| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reex |
|- RR e. _V |
| 2 |
1
|
pwex |
|- ~P RR e. _V |
| 3 |
|
weinxp |
|- ( .< We RR <-> ( .< i^i ( RR X. RR ) ) We RR ) |
| 4 |
|
unipw |
|- U. ~P RR = RR |
| 5 |
|
weeq2 |
|- ( U. ~P RR = RR -> ( ( .< i^i ( RR X. RR ) ) We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We RR ) ) |
| 6 |
4 5
|
ax-mp |
|- ( ( .< i^i ( RR X. RR ) ) We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We RR ) |
| 7 |
3 6
|
bitr4i |
|- ( .< We RR <-> ( .< i^i ( RR X. RR ) ) We U. ~P RR ) |
| 8 |
1 1
|
xpex |
|- ( RR X. RR ) e. _V |
| 9 |
8
|
inex2 |
|- ( .< i^i ( RR X. RR ) ) e. _V |
| 10 |
|
weeq1 |
|- ( x = ( .< i^i ( RR X. RR ) ) -> ( x We U. ~P RR <-> ( .< i^i ( RR X. RR ) ) We U. ~P RR ) ) |
| 11 |
9 10
|
spcev |
|- ( ( .< i^i ( RR X. RR ) ) We U. ~P RR -> E. x x We U. ~P RR ) |
| 12 |
7 11
|
sylbi |
|- ( .< We RR -> E. x x We U. ~P RR ) |
| 13 |
|
dfac8c |
|- ( ~P RR e. _V -> ( E. x x We U. ~P RR -> E. f A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) ) |
| 14 |
2 12 13
|
mpsyl |
|- ( .< We RR -> E. f A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) |
| 15 |
|
qex |
|- QQ e. _V |
| 16 |
15
|
inex1 |
|- ( QQ i^i ( -u 1 [,] 1 ) ) e. _V |
| 17 |
|
nnrecq |
|- ( x e. NN -> ( 1 / x ) e. QQ ) |
| 18 |
|
nnrecre |
|- ( x e. NN -> ( 1 / x ) e. RR ) |
| 19 |
|
neg1rr |
|- -u 1 e. RR |
| 20 |
19
|
a1i |
|- ( x e. NN -> -u 1 e. RR ) |
| 21 |
|
0re |
|- 0 e. RR |
| 22 |
21
|
a1i |
|- ( x e. NN -> 0 e. RR ) |
| 23 |
|
neg1lt0 |
|- -u 1 < 0 |
| 24 |
19 21 23
|
ltleii |
|- -u 1 <_ 0 |
| 25 |
24
|
a1i |
|- ( x e. NN -> -u 1 <_ 0 ) |
| 26 |
|
nnrp |
|- ( x e. NN -> x e. RR+ ) |
| 27 |
26
|
rpreccld |
|- ( x e. NN -> ( 1 / x ) e. RR+ ) |
| 28 |
27
|
rpge0d |
|- ( x e. NN -> 0 <_ ( 1 / x ) ) |
| 29 |
20 22 18 25 28
|
letrd |
|- ( x e. NN -> -u 1 <_ ( 1 / x ) ) |
| 30 |
|
nnge1 |
|- ( x e. NN -> 1 <_ x ) |
| 31 |
|
nnre |
|- ( x e. NN -> x e. RR ) |
| 32 |
|
nngt0 |
|- ( x e. NN -> 0 < x ) |
| 33 |
|
1re |
|- 1 e. RR |
| 34 |
|
0lt1 |
|- 0 < 1 |
| 35 |
|
lerec |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( x e. RR /\ 0 < x ) ) -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) |
| 36 |
33 34 35
|
mpanl12 |
|- ( ( x e. RR /\ 0 < x ) -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) |
| 37 |
31 32 36
|
syl2anc |
|- ( x e. NN -> ( 1 <_ x <-> ( 1 / x ) <_ ( 1 / 1 ) ) ) |
| 38 |
30 37
|
mpbid |
|- ( x e. NN -> ( 1 / x ) <_ ( 1 / 1 ) ) |
| 39 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 40 |
38 39
|
breqtrdi |
|- ( x e. NN -> ( 1 / x ) <_ 1 ) |
| 41 |
19 33
|
elicc2i |
|- ( ( 1 / x ) e. ( -u 1 [,] 1 ) <-> ( ( 1 / x ) e. RR /\ -u 1 <_ ( 1 / x ) /\ ( 1 / x ) <_ 1 ) ) |
| 42 |
18 29 40 41
|
syl3anbrc |
|- ( x e. NN -> ( 1 / x ) e. ( -u 1 [,] 1 ) ) |
| 43 |
17 42
|
elind |
|- ( x e. NN -> ( 1 / x ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 44 |
|
oveq2 |
|- ( ( 1 / x ) = ( 1 / y ) -> ( 1 / ( 1 / x ) ) = ( 1 / ( 1 / y ) ) ) |
| 45 |
|
nncn |
|- ( x e. NN -> x e. CC ) |
| 46 |
|
nnne0 |
|- ( x e. NN -> x =/= 0 ) |
| 47 |
45 46
|
recrecd |
|- ( x e. NN -> ( 1 / ( 1 / x ) ) = x ) |
| 48 |
|
nncn |
|- ( y e. NN -> y e. CC ) |
| 49 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
| 50 |
48 49
|
recrecd |
|- ( y e. NN -> ( 1 / ( 1 / y ) ) = y ) |
| 51 |
47 50
|
eqeqan12d |
|- ( ( x e. NN /\ y e. NN ) -> ( ( 1 / ( 1 / x ) ) = ( 1 / ( 1 / y ) ) <-> x = y ) ) |
| 52 |
44 51
|
imbitrid |
|- ( ( x e. NN /\ y e. NN ) -> ( ( 1 / x ) = ( 1 / y ) -> x = y ) ) |
| 53 |
|
oveq2 |
|- ( x = y -> ( 1 / x ) = ( 1 / y ) ) |
| 54 |
52 53
|
impbid1 |
|- ( ( x e. NN /\ y e. NN ) -> ( ( 1 / x ) = ( 1 / y ) <-> x = y ) ) |
| 55 |
43 54
|
dom2 |
|- ( ( QQ i^i ( -u 1 [,] 1 ) ) e. _V -> NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 56 |
16 55
|
ax-mp |
|- NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) |
| 57 |
|
inss1 |
|- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
