e. ( ZZ>= ` ( N - 1 ) ) -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 156 | 153 154 155 | 3syl |  |-  ( ph -> ( ( N - 1 ) + 1 ) e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 157 | 149 156 | eqeltrrd |  |-  ( ph -> N e. ( ZZ>= ` ( N - 1 ) ) ) | 
						
							| 158 |  | fzsplit2 |  |-  ( ( ( ( N - 1 ) + 1 ) e. ( ZZ>= ` 0 ) /\ N e. ( ZZ>= ` ( N - 1 ) ) ) -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 159 | 152 157 158 | syl2anc |  |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) ) | 
						
							| 160 | 149 | oveq1d |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = ( N ... N ) ) | 
						
							| 161 | 1 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 162 |  | fzsn |  |-  ( N e. ZZ -> ( N ... N ) = { N } ) | 
						
							| 163 | 161 162 | syl |  |-  ( ph -> ( N ... N ) = { N } ) | 
						
							| 164 | 160 163 | eqtrd |  |-  ( ph -> ( ( ( N - 1 ) + 1 ) ... N ) = { N } ) | 
						
							| 165 | 164 | uneq2d |  |-  ( ph -> ( ( 0 ... ( N - 1 ) ) u. ( ( ( N - 1 ) + 1 ) ... N ) ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 166 | 159 165 | eqtrd |  |-  ( ph -> ( 0 ... N ) = ( ( 0 ... ( N - 1 ) ) u. { N } ) ) | 
						
							| 167 | 166 | difeq1d |  |-  ( ph -> ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) = ( ( ( 0 ... ( N - 1 ) ) u. { N } ) \ ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 168 |  | elfzle2 |  |-  ( N e. ( 0 ... ( N - 1 ) ) -> N <_ ( N - 1 ) ) | 
						
							| 169 | 15 168 | nsyl |  |-  ( ph -> -. N e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 170 |  | incom |  |-  ( ( 0 ... ( N - 1 ) ) i^i { N } ) = ( { N } i^i ( 0 ... ( N - 1 ) ) ) | 
						
							| 171 | 170 | eqeq1i |  |-  ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> ( { N } i^i ( 0 ... ( N - 1 ) ) ) = (/) ) | 
						
							| 172 |  | disjsn |  |-  ( ( ( 0 ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 173 |  | disj3 |  |-  ( ( { N } i^i ( 0 ... ( N - 1 ) ) ) = (/) <-> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 174 | 171 172 173 | 3bitr3i |  |-  ( -. N e. ( 0 ... ( N - 1 ) ) <-> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 175 | 169 174 | sylib |  |-  ( ph -> { N } = ( { N } \ ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 176 | 146 167 175 | 3eqtr4a |  |-  ( ph -> ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) = { N } ) | 
						
							| 177 | 176 | eleq2d |  |-  ( ph -> ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) <-> ( 2nd ` z ) e. { N } ) ) | 
						
							| 178 |  | eldif |  |-  ( ( 2nd ` z ) e. ( ( 0 ... N ) \ ( 0 ... ( N - 1 ) ) ) <-> ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 179 | 136 | elsn |  |-  ( ( 2nd ` z ) e. { N } <-> ( 2nd ` z ) = N ) | 
						
							| 180 | 177 178 179 | 3bitr3g |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ -. ( 2nd ` z ) e. ( 0 ... ( N - 1 ) ) ) <-> ( 2nd ` z ) = N ) ) | 
						
							| 181 | 142 180 | bitr3d |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) <-> ( 2nd ` z ) = N ) ) | 
						
							| 182 | 181 | biimpd |  |-  ( ph -> ( ( ( 2nd ` z ) e. ( 0 ... N ) /\ ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) ) -> ( 2nd ` z ) = N ) ) | 
						
							| 183 | 182 | expdimp |  |-  ( ( ph /\ ( 2nd ` z ) e. ( 0 ... N ) ) -> ( ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) = N ) ) | 
						
							| 184 | 123 183 | sylan2 |  |-  ( ( ph /\ z e. S ) -> ( ( -. ( 2nd ` z ) = 0 /\ -. ( 2nd ` z ) e. ( 1 ... ( N - 1 ) ) ) -> ( 2nd ` z ) = N ) ) | 
						
							| 185 | 121 184 | mpan2d |  |-  ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = 0 -> ( 2nd ` z ) = N ) ) | 
						
							| 186 | 1 2 3 | poimirlem14 |  |-  ( ph -> E* z e. S ( 2nd ` z ) = N ) | 
						
							| 187 |  | fveqeq2 |  |-  ( z = s -> ( ( 2nd ` z ) = N <-> ( 2nd ` s ) = N ) ) | 
						
							| 188 | 187 | rmo4 |  |-  ( E* z e. S ( 2nd ` z ) = N <-> A. z e. S A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) ) | 
						
							| 189 | 186 188 | sylib |  |-  ( ph -> A. z e. S A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) ) | 
						
							| 190 | 189 | r19.21bi |  |-  ( ( ph /\ z e. S ) -> A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) ) | 
						
							| 191 | 4 | adantr |  |-  ( ( ph /\ z e. S ) -> T e. S ) | 
						
							| 192 |  | fveqeq2 |  |-  ( s = T -> ( ( 2nd ` s ) = N <-> ( 2nd ` T ) = N ) ) | 
						
							| 193 | 192 | anbi2d |  |-  ( s = T -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) <-> ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) ) ) | 
						
							| 194 |  | eqeq2 |  |-  ( s = T -> ( z = s <-> z = T ) ) | 
						
							| 195 | 193 194 | imbi12d |  |-  ( s = T -> ( ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) <-> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) ) | 
						
							| 196 | 195 | rspccv |  |-  ( A. s e. S ( ( ( 2nd ` z ) = N /\ ( 2nd ` s ) = N ) -> z = s ) -> ( T e. S -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) ) | 
						
							| 197 | 190 191 196 | sylc |  |-  ( ( ph /\ z e. S ) -> ( ( ( 2nd ` z ) = N /\ ( 2nd ` T ) = N ) -> z = T ) ) | 
						
							| 198 | 8 197 | mpan2d |  |-  ( ( ph /\ z e. S ) -> ( ( 2nd ` z ) = N -> z = T ) ) | 
						
							| 199 | 185 198 | syld |  |-  ( ( ph /\ z e. S ) -> ( -. ( 2nd ` z ) = 0 -> z = T ) ) | 
						
							| 200 | 199 | necon1ad |  |-  ( ( ph /\ z e. S ) -> ( z =/= T -> ( 2nd ` z ) = 0 ) ) | 
						
							| 201 | 200 | ralrimiva |  |-  ( ph -> A. z e. S ( z =/= T -> ( 2nd ` z ) = 0 ) ) | 
						
							| 202 | 1 2 3 | poimirlem13 |  |-  ( ph -> E* z e. S ( 2nd ` z ) = 0 ) | 
						
							| 203 |  | rmoim |  |-  ( A. z e. S ( z =/= T -> ( 2nd ` z ) = 0 ) -> ( E* z e. S ( 2nd ` z ) = 0 -> E* z e. S z =/= T ) ) | 
						
							| 204 | 201 202 203 | sylc |  |-  ( ph -> E* z e. S z =/= T ) | 
						
							| 205 |  | reu5 |  |-  ( E! z e. S z =/= T <-> ( E. z e. S z =/= T /\ E* z e. S z =/= T ) ) | 
						
							| 206 | 7 204 205 | sylanbrc |  |-  ( ph -> E! z e. S z =/= T ) |