| 58 |
|
ssdomg |
|- ( QQ e. _V -> ( ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ -> ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ ) ) |
| 59 |
15 57 58
|
mp2 |
|- ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ |
| 60 |
|
qnnen |
|- QQ ~~ NN |
| 61 |
|
domentr |
|- ( ( ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ QQ /\ QQ ~~ NN ) -> ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN ) |
| 62 |
59 60 61
|
mp2an |
|- ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN |
| 63 |
|
sbth |
|- ( ( NN ~<_ ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) ~<_ NN ) -> NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 64 |
56 62 63
|
mp2an |
|- NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) |
| 65 |
|
bren |
|- ( NN ~~ ( QQ i^i ( -u 1 [,] 1 ) ) <-> E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 66 |
64 65
|
mpbi |
|- E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) |
| 67 |
|
eleq1w |
|- ( a = x -> ( a e. ( 0 [,] 1 ) <-> x e. ( 0 [,] 1 ) ) ) |
| 68 |
|
eleq1w |
|- ( b = y -> ( b e. ( 0 [,] 1 ) <-> y e. ( 0 [,] 1 ) ) ) |
| 69 |
67 68
|
bi2anan9 |
|- ( ( a = x /\ b = y ) -> ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) <-> ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) ) ) |
| 70 |
|
oveq12 |
|- ( ( a = x /\ b = y ) -> ( a - b ) = ( x - y ) ) |
| 71 |
70
|
eleq1d |
|- ( ( a = x /\ b = y ) -> ( ( a - b ) e. QQ <-> ( x - y ) e. QQ ) ) |
| 72 |
69 71
|
anbi12d |
|- ( ( a = x /\ b = y ) -> ( ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) <-> ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) ) ) |
| 73 |
72
|
cbvopabv |
|- { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
| 74 |
|
eqid |
|- ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) = ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |
| 75 |
|
fvex |
|- ( f ` c ) e. _V |
| 76 |
|
eqid |
|- ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) = ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) |
| 77 |
75 76
|
fnmpti |
|- ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) Fn ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |
| 78 |
77
|
a1i |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) Fn ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ) |
| 79 |
|
neeq1 |
|- ( z = w -> ( z =/= (/) <-> w =/= (/) ) ) |
| 80 |
|
fveq2 |
|- ( z = w -> ( f ` z ) = ( f ` w ) ) |
| 81 |
|
id |
|- ( z = w -> z = w ) |
| 82 |
80 81
|
eleq12d |
|- ( z = w -> ( ( f ` z ) e. z <-> ( f ` w ) e. w ) ) |
| 83 |
79 82
|
imbi12d |
|- ( z = w -> ( ( z =/= (/) -> ( f ` z ) e. z ) <-> ( w =/= (/) -> ( f ` w ) e. w ) ) ) |
| 84 |
83
|
cbvralvw |
|- ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) <-> A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 85 |
73
|
vitalilem1 |
|- { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } Er ( 0 [,] 1 ) |
| 86 |
85
|
a1i |
|- ( T. -> { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } Er ( 0 [,] 1 ) ) |
| 87 |
86
|
qsss |
|- ( T. -> ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P ( 0 [,] 1 ) ) |
| 88 |
87
|
mptru |
|- ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P ( 0 [,] 1 ) |
| 89 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 90 |
89
|
sspwi |
|- ~P ( 0 [,] 1 ) C_ ~P RR |
| 91 |
88 90
|
sstri |
|- ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P RR |
| 92 |
|
ssralv |
|- ( ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) C_ ~P RR -> ( A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) ) |
| 93 |
91 92
|
ax-mp |
|- ( A. w e. ~P RR ( w =/= (/) -> ( f ` w ) e. w ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 94 |
84 93
|
sylbi |
|- ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 95 |
|
fveq2 |
|- ( c = w -> ( f ` c ) = ( f ` w ) ) |
| 96 |
|
fvex |
|- ( f ` w ) e. _V |
| 97 |
95 76 96
|
fvmpt |
|- ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) = ( f ` w ) ) |
| 98 |
97
|
eleq1d |
|- ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w <-> ( f ` w ) e. w ) ) |
| 99 |
98
|
imbi2d |
|- ( w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) -> ( ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) <-> ( w =/= (/) -> ( f ` w ) e. w ) ) ) |
| 100 |
99
|
ralbiia |
|- ( A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) <-> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( f ` w ) e. w ) ) |
| 101 |
94 100
|
sylibr |
|- ( A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) ) |
| 102 |
101
|
ad2antlr |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> A. w e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) ( w =/= (/) -> ( ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ` w ) e. w ) ) |
| 103 |
|
simprl |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 104 |
|
oveq1 |
|- ( t = s -> ( t - ( g ` m ) ) = ( s - ( g ` m ) ) ) |
| 105 |
104
|
eleq1d |
|- ( t = s -> ( ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) <-> ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ) ) |
| 106 |
105
|
cbvrabv |
|- { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } |
| 107 |
|
fveq2 |
|- ( m = n -> ( g ` m ) = ( g ` n ) ) |
| 108 |
107
|
oveq2d |
|- ( m = n -> ( s - ( g ` m ) ) = ( s - ( g ` n ) ) ) |
| 109 |
108
|
eleq1d |
|- ( m = n -> ( ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) <-> ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) ) ) |
| 110 |
109
|
rabbidv |
|- ( m = n -> { s e. RR | ( s - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) |
| 111 |
106 110
|
eqtrid |
|- ( m = n -> { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } = { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) |
| 112 |
111
|
cbvmptv |
|- ( m e. NN |-> { t e. RR | ( t - ( g ` m ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) = ( n e. NN |-> { s e. RR | ( s - ( g ` n ) ) e. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) } ) |
| 113 |
|
simprr |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) |
| 114 |
73 74 78 102 103 112 113
|
vitalilem5 |
|- -. ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) |
| 115 |
114
|
pm2.21i |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) |
| 116 |
115
|
expr |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ( -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) ) |
| 117 |
116
|
pm2.18d |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) ) |
| 118 |
|
eldif |
|- ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) <-> ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) ) |
| 119 |
|
mblss |
|- ( x e. dom vol -> x C_ RR ) |
| 120 |
|
velpw |
|- ( x e. ~P RR <-> x C_ RR ) |
| 121 |
119 120
|
sylibr |
|- ( x e. dom vol -> x e. ~P RR ) |
| 122 |
121
|
ssriv |
|- dom vol C_ ~P RR |
| 123 |
|
ssnelpss |
|- ( dom vol C_ ~P RR -> ( ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) -> dom vol C. ~P RR ) ) |
| 124 |
122 123
|
ax-mp |
|- ( ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ~P RR /\ -. ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. dom vol ) -> dom vol C. ~P RR ) |
| 125 |
118 124
|
sylbi |
|- ( ran ( c e. ( ( 0 [,] 1 ) /. { <. a , b >. | ( ( a e. ( 0 [,] 1 ) /\ b e. ( 0 [,] 1 ) ) /\ ( a - b ) e. QQ ) } ) |-> ( f ` c ) ) e. ( ~P RR \ dom vol ) -> dom vol C. ~P RR ) |
| 126 |
117 125
|
syl |
|- ( ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) /\ g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) -> dom vol C. ~P RR ) |
| 127 |
126
|
ex |
|- ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> dom vol C. ~P RR ) ) |
| 128 |
127
|
exlimdv |
|- ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> ( E. g g : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> dom vol C. ~P RR ) ) |
| 129 |
66 128
|
mpi |
|- ( ( .< We RR /\ A. z e. ~P RR ( z =/= (/) -> ( f ` z ) e. z ) ) -> dom vol C. ~P RR ) |
| 130 |
14 129
|
exlimddv |
|- ( .< We RR -> dom vol C. ~P RR ) |